
Perceptual Distance and Visual Search

Data Science - Visual Neuroscience Lecture 3



A quick recapitulation

◮ We are trying to quantify perceptual distance between objects.

◮ Two different ways and a comparison.
◮ Via behavioural experiments for detecting an oddball among

distracters.
◮ By capturing neuron responses.

◮ Towards this, we looked at a simplified model with true state of
nature being one image or the other, and a single neuron
observation.

◮ Hypothesis testing, model for observations as points of a Poisson
point process, optimality of likelihood ratio test, log-likelihoods
viewed as (random) information, the additivity property of
log-likelihoods, its expectation is relative entropy under one
hypothesis (positive) and negative relative entropy under the other
(negative).

◮ Relative entropy as a measure of dissimilarity between two
probability distributions. Data processing inequality.



D(Pπ
0 ||Pπ

1 )

◮ Suppose policy π says “no matter what, stop at T”.

◮ x = (a1, x1, a2, x2, . . . , aT−1, xT−1, aT = stop).

◮ By additivity of log-likelihoods

D(Pπ
0 ||Pπ

1 ) = E0

[

T
∑

t=1

log
p0(Xt)

p1(Xt)

]

= TD(p0||p1),

where D(p0||p1) is relative entropy of 1 sample.

◮ But we are interested in a stopping rule that depends on the
observations.

◮ A result from probability theory: Optional stopping theorem
(without proof)

D(Pπ
0 ||Pπ

1 ) = E0

[

τ
∑

t=1

log
p0(Xt)

p1(Xt)

]

= E0[τ ]D(p0||p1).



D(Qπ
0 ||Qπ

1 ), and a summing up

◮ Interpretation of Qπ
0 : Under hypothesis H0, when you stop,

probabilities of various decisions

◮

Hypothesis Distribution Decision 0 Decision 1
H0 Qπ

0 ≥ 1− ε ≤ ε
H1 Qπ

1 ≤ ε ≥ 1− ε

◮ Approximately D({1− ε, ε}||{ε, 1− ε})

(1− ε) log
1− ε

ε
+ ε log

ε

1− ε
∼ log

1

ε
.

◮ Thus: E0[τ ]D(p0||p1) & log 1
ε , or

E0[τ ] &
log

(

1
ε

)

D(p0||p1)
.



Is there a policy that will achieve this?

◮ Yes, asymptotically ... (Wald, late 1940s.)

◮ Accumulate log p0(xt )
p1(xt )

across time. Wait until it exceeds a high

enough threshold.

◮ Trade-off between confidence and delay.

◮ Lower bound suggests that we should stop at log(1/ε).

This is the same as likelihood ratio
Pπ
0 (··· )

Pπ
1 (··· ) ≥ 1

ε .

This is what makes it an ε-admissible policy.

◮ Policy:
◮ Start with S0 = 0.
◮ At time t, compute St = St−1 + log p0(xt )

p1(xt )
.

◮ If St > log(1/ε), stop and decide H0.
If St < − log(1/ε), stop and decide H1.
Otherwise, continue.



A candidate for perceptual distance

◮ Search times are proportional to 1
D(p0||p1)

.

◮ If subjects wait to gather the same degree of confidence, then

D(p0||p1)
N

= perceptual distance between image 0 and image 1.

N = number of neurons under consideration.

◮ A simple calculation yields:

D(p0||p1) =
∑

n

[

λ0(n) log
λ0(n)

λ1(n)
− λ0(n) + λ1(n)

]

.

◮ Oddball image is i and distractor is j , then D(pi ||pj)/N =: Dij .



Search with control

◮ We actually have controls as well. Which place to look at.

◮ A more detailed model with controls provides us with a refinement.
We will not go into the details here. But you have a homework
question.

◮ But instead, we will stick to Dij for the data analysis.



Other natural distance candidates?

◮ Another proposal: Lij = N−1||λi − λj ||1 = 1
N

∑

n |λ0(n) − λ1(n)|.

◮ Symmetric.

