
Quick Recap



Scaling Neighbourhood 
Methods



Collaborative Filtering 

• m = #items 

• n = #users 

• Complexity  : m * m * n



Comparative Scale of 
Signals 

• ~50 M users 

• ~25 M items 

• Explicit Ratings ~ O(1M)  (1 per billion) 

• Purchase ~ O(100M) (100 per billion) 

• Browse ~ O(10B) (10000 per billion)



Implicit Signals Used
• Bought History 

• Browse History 

• Compare History



Category-partitioned v/s  
Category independent







Similarity Metric for boolean 
matrix

• Cosine Similarity 

A. Pair Count (p) - P1 and P2  

B. Individual Count (n_i) - P1, P2 individually



Employing Map Reduce

• Calculate 'p' by forming pairs and counting  

• Calculate 'n1' by making P1 as the key 

• Calculate 'n2' by making P2 as the key 

• Took 2 hours on 5 years of data 

• Scales Horizontally



Map Reduce 1



Map Reduce 2



Map Reduce 3



Latent Variable Models and Factorization Models
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Recommender Systems (RSs)

Collaborative Filtering (CF)

Neighborhood Based
- KNN
Model Based
- Cluster-based CF and Bayesian classifiers.
- Latent variable models such as, LDA, pLSA, and matrix
factorization (MF).

Content Based

Knowledge Based

Hybrid
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Latent Variable Models

Supplementing a set of observed variables with additional
latent, or hidden, variables.

Latent variable models are widely used in several domains
such as machine learning, statistics, data mining.

Reveals hidden structure which explains the data.

Latent variable models consider a joint distribution over the
hidden and observed variables.

Hidden structure is found by calculating the posterior.

LDA is an example of latent variable models.
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Factorization Models

One of the widely used latent variable models in the RSs
community.

preferences of a user are determined by a small number of
unobserved latent factors.

Matrix Factorization : Each user and item are mapped to a
latent factor vector:

u i ∈ RK

v j ∈ RK

Tensor Factorization : Mapping of each variable of each
category type to a K dimensional latent factor vector.
Many problem specific factorization models.
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Focus

Factorization Models

Matrix Factorization (MF)
Factorization Machine (FM)
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Singular Value Decomposition

Singular value decomposition (SVD) is a factorization of a matrix.
Formally, the SVD of an R ∈ RI×J is:

R = UΣV ∗, (1)

where, U = I × I unitary matrix
Σ =I × J rectangular diagonal matrix
V ∗ = J × J unitary matrix
σi ,i of Σ are known as the singular values of R
I columns of U and the J columns of V are called the left-singular
vectors and right-singular vectors of R, respectively.

7 / 34



Dimensionality Reduction Using SVD

Let, R ∈ RI×J

Apply SVD: R = UΣV ∗, (2)

Estimate : R̂ = U



σ1,1

σ2,2

. . .

σK ,K

0
. . .


V ∗.

(3)
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Example of SVD

(a) (b)

(c) (d)
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MF for RSs

Figure 1: Matrix Factorization
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MF for RSs

Consider a user-movie matrix R ∈ RI×J where the rij cell
represents the rating provided to the j th movie by the i th user.
MF decomposes the matrix R into two low-rank matrices
U = [u1,u2, ...,u I ]

T ∈ RI×K and V = [v1, v2, ..., v J ]T ∈
RJ×K :

R ∼ UV T . (4)∑
(i ,j)∈Ω

(
rij − uT

i v j

)2
(5)
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MF for RSs

SVD with K singular value would been the solution if R is
fully observed.

However, R is partially observed.

Solution: Stochastic gradient descent to rank-1 update:

eij = rij − uT
i v j

uik = uik + ν(eijvjk − λuik) (6)

vjk = vjk + ν(eijuik − λvjk) (7)

Then iterate this for each rank K .
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Problem with SVD approach

Learning rate and regularization parameters needs to be tuned
manually.

Overfitting.

Solution: Bayesian Probabilistic Matrix Factorization
(BPMF) [1].
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BPMF Model

The likelihood term of BPMF is as follows:

p(R|Θ) =
∏

(i ,j)∈Ω

N (rij |uT
i v j , τ

−1), (8)

where u i is the latent factor vector for the i th user,
v j is the latent factor vector for the j th item,
τ is the model precision,
Ω is the set of all observations, and
Θ is the set of all the model parameters.
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Priors

Independent priors are placed on all the model parameters in Θ as:

p(U) =
I∏

i=1

N (u i |µu ,Λu
−1), (9)

p(V ) =
J∏

j=1

N (v j |µv ,Λv
−1). (10)
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Hyperpriors

Further place Normal-Wishart priors are placed on all the
hyperparameters ΘH = {{µu ,Λu}, {µv ,Λv}} as:

p(µu ,Λu) = NW (µu ,Λu |µ0,β0,W 0,ν0) , (11)

= N (µu |µ0, (β0Λu)−1)W(Λu|W 0,ν0)

p(µv ,Λv ) = NW (µv ,Λv |µ0,β0,W 0,ν0) . (12)

where

W(Λ|W 0,ν0) =
1

C
|Λ|ν0−D−1 exp(−1

2
Tr(W−1

0 Λ))
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Joint Distributions

The joint distribution of the observations and the hidden variables
can be written as:

p(R,Θ,ΘH |Θ0) = p(R|Θ)p(U)p(V )p(µu,Λu|Θ0)p(µv ,Λv |Θ0),
(13)

where Θ0 = {µ0,β0,W 0,ν0}
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Inference

Evaluation of the joint distribution in Eq. (13) is intractable.

