

# Quick Recap

Flipkart  Signup | Login

SEARCH  CART  6

ELECTRONICS MEN WOMEN BABY & KIDS HOME & FURNITURE BOOKS & MEDIA



Puma Striped Men's Polo T-Shirt

★★★★★ 1 Write a REVIEW Add to WISHLIST

Select Color 

Select Size 

Available with 1 Seller at 560035 [Change](#)

Rs. 1,499 List Price (Free delivery)

[ADD TO CART](#) [BUY NOW](#)

Unlock mega savings with Great Offers [OPEN IN APP](#)

 Easy Returns  Brand New  100% Original  Pay Securely

**SOLD BY**  
WS Retail  

**DELIVERED BY** Mon, 19th Oct: **CASH ON DELIVERY**  

30 day Exchange Guarantee. 

---

**CUSTOMERS WHO VIEWED THIS PRODUCT ALSO VIEWED**



| Puma Striped Men's Polo T-Shirt                                                      | Puma Striped Men's Polo T-Shirt                                                       |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|  |  |  |  |  |
| Rs 1,499                                                                            | Rs 1,400 (50% Off)                                                                  | Rs 1,299                                                                            | Rs 1,799                                                                             | Rs 1,799 (40% Off)                                                                    |

The screenshot shows the product page for the Moto G (3rd Generation) (Black, 16 GB) on flipkart.com. At the top, there's a search bar with the placeholder 'So, what are you wishing for today?' and a 'SEARCH' button. Below the search bar is a navigation bar with categories: ELECTRONICS, MEN, WOMEN, BABY & KIDS, HOME & FURNITURE, BOOKS & MEDIA, and AUTO & SPORTS. The main content area shows the phone's image, its 4.5-star rating from 8314 reviews, and 2,273 reviews. It lists features like IPX7 Water Resistance, 13 MP Primary Camera, 2470 mAh Battery, and 4G LTE. The 'WARRANTY' section indicates a 1-year manufacturer warranty for the phone and box accessories. Below this, there are options to choose 'Color' (Black or White) and 'Storage' (16 GB or 8 GB). A 'View Compatible Accessories' link is also present. The price is listed as Rs. 12,999 (List Price). The phone is sold by 'WS Retail' with a 4.2/5 rating and 'Advantage' status. Delivery is free on Saturday, 17th Oct. Payment options include 'CASH ON DELIVERY' and a 30-day replacement guarantee. At the bottom, there are links to related products like Motorola flip covers and screen guards.

# Scaling Neighbourhood Methods

# Collaborative Filtering

- $m = \# \text{items}$
- $n = \# \text{users}$
- Complexity :  $m * m * n$

# Comparative Scale of Signals

- ~50 M users
- ~25 M items
- Explicit Ratings  $\sim O(1M)$  (1 per billion)
- Purchase  $\sim O(100M)$  (100 per billion)
- Browse  $\sim O(10B)$  (10000 per billion)

# Implicit Signals Used

- Bought History
- Browse History
- Compare History

Category-partitioned v/s  
Category independent





# Similarity Metric for boolean matrix

- Cosine Similarity
  - A. Pair Count (p) - P1 and P2
  - B. Individual Count ( $n_i$ ) - P1, P2 individually

# Employing Map Reduce

- Calculate 'p' by forming pairs and counting
- Calculate 'n1' by making P1 as the key
- Calculate 'n2' by making P2 as the key
- Took 2 hours on 5 years of data
- Scales Horizontally

# Map Reduce 1

B1 -> P1, P2, P3, P4,  
B2 -> P2, P3, P4, P5,  
Generating pairs:

Mapper: Key( Pair of items) =>  
Value(weight)  
Reducer: Accumulates the  
weights for each Pair.

| Key   | Value |
|-------|-------|
| P1 P2 | 1     |
| P1 P3 | 1     |
| P1 P4 | 1     |
| P2 P3 | 1     |
| P2 P4 | 1     |
| P3 P4 | 1     |

| Key   | Value |
|-------|-------|
| P2 P3 | 1     |
| P2 P4 | 1     |
| P2 P5 | 1     |
| P3 P4 | 1     |
| P3 P5 | 1     |
| P4 P5 | 1     |

=>

| Reducer O/P |
|-------------|
| P1 P2 1     |
| P1 P3 1     |
| P1 P4 1     |
| P2 P3 2     |
| P2 P4 2     |
| P2 P5 1     |

| Reducer O/P |
|-------------|
| P3 P4 2     |
| P3 P5 1     |
| P4 P5 1     |

# Map Reduce 2

Calculating the value '**n1**':

