

Background Separation in Video

Data Analytics - Background Separation Module

Problem motivation

- ▶ Given a sequence of surveillance video frames, identify “actions” that stand out from the background.
- ▶ First step and the focus of this module: separate the background from the foreground.
- ▶ One possible approach, in line with many other modules in this course.
 - ▶ Statistical model for background, model for movements, occlusion, geometry arising from perspective view, etc.
- ▶ A second possible, more naive, approach via robust PCA.
- ▶ But first an example video from an IISc surveillance camera.

The second approach first: Robust PCA main idea

- ▶ Vectorise each frame into a column of numbers.
- ▶ Stack columns into a matrix.
- ▶ If camera does not move, if background is still, we expect to see

$$L = [v \ v \ v \ \cdots]$$

L is a rank 1 matrix.

Let us assume rank r ; captures slow background variations.

- ▶ With foreground movement, there can be occlusions of the background.

$$M = L + S$$

S captures foreground variations across the frames. If movement is limited to a small region, S is sparse, i.e., very few nonzero entries, but don't know where, and the nonzero entries can be arbitrary.

- ▶ Problem: Given $M = L + S$, decompose into L and S .

First try: Principal Component Analysis

- ▶ Minimise the following:

$$\begin{aligned} & \min ||M - L||_{op} \\ & \text{subject to } \text{rank}(L) \leq r. \end{aligned}$$

- ▶ Here $||A||_{op}$ is the operator norm of A and equals the largest singular value of A :

$$||A||_{op} := \max_{x: x \neq 0} \frac{||Ax||_2}{||x||_2} = \sigma_1(A).$$

PCA solution

- ▶ Solution: Obtain the singular value decomposition; pick the first r .
- ▶ Singular value decomposition (say rank is upper case R):

$$M = U\Sigma V^T = [u_1 u_2 \cdots u_R] \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ & & \ddots & \\ 0 & 0 & \cdots & \sigma_R \end{bmatrix} \begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_R^T \end{bmatrix} = \sum_{i=1}^R \sigma_i u_i v_i^T.$$

- ▶ M is of size $m \times n$. U is the matrix of left singular vectors (orthonormal eigenvectors of MM^T). V is the matrix of right singular vectors (orthonormal vectors of $M^T M$).
- ▶ First r components: $\sum_{i=1}^r \sigma_i u_i v_i^T$.
- ▶ Works very well when S is diffuse; a small perturbation of L . Also, it's the maximum likelihood estimate when the entries of S are random, i.i.d. Gaussian.
- ▶ If some pixels are grossly corrupted, won't work well. This is the norm for us: foreground occludes parts of background.

Relaxing the rank constraint

- ▶ If we do not know the rank ...
- ▶ Try rank 1, then rank 2, and so on, until all 'significant' components have been captured.
- ▶ There is a natural way to do this that also encourages sparsity in the number of components.
- ▶ The nuclear norm of a matrix:

$$\|A\|_{nuc} = \sum_{i=1}^{\min\{m,n\}} \sigma_i(A).$$

- ▶ Relax the problem to

$$\begin{array}{ll} \min & \|M - L\|_{op} \\ \text{subject to} & \|L\|_{nuc} \leq \tau \end{array} \quad \equiv \quad \begin{array}{ll} \min & \max_i \sigma_i(M - L) \\ \text{subject to} & \|L\|_{nuc} \leq \tau \end{array}$$

Encouraging sparsity in the entries

- ▶ We would like to encourage the entries of the solution $S = M - L$ to be at the extreme points, in particular 0.
- ▶ Thus

$$\begin{aligned} & \min ||M - L||_1 \\ & \text{subject to } ||L||_{nuc} \leq \tau. \end{aligned}$$

- ▶ Lagrangian relaxation of this problem is to minimise the following for a suitable weight parameter λ :

$$\min [||L||_{nuc} + \lambda ||M - L||_1]$$

- ▶ This encourages sparsity in the number of components (via nuclear norm of L) as well as sparsity in the number of nonzero entries of $S = M - L$ (via the 1-norm).

Discussion - Can we really recover L and S ?

- ▶ $M = e_1 e_1^T$. It is both low-rank and sparse. Is this part of L or S ?
- ▶ For the 'recovery' problem to make sense, we need the low rank part to be 'diffuse' or 'incoherent'.

Definition

We say that a matrix L is μ -incoherent if the SVD $L = U\Sigma V^T$ satisfies the following:

$$\begin{aligned} \|U^T e_i\|_2 &\leq \frac{\mu\sqrt{r}}{\sqrt{m}} \quad i = 1, \dots, m, \\ \|V^T e_j\|_2 &\leq \frac{\mu\sqrt{r}}{\sqrt{n}} \quad j = 1, \dots, n, \end{aligned}$$

where L has dimensions $m \times n$ and has rank r .

