

Perceptual Distance and Visual Search

Data Science - Visual Neuroscience Lecture 3

A quick recapitulation

- ▶ We are trying to quantify perceptual distance between objects.
- ▶ Two different ways and a comparison.
 - ▶ Via behavioural experiments for detecting an oddball among distractors.
 - ▶ By capturing neuron responses.
- ▶ Towards this, we looked at a simplified model with true state of nature being one image or the other, and a single neuron observation.
- ▶ Hypothesis testing, model for observations as points of a Poisson point process, optimality of likelihood ratio test, log-likelihoods viewed as (random) information, the additivity property of log-likelihoods, its expectation is relative entropy under one hypothesis (positive) and negative relative entropy under the other (negative).
- ▶ Relative entropy as a measure of dissimilarity between two probability distributions. Data processing inequality.

$$D(P_0^\pi || P_1^\pi)$$

- ▶ Suppose policy π says “no matter what, stop at T ”.
- ▶ $x = (a_1, x_1, a_2, x_2, \dots, a_{T-1}, x_{T-1}, a_T = \text{stop})$.
- ▶ By additivity of log-likelihoods

$$D(P_0^\pi || P_1^\pi) = E_0 \left[\sum_{t=1}^T \log \frac{p_0(X_t)}{p_1(X_t)} \right] = TD(p_0 || p_1),$$

where $D(p_0 || p_1)$ is relative entropy of 1 sample.

- ▶ But we are interested in a stopping rule that depends on the observations.
- ▶ A result from probability theory: Optional stopping theorem (without proof)

$$D(P_0^\pi || P_1^\pi) = E_0 \left[\sum_{t=1}^{\tau} \log \frac{p_0(X_t)}{p_1(X_t)} \right] = E_0[\tau]D(p_0 || p_1).$$

$D(Q_0^\pi || Q_1^\pi)$, and a summing up

- ▶ Interpretation of Q_0^π : Under hypothesis H_0 , when you stop, probabilities of various decisions

Hypothesis	Distribution	Decision 0	Decision 1
H_0	Q_0^π	$\geq 1 - \varepsilon$	$\leq \varepsilon$
H_1	Q_1^π	$\leq \varepsilon$	$\geq 1 - \varepsilon$

- ▶ Approximately $D(\{1 - \varepsilon, \varepsilon\} || \{\varepsilon, 1 - \varepsilon\})$

$$(1 - \varepsilon) \log \frac{1 - \varepsilon}{\varepsilon} + \varepsilon \log \frac{\varepsilon}{1 - \varepsilon} \sim \log \frac{1}{\varepsilon}.$$

- ▶ Thus: $E_0[\tau] D(p_0 || p_1) \gtrsim \log \frac{1}{\varepsilon}$, or

$$E_0[\tau] \gtrsim \frac{\log \left(\frac{1}{\varepsilon} \right)}{D(p_0 || p_1)}.$$

Is there a policy that will achieve this?

- ▶ Yes, asymptotically ... (Wald, late 1940s.)
- ▶ Accumulate $\log \frac{p_0(x_t)}{p_1(x_t)}$ across time. Wait until it exceeds a high enough threshold.
- ▶ Trade-off between confidence and delay.
- ▶ Lower bound suggests that we should stop at $\log(1/\varepsilon)$.
This is the same as likelihood ratio $\frac{P_0^\pi(\dots)}{P_1^\pi(\dots)} \geq \frac{1}{\varepsilon}$.
This is what makes it an ε -admissible policy.
- ▶ Policy:
 - ▶ Start with $S_0 = 0$.
 - ▶ At time t , compute $S_t = S_{t-1} + \log \frac{p_0(x_t)}{p_1(x_t)}$.
 - ▶ If $S_t > \log(1/\varepsilon)$, stop and decide H_0 .
 - ▶ If $S_t < -\log(1/\varepsilon)$, stop and decide H_1 .
 - ▶ Otherwise, continue.

A candidate for perceptual distance

- ▶ Search times are proportional to $\frac{1}{D(p_0||p_1)}$.
- ▶ If subjects wait to gather the same degree of confidence, then

$$\frac{D(p_0||p_1)}{N} = \text{perceptual distance between image 0 and image 1.}$$

N = number of neurons under consideration.