Input:

P1 P4 1

P2 P3 1

P4 P5 1

P2 P4 1

Mapper: Key ( **i1** ) => Value( Pairs with weights)

Reducer: Accumulates the **i1**'s to form the  
Pairs with weights, **n1**

| Key | Value     |
|-----|-----------|
| P1  | P1 P4 1 1 |
| P2  | P2 P3 1 1 |
| P4  | P4 P5 1 1 |
| P2  | P2 P4 1 1 |

=>

| Reducer Output |
|----------------|
| P1 P4 1 1      |
| P2 P3 1 2      |
| P4 P5 1 1      |
| P2 P4 1 2      |

# Map Reduce 3

Calculating the value '**n2**':

Input:

P1 P4 1

P2 P3 1

P4 P5 1

P2 P4 1

Mapper: Key ( **i2** ) => Value( Pairs with weights)

Reducer: Accumulates the **i2**'s to form the  
Pairs with weights, **n2**

| Key | Value       |
|-----|-------------|
| P4  | P1 P4 1 1 1 |
| P3  | P2 P3 1 1 1 |
| P5  | P4 P5 1 1 1 |
| P4  | P2 P4 1 1 1 |

=>

| Reducer Output |
|----------------|
| P1 P4 1 1 2    |
| P2 P3 1 2 1    |
| P4 P5 1 1 1    |
| P2 P4 1 2 2    |

# Latent Variable Models and Factorization Models



Akash Khandelwal, Avijit Saha, Mohit Kumar, Vivek Mehta



- Introduction
  - Recommender Systems Recap
  - Latent Variable Models
  - Factorization Models
- Matrix Factorization
  - Singular Value Decomposition
  - BPMF
- Factorization Machine
- Conclusion



- Collaborative Filtering (CF)
  - Neighborhood Based
    - KNN
  - Model Based
    - Cluster-based CF and Bayesian classifiers.
    - Latent variable models such as, LDA, pLSA, and matrix factorization (MF).
- Content Based
- Knowledge Based
- Hybrid



- Supplementing a set of observed variables with additional latent, or hidden, variables.
- Latent variable models are widely used in several domains such as machine learning, statistics, data mining.
- Reveals hidden structure which explains the data.
- Latent variable models consider a joint distribution over the hidden and observed variables.
- Hidden structure is found by calculating the posterior.
- LDA is an example of latent variable models.



- One of the widely used latent variable models in the RSs community.
- preferences of a user are determined by a small number of unobserved latent factors.
  - Matrix Factorization : Each user and item are mapped to a latent factor vector:

$$\mathbf{u}_i \in \mathbb{R}^K$$

$$\mathbf{v}_j \in \mathbb{R}^K$$

- Tensor Factorization : Mapping of each variable of each category type to a  $K$  dimensional latent factor vector.
- Many problem specific factorization models.



- Factorization Models
  - Matrix Factorization (MF)
  - Factorization Machine (FM)

# Singular Value Decomposition



Singular value decomposition (SVD) is a factorization of a matrix. Formally, the SVD of an  $R \in \mathbb{R}^{I \times J}$  is:

$$R = U\Sigma V^*, \quad (1)$$

where,  $U = I \times I$  unitary matrix

$\Sigma = I \times J$  rectangular diagonal matrix

$V^* = J \times J$  unitary matrix

$\sigma_{i,i}$  of  $\Sigma$  are known as the singular values of  $R$

$I$  columns of  $U$  and the  $J$  columns of  $V$  are called the left-singular vectors and right-singular vectors of  $R$ , respectively.

# Dimensionality Reduction Using SVD



Let,  $\mathbf{R} \in \mathbb{R}^{I \times J}$

Apply SVD:  $\mathbf{R} = \mathbf{U}\Sigma\mathbf{V}^*$ , (2)

Estimate :  $\hat{\mathbf{R}} = \mathbf{U} \begin{pmatrix} \sigma_{1,1} & & & & & & & \\ & \sigma_{2,2} & & & & & & \\ & & \ddots & & & & & \\ & & & \sigma_{K,K} & & & & \\ & & & & 0 & & & \\ & & & & & \ddots & & \\ & & & & & & \ddots & \\ & & & & & & & 0 \end{pmatrix} \mathbf{V}^*$ . (3)

# Example of SVD



(a)



(b)



(c)



(d)