- ▶ Sum of squares of all entries of U is r . If this is spread out equally across rows, then each row has energy r/m or norm $\sqrt{r/m}$. The above says there are no 'heavy-weight' rows.

Size of entries in UV^T

- ▶ To assess the sizes of entries in UV^T ...
- ▶ if all singular values are the same, this would provide some measure the spread of entries of the low rank matrix.

$$\begin{aligned} \|UV^T\|_\infty &= \max_{i,j} |e_i^T UV^T e_j| \\ &= \max_{i,j} |\langle U^T e_i, V^T e_j \rangle| \\ &\leq \max_{i,j} \|U^T e_i\|_2 \cdot \|V^T e_j\|_2 \\ &\leq \frac{\mu^2 r}{\sqrt{mn}} \quad (\text{by } \mu\text{-incoherence}). \end{aligned}$$

A surprising result (Candes, Li, Ma, Wright 2011)

- ▶ Impose μ -incoherence on L and additionally $\|UV^T\|_\infty \leq \frac{\mu\sqrt{r}}{\sqrt{mn}}$.
- ▶ Some mild randomness on the sparsity. Let S_0 be an arbitrary matrix. Identify (uniformly at random) a subset of c entries. S equals S_0 on these entries and is zero outside.

Theorem

Suppose L is μ -incoherent. Suppose further that $\|UV^T\|_\infty \leq \frac{\mu\sqrt{r}}{\sqrt{mn}}$.

Let S be any matrix whose support is uniformly distributed among sets of cardinality c .

There exist positive numerical constants ρ_r , ρ_s , and ν such that if $\text{rank}(L) \leq \rho_r m / (\mu \log n)^2$, if $c \leq \rho_s mn$, then with $\lambda = 1/\sqrt{n}$, the solution to

$$\min [\|L\|_{\text{nuc}} + \lambda \|M - L\|_1]$$

recovers L and S exactly with probability at least $1 - \nu/n^{10}$.

Remarks

- ▶ A convex optimisation problem, ready-made tools available.
- ▶ Rank of L can be quite large, as high as $n/(\log n)^2$, if μ is of the order of a constant.
- ▶ A fixed parameter $\lambda = 1/\sqrt{n}$ works. No tuning based on how many sparse entries, level of incoherence, etc., which one might anticipate is needed to balance the nuclear norm and sparsity objectives.
- ▶ The optimisation takes some computational effort (cubic).
The main point is that exact recovery is possible under suitable assumptions.
Perhaps one of you can take this up as a project.
- ▶ We will discuss an alternative method, a very natural one.

An alternating projection approach

- ▶ L is a low rank matrix, has rank $\leq r$.
 - ▶ Getting a low rank approximation of a matrix is relatively easy. Use SVD.
- ▶ S is sparse.
 - ▶ Getting a sparse approximation of a matrix is also easy.
Hard threshold at a suitable level and keep only the large values.
- ▶ So here's a natural algorithm.
 - (i) Start with the lowest rank approximation. $L^0 = \mathbf{0}$.
 - (ii) Hard threshold M to get S^0 , a sparse matrix.
 - (iii) Get a low rank approximation L^1 of $M - S^0$.
 - (iv) Hard threshold $M - L^1$ to get S^1 .

Repeat until convergence. [Picture on the board.]
- ▶ Some careful tweaking of thresholds needed (Netrapalli et al. 2014).

Notation

- ▶ $H_\tau(A)$ indicates hard-thresholding a matrix A at level τ .
- ▶ $P_r(A)$ indicates projection of a matrix A into the space of matrices with rank r or lower.
- ▶ M : Given matrix $L + S$ of size $m \times n$.
 ε : convergence parameter.
 r : rank of L .
 β : a tuning parameter associated with the thresholding.
- ▶ \hat{L}, \hat{S} : estimated low rank and sparse components of given M .

The Alternating Projection Algorithm: ALTPROJ

- ▶ Input: Matrix M , accuracy ε , rank r , tuning parameter β .
- ▶ Output: \hat{L} , \hat{S} .
- ▶ Initialise: $L^0 = \mathbf{0}$, $\tau_0 = \beta\sigma_1(M)$, $S^0 = H_{\tau_0}(M - L^0)$.