- ▶ A simple calculation yields:

$$D(p_0||p_1) = \sum_n \left[\lambda_0(n) \log \frac{\lambda_0(n)}{\lambda_1(n)} - \lambda_0(n) + \lambda_1(n) \right].$$

- ▶ Oddball image is i and distractor is j , then $D(p_i||p_j)/N =: D_{ij}$.

Search with control

- ▶ We actually have controls as well. Which place to look at.
- ▶ A more detailed model with controls provides us with a refinement. We will not go into the details here. But you have a homework question.
- ▶ But instead, we will stick to D_{ij} for the data analysis.

Other natural distance candidates?

- ▶ Another proposal: $L_{ij} = N^{-1} \|\lambda_i - \lambda_j\|_1 = \frac{1}{N} \sum_n |\lambda_0(n) - \lambda_1(n)|$.
- ▶ Symmetric.
- ▶ This has a drawback, because we know that Q in a sea of O 's is easier to identify than O in a sea of Q 's.

Estimating relative entropy

- ▶ We don't really know the true firing rates. We estimate them based on firing rate measurements, which are noisy.
- ▶ If we plug in the estimated rates into the formula for relative entropy, we will suffer a bias.
- ▶ The expected value of

$$\hat{\lambda}_0 \log(\hat{\lambda}_0 / \hat{\lambda}_1) - \hat{\lambda}_0 + \hat{\lambda}_1$$

can be different from the true value for different (λ_0, λ_1) pairs.

- ▶ You should try:

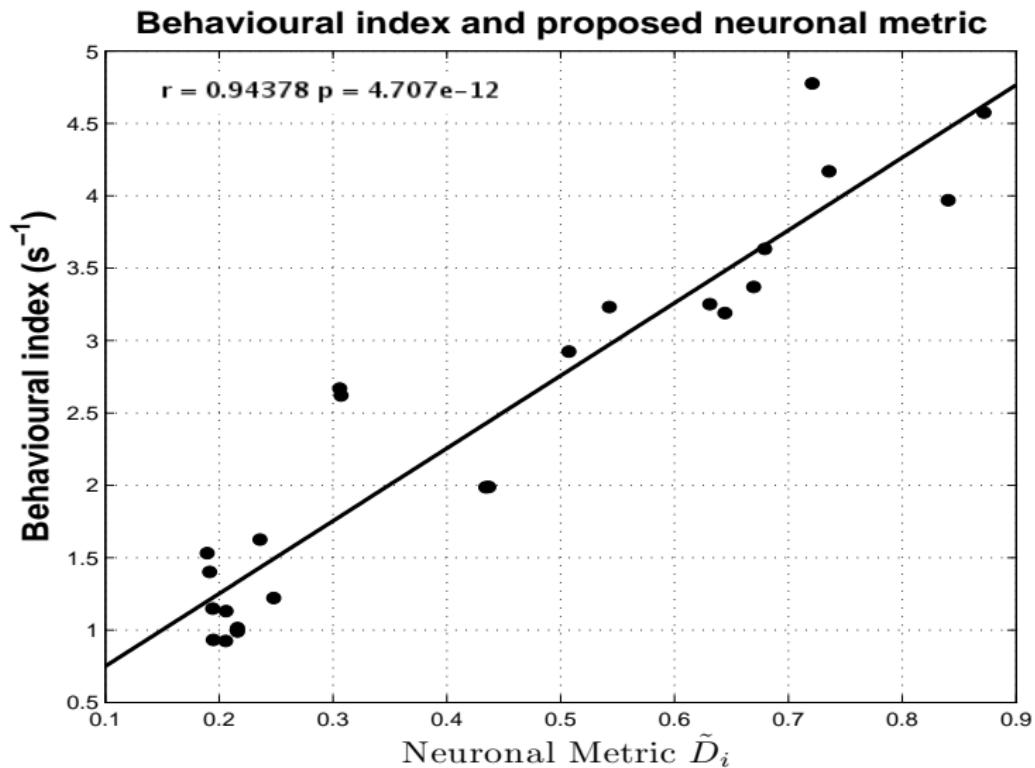
$$\hat{D}_{01} = \begin{cases} \left[\hat{\lambda}_0 \log \frac{\hat{\lambda}_0 - 1/(2m\Delta)}{\hat{\lambda}_1 + 1/(2m\Delta)} - \hat{\lambda}_0 + \hat{\lambda}_1 \right]_+ & \text{if } \hat{\lambda}_0 > 1/(2m\Delta), \\ \hat{\lambda}_1, & \text{otherwise.} \end{cases}$$

$m = 24, \Delta = 250 \text{ ms}$ from the Sripathi and Olson experiments.

