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Scaling Neighbourhood
Methods



Collaborative Filtering

e M = #items

* N = #USEIS

e Complexity :m*m™n



Comparative Scale of
Signals

e ~50 M users

e ~25M items

o Explicit Ratings ~ O(1M) (1 per billion)

 Purchase ~ O(100M) (100 per billion)

 Browse ~ O(10B) (10000 per billion)



implicit Signals Used

* Bought History
* Browse History

 Compare History



Category-partitioned v/s
Category independent









Similarity Metric for boolean
matrix

e Cosine Similarity
A. Pair Count (p) - P1 and P2

B. Individual Count (n_i) - P1, P2 individually



Employing Map Reduce

» Calculate 'p' by forming pairs and counting
* Calculate 'n1' by making P1 as the key

* Calculate 'n2' by making P2 as the key

 Took 2 hours on 5 years of data

* Scales Horizontally



Map Reduce 1

B, P2, P3, P4, Mapper: Key( Pair of items) =>

BaE=P2 P33, P4, PO, Value(weight)

Generating pairs: Reducer: Accumulates the
weights for each Pair.




Vap Reduce 2

Calculating the value 'n1"
Input:
P1P4 1 Mapper: Key ( i11) => Value( Pairs with weights)
B2 P3 1 Reducer: Accumulates the i1's to form the
P4 P51 Pairs with weights, n1
P2 P4 1

Reducer Output
P1P411 P1P411

P4P511 P4 P511




Map Reduce 3

Calculating the value 'n2".
Input:
P1 P4 1 Mapper: Key ( i2) => Value( Pairs with weights)
E2AP3 1 Reducer: Accumulates the i2's to form the
P4 P5 1 Pairs with weights, n2
P2 P4 1

Reducer Output
P1P4111 P1P4112

P4P5111 P4P5111

P2P3 121
\ P2P4122




Latent Variable Models and Factorization Models
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Introduction
e Recommender Systems Recap
e Latent Variable Models
e Factorization Models

Matrix Factorization

e Singular Value Decomposition
e BPMF

Factorization Machine

Conclusion

2/34



Recommender Systems (RSs)

Collaborative Filtering (CF)

e Neighborhood Based
- KNN
e Model Based
- Cluster-based CF and Bayesian classifiers.
- Latent variable models such as, LDA, pLSA, and matrix
factorization (MF).

Content Based
Knowledge Based
Hybrid
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Latent Variable Models i 5

Supplementing a set of observed variables with additional
latent, or hidden, variables.

@ Latent variable models are widely used in several domains
such as machine learning, statistics, data mining.

@ Reveals hidden structure which explains the data.

@ Latent variable models consider a joint distribution over the
hidden and observed variables.

@ Hidden structure is found by calculating the posterior.

@ LDA is an example of latent variable models.
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Factorization Models i 5

@ One of the widely used latent variable models in the RSs
community.
@ preferences of a user are determined by a small number of
unobserved latent factors.
e Matrix Factorization : Each user and item are mapped to a
latent factor vector:
u; € RK
K
vV € R
e Tensor Factorization : Mapping of each variable of each

category type to a K dimensional latent factor vector.
e Many problem specific factorization models.
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@ Factorization Models

o Matrix Factorization (MF)
o Factorization Machine (FM)
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Singular Value Decomposition i 5

Singular value decomposition (SVD) is a factorization of a matrix.
Formally, the SVD of an R € R/*J is:

R = UXV*, (1)

where, U = | x | unitary matrix

¥ =/ x J rectangular diagonal matrix

V* = J x J unitary matrix

o;; of X are known as the singular values of R

| columns of U and the J columns of V are called the left-singular
vectors and right-singular vectors of R, respectively.
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Dimensionality Reduction Using SVD

Let, R € R/*J
Apply SVD: R = UXV*, (2)

01,1
022

V.

X
Il
c

Estimate :
OK,K
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Example of SVD
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movies
4
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§ 1 2] = X
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5 %4 5%2

Figure 1. Matrix Factorization
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o Consider a user-movie matrix R € R'*/ where the r;; cell
represents the rating provided to the j* movie by the it" user.
MF decomposes the matrix R into two low-rank matrices
U=[uy,us..,u]" € R>*Kand V =[vi,va,...,v)]T €
RJXK:

R~UVT. (4)

> (-ulv) 5)

(ij)ef
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@ SVD with K singular value would been the solution if R is
fully observed.

@ However, R is partially observed.
@ Solution: Stochastic gradient descent to rank-1 update:
€jj = rij — UI-TVJ'
Uik = Ujk + v(e,-jvjk — )\U,‘k) (6)

Vik = Vjk + v(ejjtik = AVjk) (7)

Then iterate this for each rank K.
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Problem with SVD approach 4

@ Learning rate and regularization parameters needs to be tuned
manually.

o Overfitting.