for 'stage' $k = 1$ to r **do**:

$$T := 10 \log_2(n\beta\|M - S^0\|_{op}/\varepsilon)$$

for 'iteration' $t = 0$ to T **do**:

$$\tau := \beta(\sigma_{k+1}(M - S^t) + 2^{-t}\sigma_k(M - S^t))$$

$$L^{t+1} := P_k(M - S^t)$$

$$S^{t+1} := H_\tau(M - L^{t+1})$$

end for

if $\beta\sigma_{k+1}(L^{t+1}) < \varepsilon/(2n)$ **then**

return: L^T, S^T

else

$S^0 := S^T$

end if

end for

return: L^T, S^T

Remarks on the algorithm

- ▶ $r = 1$: Threshold changes in each iteration.
Initial harsh thresholding, but threshold decreases to allow for a larger S^T .
- ▶ After the first stage, residuals are of size σ_1 .
Do not enter stage 2 (rank 2 approximation) until a good quality L^T and S^T at this rank.
When entering stage 2, set a threshold for the next level of target residuals.
- ▶ β enables tuning for spikiness.
- ▶ Complexity:
In each iteration: P_k takes $O(kmn)$ (PCA).
Number of iterations in each stage: $O(\log 1/\varepsilon) + O(\log(n\beta\|M\|_{op}))$.
Number of stages: r .
Total: $O(r^2 mn(\log(1/\varepsilon) + \log(n\beta\|M\|_{op})))$.

ALTPROJ's performance (Netrapalli et al. 2014)

Theorem

Suppose L has rank at most r and L is μ -incoherent.

Suppose that each row and column of S has at most α fraction of nonzero entries, where

$$\alpha \leq \frac{1}{512\mu^2 r}.$$

Fix ε and take $\beta = 4\mu^2 r / \sqrt{mn}$.

Then the outputs L^T, S^T of ALTPROJ satisfy

$$\|L - \hat{L}\|_\infty \leq \frac{\varepsilon}{\sqrt{mn}}$$

$$\|S - \hat{S}\|_\infty \leq \frac{\varepsilon}{\sqrt{mn}}$$

$$Supp(\hat{S}) \subseteq Supp(S).$$

A comparison of the two results

(Candes et al. 2011)

- ▶ Stricter constraint on $||UV^T||_\infty \leq \mu\sqrt{r}/\sqrt{mn}$.
- ▶ Randomness in the support set.
- ▶ But exact recovery w.h.p.

(Netrapalli et al. 2014)

- ▶ Do not impose the stricter constraint on $||UV^T||_\infty$.
- ▶ No randomness in the support set. But sparsity required on each row and each column.
- ▶ Approximate recovery only, but via an easier algorithm.

Main steps in the proof of ALTPROJ's performance

- ▶ Focus on the symmetric case $m = n$.
- ▶ Let L have eigenvalues $\sigma_1, \sigma_2, \dots, \sigma_r$, indexed so that

$$|\sigma_1| \geq |\sigma_2| \geq \dots \geq |\sigma_r|.$$

- ▶ S^t and L^t are the t th iterates in stage k (suppressed).
 $E^t := S - S^t$, error in the sparse matrix.
- ▶ $M - S^t = L + S - S^t = L + E^t$.
- ▶ Let $M - S^t = L + E^t$ have eigenvalues $\lambda_1, \dots, \lambda_n$, indexed so that

$$|\lambda_1| \geq |\lambda_2| \geq \dots \geq |\lambda_n|.$$

(Both t and k suppressed. Let's get comfortable with this.)

Small low-rank projection error ensures small sparsity error

Lemma (LS)

If

$$\|L^{t+1} - L\|_\infty \leq \frac{2\mu^2 r}{n} (|\sigma_{k+1}| + 2^{-t}|\sigma_k|),$$

then

$$\begin{aligned} \text{Supp}(E^{t+1}) &\subseteq \text{Supp}(S) \\ \|E^{t+1}\|_\infty &\leq \frac{7\mu^2 r}{n} (|\sigma_{k+1}| + 2^{-t}|\sigma_k|). \end{aligned}$$

Small sparsity error ensures small low-rank projection error

Lemma (SL)

If

$$\begin{aligned} \text{Supp}(E^t) &\subseteq \text{Supp}(S) \\ \|E^t\|_\infty &\leq \frac{8\mu^2 r}{n}(|\sigma_{k+1}| + 2^{-t}|\sigma_k|), \end{aligned}$$

then

$$\|L^{t+1} - L\|_\infty \leq \frac{2\mu^2 r}{n}(|\sigma_{k+1}| + 2^{-t}|\sigma_k|).$$

Note that the constraint on $\|E^t\|_\infty$ on the previous page was tighter. We will need it when we do the induction and jump across stages.