However, all the model parameters are conditionally conjugate.

So we Gibbs sampler has closed form updates.

Replacing Eq. (8)-(12) in Eq. (13), the sampling distribution
of u i can be written as follows:

p(u i |−) ∼ N
(
u i |µ∗, (Λ∗)−1

)
, (14)

Λ∗ =

Λu + τ
∑
j∈Ωi

v jvT
j

 (15)

µ∗ = (Λ∗)−1

Λuµu + τ
∑
j∈Ωi

v j rij

 (16)
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Results

Figure 2: RMSE vs Iterations
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Factorization Models

Matrix factorization [2].

Tensor factorization [3].

Specific models like SVD++ [4], TimeSVD++ [5], FPMC [6],
and BPTF [3], etc. have been developed.

Several Learning technique like SGD, ALS, variational Bayes,
MCMC Gibbs sampling have been developed.
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Factorization Models Vs Feature Based Techniques

Advantages of Factorization Model:

Scalability and Performance.

Problem:

deriving inference techniques for each individual model is a
time consuming task and requires considerable expertise.

Advantages of Feature Based Techniques:

Generic approach.

Can be solved using standard tools like LIBSVM or SVMLight.

Problem:

Can not handle very sparse data.
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Factorization Machine

A Generic framework [7] proposed by Stephen Rendle.

Combines advantages of both factorization models and
feature based model.

Can subsume many state of the art factorization model like
SVD++, TimeSVD++, FPMC, PITF, etc.

Performs well for sparse data where SVMs fails.
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Feature Representation of Factorization Machine

Example: (U1,M1,G1,2),(U1,M3,G2,5),(U2,M2,G3,4) and
(U3,M1,G1,5)

User Movie Genre

1 0 0 …. 1 0 0 …. 1 0 0 ….

1 0 0 …. 0 0 1 …. 0 1 0 ….

0 1 0 …. 0 1 0 …. 0 0 1 ….

0 0 1 …. 1 0 0 …. 1 0 0 ….

x1

x2

x3

x4

2

5

4

5

U1 U2 U3 …. M1 M2 M3 …. G1 G2 G3 ….

Feature x Target y

y1

y2

y3

y4

Figure 3: Factorization Machine
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Factorization Machine

Following is the equation for FM.

yn = w0 +
D∑
i=1

wixni +
D∑
i=1

D∑
j=i+1

xnixnj

K∑
k=1

vikvjk (17)

Assumptions of FM are following:

yn|xn, θ ∼ N (ŷ(xn, θ), α−1)

yn|xn, θ ∼ Bernoulli(b(ŷ(xn, θ))

And L2 regularization on θ
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Mimic MF

ŷ = w0 + wu + wi + vT
u v i (18)

Feature representation of FM: D = |U ∪ I |

xj = δ(j = u ∨ j = i)
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Mimic SVD++

ŷ = w0 + wu + wi + vT
u v i +

1√
N

∑
l∈Nu

vT
i v l (19)

Feature representation of FM: D = |U ∪ I ∪ L|
xj = 1 if j = u ∨ j = i
= 1√

N
if j ∈ Nu

= 0 else
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Algorithms of Factorization Machine

Stochastic gradient descent is the simplest algorithm to solve
FM (SGD-FM).

MCMC based Bayesian Factorization Machine gives
state-of-the-art performance (MCMC-FM).

Alternating least square and adaptive stochastic gradient
descent.
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Comparison of each Leaning Techniques

SGD-FM

Pros: SGD online algorithm and more scalable.
Cons: Costly cross validation of parameters.

MCMC-FM

Pros: Performance.
No cross validation required.

28 / 34



SGD Learning

Following is the equation for FM.

ŷn = w0 +
D∑
i=1

wixni +
D∑
i=1

D∑
j=i+1

xnixnj

K∑
k=1

vikvjk (20)

Cost function is:

N∑
n=1

(yn − ŷn)2 + L2 regularization (21)

SGD update equations:

vik = vik + ν

2 ∗ (yn − ŷn)xni

N∑
l=1&l 6=i

xnlvnl − 2λvik

 (22)
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MCMC-FM

Likelihood:
yn ∼ N (yn|ŷn, τ)

Prior:
p(w0) ∼ N (w0|µ0, σ0)

p(wi ) ∼ N (wi |µw , σw )

p(vik) ∼ N (vik |µk , σk)

Hyperprior:

p(µw ) ∼ N (µw |µ, σwν0) p(σw ) ∼ G (σw |α0, β0)

p(µk) ∼ N (µk |µ, σkν0) p(σk) ∼ G (σk |α0, β0)
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Results

Figure 4: RMSE vs Iterations
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Datasets

Yelp challenge

Yelp datasets

Users information

Social information

Location

Time

Ratings

Reviews
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THANK YOU
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