@ Solution: Bayesian Probabilistic Matrix Factorization
(BPMF) [1].
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BPMF Model i 5

The likelihood term of BPMF is as follows:

p(RI®)= [ N(rylulvj,r). (8)

(if)eQ

where u; is the latent factor vector for the ith user,
v; is the latent factor vector for the j item,

T is the model precision,

Q is the set of all observations, and

© is the set of all the model parameters.
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Independent priors are placed on all the model parameters in © as:

/

p(U) =[N (uilpu, A1), (9)
i=1
J

p(V) :HN(VJ",U‘WAV_I)' (10)
j=1
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Hyperpriors 4

Further place Normal-Wishart priors are placed on all the
hyperparameters @y = {{ptu, Au}, {ttv, Av}} as:

p(lJ'U7Au) = NW(/—"’UaAU‘H’Oa/BOa WOa’/O)a (11)
N(Nu“LOa (BOAU)_l)W(Au| Wo, VO)
P(Nv’Av) = NW (ﬂva/\v|“0’:607 WO)VO)' (12)

where

1 o 1 _
W(I\]Wo,uo):E]M”O b 1exp(—§Tr(Woll\))
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Joint Distributions i 5

The joint distribution of the observations and the hidden variables
can be written as:

p(R.©,0400) = p(RIO)p(U)p(V)p(1,: Aureo>p(uv,/\v\e(o),)
13

where ©¢ = {pg, By, Wo,vo}
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Inference i 5

e Evaluation of the joint distribution in Eq. (13) is intractable.

@ However, all the model parameters are conditionally conjugate.

@ So we Gibbs sampler has closed form updates.

@ Replacing Eq. (8)-(12) in Eq. (13), the sampling distribution
of u; can be written as follows:

p(uil=) ~ N (uilp*, (N)7H), (14)
N = (A+7> viv] (15)
JEQ,
u* — (/\*)—1 I\uuu—l—TZ Vvt (16)
JeQ;
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Figure 2: RMSE vs Iterations
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Factorization Models i 5

Matrix factorization [2].

Tensor factorization [3].

Specific models like SVD++ [4], TimeSVD++ [5], FPMC [6],
and BPTF [3], etc. have been developed.

Several Learning technique like SGD, ALS, variational Bayes,
MCMC Gibbs sampling have been developed.
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Factorization Models Vs Feature Based Techniques 4

Advantages of Factorization Model:
@ Scalability and Performance.

Problem:

@ deriving inference techniques for each individual model is a
time consuming task and requires considerable expertise.

Advantages of Feature Based Techniques:

@ Generic approach.

@ Can be solved using standard tools like LIBSVM or SVMLight.
Problem:

@ Can not handle very sparse data.
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Factorization Machine i 5

@ A Generic framework [7] proposed by Stephen Rendle.

@ Combines advantages of both factorization models and
feature based model.

@ Can subsume many state of the art factorization model like
SVD++, TimeSVD++, FPMC, PITF, etc.

@ Performs well for sparse data where SVMs fails.
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Feature Representation of Factorization Machine

Example: (U1,M1,G1,2),(U1,M3,G2,5),(U2,M2,G3,4) and

(U3,M1,G1,5)
Feature x

User Movie Genre
x1 |fl 1 0 0 1 0 0 1 0 0
x2 (I1 0 0 0 0 1 0 1 0
x3 |J| 0 1 0 0 1 0 0 0 1
x4 ||| 0 0 1 1 0 0 1 0 0

ul u2 u3 M1 M2 M3 G1 G2 G3

Targety
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Factorization Machine i 5

Following is the equation for FM.

Yn=wp+ Z WiXpi + Z Z XniXnj Z Vik Vjk (17)
i=1 j=i+1
Assumptions of FM are following:

Yn‘xn) 9 ~ N(.)?(Xnv 0)’ ail)

Yn|Xn, @ ~ Bernoulli(b(y(xn, 0))

And L2 regularization on 6
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g=wo+w,+w+v]lv (18)
Feature representation of FM: D = |[U U /|

xi=0(j=uvj=i)
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Mimic SVD++ £

1

N T T

y:WO"‘Wu‘I—W,"f‘VUV,'—I—iﬁZV,'V/ (19)
N/ENU

Feature representation of FM: D = [UU [ U L|

xi=1lifj=uVj=i
:ﬁifje/vu

=0 else
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Algorithms of Factorization Machine i 5

@ Stochastic gradient descent is the simplest algorithm to solve
FM (SGD-FM).

@ MCMC based Bayesian Factorization Machine gives
state-of-the-art performance (MCMC-FM).

@ Alternating least square and adaptive stochastic gradient
descent.
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Comparison of each Leaning Techniques 4

e SGD-FM

e Pros: SGD online algorithm and more scalable.
e Cons: Costly cross validation of parameters.

e MCMC-FM

e Pros: Performance.
e No cross validation required.
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SGD Learning £

Following is the equation for FM.

Vn = wp + Z WiXpi + Z Z XniXnj Z Vik Vik (20)

i=1 j=i+1
Cost function is:
N
Z(yn — 9n)? + L2 regularization (21)
n=1
SGD update equations:
N
Vik = vik + v | 25 (Vo= )i D XV —2\vik | (22)
I=1&I#i
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Likelihood:
Yo ~ N(¥nl9n, 7)
Prior:
p(wo) ~ N (wolpo, o0)
p(wi) ~ N(wilpw, ow)
p(vik) ~ N (Viklpux, o)
Hyperprior:

p(piw) ~ N (pwlp, owro) p(ow) ~ G(owlao, Bo)

p(k) ~ N (plp, okro) p(ok) ~ G(ok|ao, Bo)
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Netflix
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@ Yelp challenge
Yelp datasets
Users information

Social information

Time

o

o

o

@ Location
o

@ Ratings
o

Reviews
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