Assignment: Correlation analysis

- ▶ Divide data into groups. Each group is for an ordered image pair.
- ▶ Compute s_{ij} , \hat{D}_{ij} , L_{ij} .
 s_{ij} plays the role of τ .
Remember to subtract the baseline reaction time of 328 ms to get time for decision alone.
Remember to treat the compound searches correctly.
- ▶ Given $(s_{ij}^{-1}, \hat{D}_{ij})$, find the best straight line passing through the origin.
Given (s_{ij}^{-1}, L_{ij}) , find the best straight line passing through the origin.
- ▶ Which gives a better fit?

With the more refined perceptual distance



Assignment: A measure of spread

- ▶ What we anticipate is that

$$u_{ij} := s_{ij} \times \hat{D}_{ij} \sim \text{constant, across } i, j.$$

- ▶ Similarly,

$$v_{ij} := s_{ij} \times L_{ij} \sim \text{constant, across } i, j.$$

- ▶ Which fits the observations better?
- ▶ A measure of spread is AM/GM of the u_{ij} 's and the v_{ij} 's.
- ▶ Higher this ratio, greater the spread.

Assignment: Guessing the distribution of the search times

- ▶ We did not cover this in class, but you will do it in your assignment.
- ▶ Pick (randomly) half of the groups and get a scatter plot of the (mean, stddev).
- ▶ You will see that stddev is roughly proportional to the mean.
- ▶ Fit a Gamma distribution which has this property.
- ▶ Density is $g(x; \alpha, \beta) = \frac{\beta^\alpha x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}$, $x \geq 0$.
 α is the shape, β is the rate.
- ▶ Mean = α/β , stddev = $\sqrt{\alpha}/\beta$, so that stddev/mean = $1/\sqrt{\alpha}$.
Fit a straight line to the scatter plot above and provide a guess for the shape α .

The Kolmogorov-Smirnov statistic

- ▶ On each of the groups that did not contribute to your shape parameter, randomly select one half of the data points and estimate the rate parameter.
- ▶ Plot the cdf with the estimated shape and rate and call it $F(x)$.
- ▶ Plot the cdf of the remaining data in the group.
Let the samples be $s(1), s(2), \dots, s(K)$.

$$\hat{F}(x) = \frac{1}{K} \sum_{k=1}^K 1\{s(k) \leq x\}.$$

This is the empirical cdf.

- ▶ How close are the two? What is the max distance between the first and the second cdfs?

$$KS = \max_x |F(x) - \hat{F}(x)|$$

Assignment: Hint on the general case

- ▶ Consider two hypotheses h and h' .
- ▶ Let A_t be the action at time slot t . Let $N_a(t)$ be the number of times a is chosen in slots upto t .

$$\begin{aligned} D(P_h^\pi || P_{h'}^\pi) &= E_h^\pi \sum_{t=1}^{\tau} \log \frac{p_h^{A_t}(X_t)}{p_{h'}^{A_t}(X_t)} \quad (\text{conditional independence}) \\ &= E_h^\pi \sum_{a=1}^K \sum_{l=1}^{N_a(\tau)} \log \frac{p_h^a(X_l)}{p_{h'}^a(X_l)} \\ &= \sum_{a=1}^K E_h^\pi[N_a(\tau)] D(p_h^a || p_{h'}^a) \quad (\text{Optional stopping}) \\ &\leq E_h^\pi[\tau] \max_{\lambda} \sum_{a=1}^K \lambda_a D(p_h^a || p_{h'}^a). \end{aligned}$$

- ▶ How should an adversary choose h' to minimise the information content in each slot? How should the searcher choose λ to maximise his information content?

What did we learn in this module?

- ▶ Hypothesis testing
- ▶ Hypothesis testing with a stopping criterion
- ▶ Relative entropy
- ▶ Data processing inequality
- ▶ Some asymptotic analysis
- ▶ Fitting a distribution, Kolmogorov-Smirnov statistic
- ▶ A measure of spread AM/GM.