◮ This has a drawback, because we know that Q in a sea of O’s is
easier to identify that O in a sea of Q ′s.



Estimating relative entropy

◮ We don’t really know the true firing rates. We estimate them based
on firing rate measurements, which are noisy.

◮ If we plug in the estimated rates into the formula for relative
entropy, we will suffer a bias.

◮ The expected value of

λ̂0 log(λ̂0/λ̂1)− λ̂0 + λ̂1

can be different from the true value for different (λ0, λ1) pairs.

◮ You should try:

D̂01 =

{

[

λ̂0 log
λ̂0−1/(2m∆)

λ̂1+1/(2m∆)
− λ̂0 + λ̂1

]

+
if λ̂0 > 1/(2m∆),

λ̂1, otherwise.

m = 24,∆ = 250 ms from the Sripati and Olson experiments.



Assignment: Correlation analysis

◮ Divide data into groups. Each group is for an ordered image pair.

◮ Compute sij , D̂ij , Lij .
sij plays the role of τ .
Remember to subtract the baseline reaction time of 328 ms to get
time for decision alone.
Remember to treat the compound searches correctly.

◮ Given (s−1
ij , D̂ij), find the best straight line passing through the

origin.
Given (s−1

ij , Lij), find the best straight line passing through the
origin.

◮ Which gives a better fit?



With the more refined perceptual distance
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Assignment: A measure of spread

◮ What we anticipate is that

uij := sij × D̂ij ∼ constant, across i , j .

◮ Similarly,
vij := sij × Lij ∼ constant, across i , j .

◮ Which fits the observations better?

◮ A measure of spread is AM/GM of the uij ’s and the vij ’s.

◮ Higher this ratio, greater the spread.



Assignment: Guessing the distribution of the search times

◮ We did not cover this in class, but you will do it in your assignment.

◮ Pick (randomly) half of the groups and get a scatter plot of the
(mean, stddev).

◮ You will see that stddev is roughly proportional to the mean.

◮ Fit a Gamma distribution which has this property.

◮ Density is g(x ;α, β) = βαxα−1e−βx

Γ(α) , x ≥ 0.

α is the shape, β is the rate.

◮ Mean = α/β, stddev =
√
α/β, so that stddev/mean = 1/

√
α.

Fit a straight line to the scatter plot above and provide a guess for
the shape α.



The Kolmogorov-Smirnov statistic

◮ On each of the groups that did not contribute to your shape
parameter, randomly select one half of the data points and estimate
the rate parameter.

◮ Plot the cdf with the estimated shape and rate and call it F (x).

◮ Plot the cdf of the remaining data in the group.
Let the samples be s(1), s(2), . . . , s(K ).

F̂ (x) =
1

K

K
∑

k=1

1{s(k) ≤ x}.

This is the empirical cdf.

◮ How close are the two? What is the max distance between the first
and the second cdfs?

KS = max
x

|F (x) − F̂ (x)|



Assignment: Hint on the general case

◮ Consider two hypotheses h and h′.

◮ Let At be the action at time slot t. Let Na(t) be the number of
times a is chosen in slots upto t.

D(Pπ
h ||Pπ

h′) = Eπ
h

τ
∑

t=1

log
pAt

h (Xt)

pAt

h′ (Xt)
(conditional independence)

= Eπ
h

K
∑

a=1

Na(τ )
∑

l=1

log
pah(Xl )

pah′(Xl )

=

K
∑

a=1

Eπ
h [Na(τ)]D(pah ||pah′) (Optional stopping)

≤ Eπ
h [τ ] max

λ

K
∑

a=1

λaD(pah||pah′).

◮ How should an adversary choose h′ to minimise the information
content in each slot? How should the searcher choose λ to maximise
his information content?



What did we learn in this module?

◮ Hypothesis testing

◮ Hypothesis testing with a stopping criterion

◮ Relative entropy

◮ Data processing inequality

◮ Some asymptotic analysis

◮ Fitting a distribution, Kolmogorov-Smirnov statistic

◮ A measure of spread AM/GM.