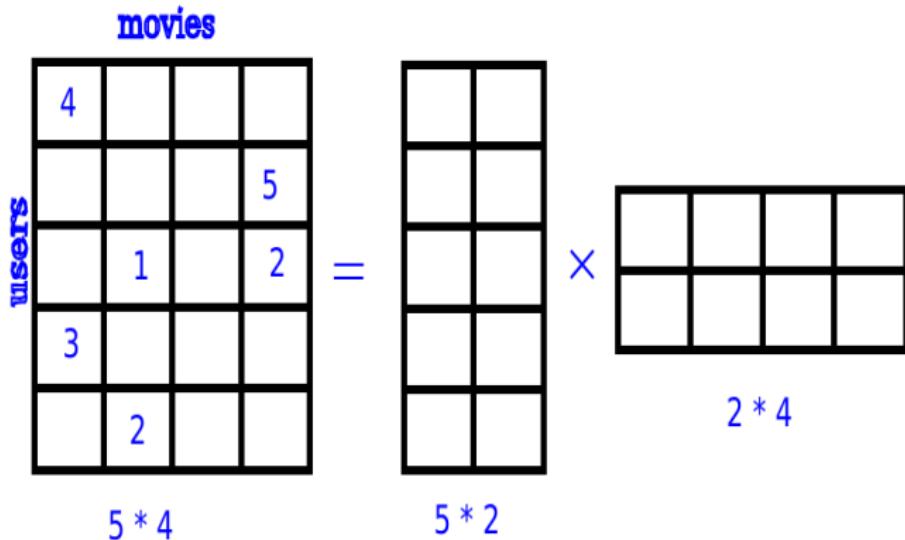


Figure 1: Matrix Factorization



- Consider a user-movie matrix  $\mathbf{R} \in \mathbb{R}^{I \times J}$  where the  $r_{ij}$  cell represents the rating provided to the  $j^{\text{th}}$  movie by the  $i^{\text{th}}$  user. MF decomposes the matrix  $\mathbf{R}$  into two low-rank matrices  $\mathbf{U} = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_I]^T \in \mathbb{R}^{I \times K}$  and  $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_J]^T \in \mathbb{R}^{J \times K}$ :

$$\mathbf{R} \sim \mathbf{U}\mathbf{V}^T. \quad (4)$$

$$\sum_{(i,j) \in \Omega} \left( r_{ij} - \mathbf{u}_i^T \mathbf{v}_j \right)^2 \quad (5)$$



- SVD with  $K$  singular value would be the solution if  $\mathbf{R}$  is fully observed.
- However,  $\mathbf{R}$  is partially observed.
- Solution: Stochastic gradient descent to rank-1 update:

$$e_{ij} = r_{ij} - \mathbf{u}_i^T \mathbf{v}_j \quad (6)$$

$$u_{ik} = u_{ik} + \nu(e_{ij} v_{jk} - \lambda u_{ik}) \quad (6)$$

$$v_{jk} = v_{jk} + \nu(e_{ij} u_{ik} - \lambda v_{jk}) \quad (7)$$

Then iterate this for each rank  $K$ .

# Problem with SVD approach



- Learning rate and regularization parameters needs to be tuned manually.
- Overfitting.
- Solution: Bayesian Probabilistic Matrix Factorization (BPMF) [1].



The likelihood term of BPMF is as follows:

$$p(\mathbf{R}|\Theta) = \prod_{(i,j) \in \Omega} \mathcal{N}(r_{ij} | \mathbf{u}_i^T \mathbf{v}_j, \tau^{-1}), \quad (8)$$

where  $\mathbf{u}_i$  is the latent factor vector for the  $i^{\text{th}}$  user,  
 $\mathbf{v}_j$  is the latent factor vector for the  $j^{\text{th}}$  item,  
 $\tau$  is the model precision,  
 $\Omega$  is the set of all observations, and  
 $\Theta$  is the set of all the model parameters.



Independent priors are placed on all the model parameters in  $\Theta$  as:

$$p(\mathbf{U}) = \prod_{i=1}^I \mathcal{N}(\mathbf{u}_i | \boldsymbol{\mu}_{\mathbf{u}}, \boldsymbol{\Lambda}_{\mathbf{u}}^{-1}), \quad (9)$$

$$p(\mathbf{V}) = \prod_{j=1}^J \mathcal{N}(\mathbf{v}_j | \boldsymbol{\mu}_{\mathbf{v}}, \boldsymbol{\Lambda}_{\mathbf{v}}^{-1}). \quad (10)$$



Further place Normal-Wishart priors are placed on all the hyperparameters  $\Theta_H = \{\{\mu_u, \Lambda_u\}, \{\mu_v, \Lambda_v\}\}$  as:

$$p(\mu_u, \Lambda_u) = \mathcal{N}\mathcal{W}(\mu_u, \Lambda_u | \mu_0, \beta_0, \mathbf{W}_0, \nu_0), \quad (11)$$

$$= \mathcal{N}(\mu_u | \mu_0, (\beta_0 \Lambda_u)^{-1}) \mathcal{W}(\Lambda_u | \mathbf{W}_0, \nu_0)$$

$$p(\mu_v, \Lambda_v) = \mathcal{N}\mathcal{W}(\mu_v, \Lambda_v | \mu_0, \beta_0, \mathbf{W}_0, \nu_0). \quad (12)$$

where

$$\mathcal{W}(\Lambda | \mathbf{W}_0, \nu_0) = \frac{1}{C} |\Lambda|^{\nu_0 - D - 1} \exp\left(-\frac{1}{2} \text{Tr}(\mathbf{W}_0^{-1} \Lambda)\right)$$



The joint distribution of the observations and the hidden variables can be written as:

$$p(\mathbf{R}, \Theta, \Theta_H | \Theta_0) = p(\mathbf{R} | \Theta) p(\mathbf{U}) p(\mathbf{V}) p(\boldsymbol{\mu}_u, \boldsymbol{\Lambda}_u | \Theta_0) p(\boldsymbol{\mu}_v, \boldsymbol{\Lambda}_v | \Theta_0), \quad (13)$$

where  $\Theta_0 = \{\boldsymbol{\mu}_0, \boldsymbol{\beta}_0, \mathbf{W}_0, \boldsymbol{\nu}_0\}$



- Evaluation of the joint distribution in Eq. (13) is intractable.
- However, all the model parameters are conditionally conjugate.
- So we Gibbs sampler has closed form updates.
- Replacing Eq. (8)-(12) in Eq. (13), the sampling distribution of  $\mathbf{u}_i$  can be written as follows:

$$p(\mathbf{u}_i | \cdot) \sim \mathcal{N}(\mathbf{u}_i | \boldsymbol{\mu}^*, (\boldsymbol{\Lambda}^*)^{-1}), \quad (14)$$

$$\boldsymbol{\Lambda}^* = \left( \boldsymbol{\Lambda}_u + \tau \sum_{j \in \Omega_i} \mathbf{v}_j \mathbf{v}_j^T \right) \quad (15)$$

$$\boldsymbol{\mu}^* = (\boldsymbol{\Lambda}^*)^{-1} \left( \boldsymbol{\Lambda}_u \boldsymbol{\mu}_u + \tau \sum_{j \in \Omega_i} \mathbf{v}_j r_{ij} \right) \quad (16)$$

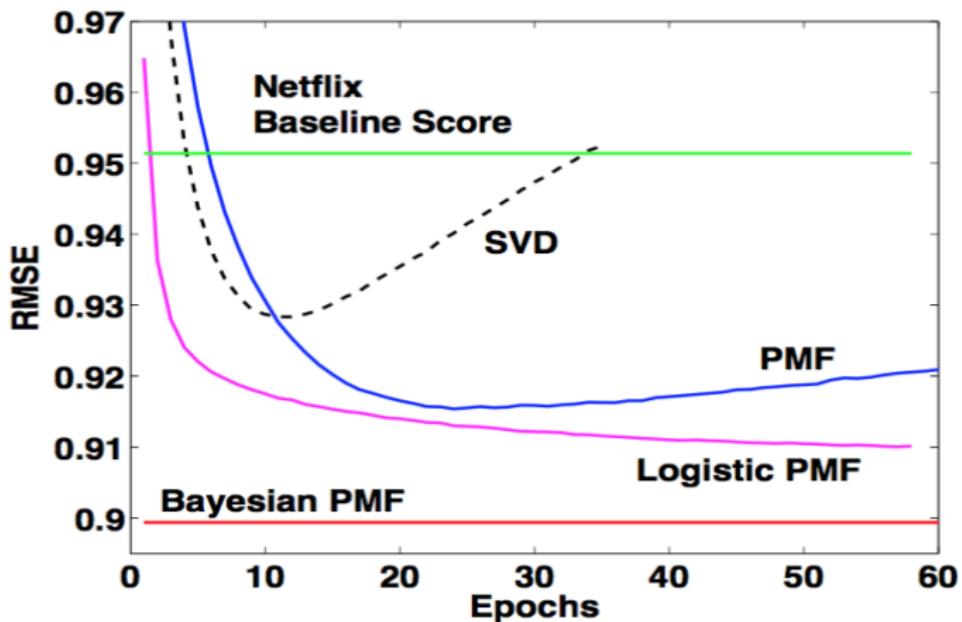


Figure 2: RMSE vs Iterations



- Matrix factorization [2].
- Tensor factorization [3].
- Specific models like SVD++ [4], TimeSVD++ [5], FPMC [6], and BPTF [3], etc. have been developed.
- Several Learning technique like SGD, ALS, variational Bayes, MCMC Gibbs sampling have been developed.



Advantages of Factorization Model:

- Scalability and Performance.

Problem:

- deriving inference techniques for each individual model is a time consuming task and requires considerable expertise.

Advantages of Feature Based Techniques:

- Generic approach.
- Can be solved using standard tools like LIBSVM or SVMLight.

Problem:

- Can not handle very sparse data.



- A Generic framework [7] proposed by Stephen Rendle.
- Combines advantages of both factorization models and feature based model.
- Can subsume many state of the art factorization model like SVD++, TimeSVD++, FPMC, PITF, etc.
- Performs well for sparse data where SVMs fails.

# Feature Representation of Factorization Machine



Example:  $(U1, M1, G1, 2), (U1, M3, G2, 5), (U2, M2, G3, 4)$  and  $(U3, M1, G1, 5)$

**Feature x**

| User |    |    |    | Movie |    |    |    | Genre |    |    |    |      |
|------|----|----|----|-------|----|----|----|-------|----|----|----|------|
| x1   | 1  | 0  | 0  | ....  | 1  | 0  | 0  | ....  | 1  | 0  | 0  | .... |
| x2   | 1  | 0  | 0  | ....  | 0  | 0  | 1  | ....  | 0  | 1  | 0  | .... |
| x3   | 0  | 1  | 0  | ....  | 0  | 1  | 0  | ....  | 0  | 0  | 1  | .... |
| x4   | 0  | 0  | 1  | ....  | 1  | 0  | 0  | ....  | 1  | 0  | 0  | .... |
|      | U1 | U2 | U3 | ....  | M1 | M2 | M3 | ....  | G1 | G2 | G3 | .... |

**Target y**

|   |    |
|---|----|
| 2 | y1 |
| 5 | y2 |
| 4 | y3 |
| 5 | y4 |



Following is the equation for FM.

$$y_n = w_0 + \sum_{i=1}^D w_i x_{ni} + \sum_{i=1}^D \sum_{j=i+1}^D x_{ni} x_{nj} \sum_{k=1}^K v_{ik} v_{jk} \quad (17)$$

Assumptions of FM are following:

$$y_n | x_n, \theta \sim \mathcal{N}(\hat{y}(x_n, \theta), \alpha^{-1})$$

$$y_n | x_n, \theta \sim \text{Bernoulli}(b(\hat{y}(x_n, \theta)))$$

And L2 regularization on  $\theta$



$$\hat{y} = w_0 + w_u + w_i + \mathbf{v}_u^T \mathbf{v}_i \quad (18)$$

Feature representation of FM:  $D = |U \cup I|$

$$x_j = \delta(j = u \vee j = i)$$



$$\hat{y} = w_0 + w_u + w_i + \mathbf{v}_u^T \mathbf{v}_i + \frac{1}{\sqrt{N}} \sum_{l \in N_u} \mathbf{v}_i^T \mathbf{v}_l \quad (19)$$

Feature representation of FM:  $D = |U \cup I \cup L|$

$$\begin{aligned} x_j &= 1 \text{ if } j = u \vee j = i \\ &= \frac{1}{\sqrt{N}} \text{ if } j \in N_u \\ &= 0 \text{ else} \end{aligned}$$



- Stochastic gradient descent is the simplest algorithm to solve FM (SGD-FM).
- MCMC based Bayesian Factorization Machine gives state-of-the-art performance (MCMC-FM).
- Alternating least square and adaptive stochastic gradient descent.



- SGD-FM

- Pros: SGD online algorithm and more scalable.
- Cons: Costly cross validation of parameters.

- MCMC-FM

- Pros: Performance.
- No cross validation required.



Following is the equation for FM.

$$\hat{y}_n = w_0 + \sum_{i=1}^D w_i x_{ni} + \sum_{i=1}^D \sum_{j=i+1}^D x_{ni} x_{nj} \sum_{k=1}^K v_{ik} v_{jk} \quad (20)$$

Cost function is:

$$\sum_{n=1}^N (y_n - \hat{y}_n)^2 + L2 \text{ regularization} \quad (21)$$

SGD update equations:

$$v_{ik} = v_{ik} + \nu \left( 2 * (y_n - \hat{y}_n) x_{ni} \sum_{l=1 \& l \neq i}^N x_{nl} v_{nl} - 2\lambda v_{ik} \right) \quad (22)$$



Likelihood:

$$y_n \sim \mathcal{N}(y_n | \hat{y}_n, \tau)$$

Prior:

$$p(w_0) \sim \mathcal{N}(w_0 | \mu_0, \sigma_0)$$

$$p(w_i) \sim \mathcal{N}(w_i | \mu_w, \sigma_w)$$

$$p(v_{ik}) \sim \mathcal{N}(v_{ik} | \mu_k, \sigma_k)$$

Hyperprior:

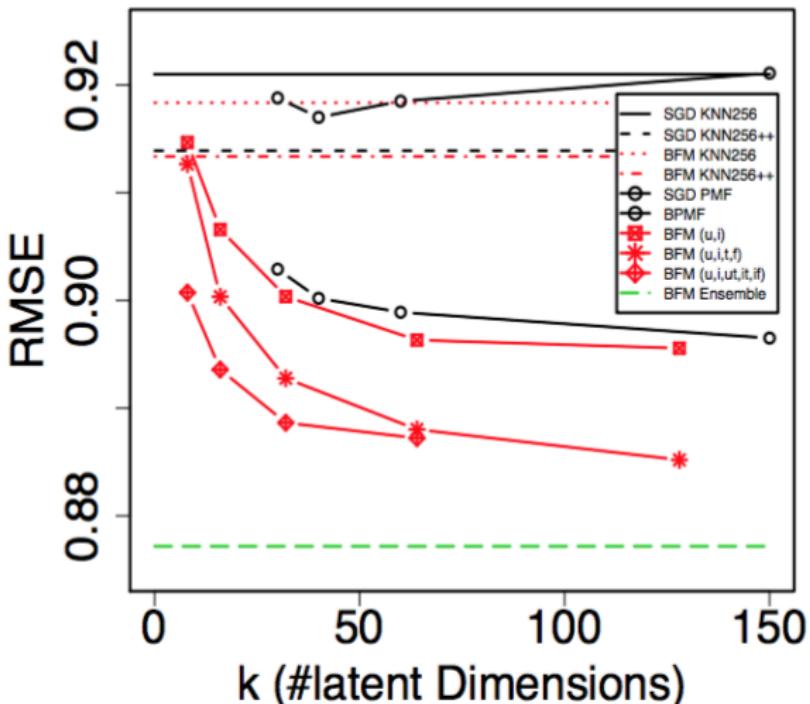
$$p(\mu_w) \sim \mathcal{N}(\mu_w | \mu, \sigma_w \nu_0) \quad p(\sigma_w) \sim G(\sigma_w | \alpha_0, \beta_0)$$

$$p(\mu_k) \sim \mathcal{N}(\mu_k | \mu, \sigma_k \nu_0) \quad p(\sigma_k) \sim G(\sigma_k | \alpha_0, \beta_0)$$

# Results



Netflix





- Yelp challenge
- Yelp datasets
- Users information
- Social information
- Location
- Time
- Ratings
- Reviews

# References



-  R. Salakhutdinov and A. Mnih, "Bayesian probabilistic matrix factorization using markov chain monte carlo," in *Proc. of ICML*, pp. 880–887, 2008.
-  R. Salakhutdinov and A. Mnih, "Probabilistic matrix factorization," in *Proc. of NIPS*, 2007.
-  L. Xiong, X. Chen, T. K. Huang, J. Schneider, and J. G. Carbonell, "Temporal collaborative filtering with bayesian probabilistic tensor factorization," in *Proc. of SDM*, 2010.
-  Y. Koren, "Factorization meets the neighborhood: A multifaceted collaborative filtering model," in *Proc. of KDD*, pp. 426–434, 2008.
-  Y. Koren, "Collaborative filtering with temporal dynamics," in *Proc. of KDD*, pp. 447–456, 2009.
-  S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, "Factorizing personalized markov chains for next-basket recommendation," in *Proc. of WWW*, pp. 811–820, 2010.
-  S. Rendle, "Factorization machines," in *Proc. of ICDM*, 2010.

# THANK YOU