Proof for symmetric matrices

- ▶ Start off induction at $k = 1$ and $t = -1$.
- ▶ To show: $\|L^0 - L\|_\infty = \|L\|_\infty \leq \frac{2\mu^2 r}{n}(|\sigma_2| + 2|\sigma_1|)$.
- ▶ Use μ -incoherence:

$$\begin{aligned} |e_i^T L e_j| &= |e_i^T U \Sigma V^T e_j| &= |\langle U^T e_i, \Sigma V^T e_j \rangle| \\ &\leq \|U^T e_i\|_2 \cdot \|\Sigma V^T e_j\|_2 \\ &\leq |\sigma_1| \cdot \mu^2 r / n. \end{aligned}$$

- ▶ This enables induction, establishes $\|E^t\|_\infty$ and $\|L - L^t\|_\infty$ bounds for all t in stage $k = 1$.
- ▶ Also, if we can ensure validity in the move from (k, T) to $(k + 1, 0)$, the bounds hold for all t and k until termination.

- We have established, for a particular stage k , for its last iteration $t = T$,

$$\begin{aligned} \text{Supp}(E^T) &\subseteq \text{Supp}(S) \\ \|E^T\|_\infty &\leq \frac{7\mu^2 r}{n} (|\sigma_{k+1}| + 2^{-T}|\sigma_k|). \end{aligned}$$

- Claim: If $\beta\sigma_{k+1}(L^T) < \varepsilon/(2n)$, then the algorithm terminates, and

$$\|L - L^T\|_\infty \leq \varepsilon/n, \quad \|S - S^T\|_\infty \leq \varepsilon/n.$$

- Claim: If $\beta\sigma_{k+1}(L^T) \geq \varepsilon/(2n)$, then

$$\{\|L - L^T\|_\infty, \|S - S^T\|_\infty\} \leq \frac{\{2, 8\}\mu^2 r}{n} (|\sigma_{k+2}| + 2|\sigma_{k+1}|).$$

- Note the $k+2$ and $k+1$, $t = -1$. This enables continuation of induction in the next stage.
- The lemmas and the claims help us complete the proof for the symmetric case.

Preliminary 1: Weyl's perturbation result

Lemma

Let $A + E = B$.

A has eigenvalues $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n$.

B has eigenvalues $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$.

Then

$$|\lambda_i - \sigma_i| \leq \|E\|_{op} \quad \text{for each } i.$$

We will take this as granted.

Preliminary 2: From sup-norm to operator norm for sparse matrices

Lemma

Suppose S is α -sparse. Then $\|S\|_{op} \leq \alpha n \|S\|_\infty$.

Can all the nonzero entries of S conspire to have a large operator norm (order larger than αn)? No.

Proof: For the left and right singular unit vectors u^T and v associated with the top singular value, we have

$$\|S\|_{op} = u^T S v = \sum_{i,j} u_i S_{i,j} v_j \leq \frac{1}{2} \sum_{i,j} (u_i^2 + v_j^2) S_{i,j}.$$

Now it's clear that each summation encounters at most αn nonzero entries.

The number of iterations is sufficiently large

- ▶ The number of iterations T in a stage is sufficiently large to drive the error in $\|E^T\|_{op}$ comparable to $|\sigma_{k+1}|$.
- ▶ $T = \log_2(n\beta\|M - S^0\|_{op}/\varepsilon)$.

$$\begin{aligned}\|M - S^0\|_{op} &\geq \|L\|_{op} - \|E^0\|_{op} \\ &\geq |\sigma_k| - \alpha n \|E^0\|_\infty \\ &\geq |\sigma_k| - \alpha n \cdot \frac{7\mu^2 r}{n} (|\sigma_{k+1}| + 2|\sigma_k|) \\ &\geq |\sigma_k| - (\text{a small fraction}) |\sigma_k| \\ &\geq (3/4)|\sigma_k|.\end{aligned}$$

- ▶ Thus $T \geq \log \left(n \cdot \left(\frac{4\mu^2 r}{n} \right) \cdot ((3/4)|\sigma_k|) / \varepsilon \right) = \log(3\mu^2 r |\sigma_k| / \varepsilon)$.
- ▶ This implies $2^{-T} \leq \varepsilon / (3\mu^2 r |\sigma_k|)$.
Increase multiplier inside log and we can make this even smaller.

Bound on $\|E^T\|_\infty$

- ▶ Since we have enough iterations,

$$\begin{aligned}\|E^T\|_\infty &\leq \frac{7\mu^2 r}{n} (|\sigma_{k+1}| + 2^{-T}|\sigma_k|) \\ &\leq \frac{7\mu^2 r}{n} \left(|\sigma_{k+1}| + \frac{\varepsilon}{3\mu^2 r |\sigma_1|} |\sigma_k| \right) \\ &\leq \frac{7\mu^2 r}{n} |\sigma_{k+1}| + \frac{7\varepsilon}{3n}.\end{aligned}$$

Increasing the factor inside log, the 2nd term is (*small fraction*) ε/n .

- ▶ We also have, by Weyl,

$$\begin{aligned}|\sigma_{k+1}(M - S^T) - \sigma_{k+1}| &\leq \|E^T\|_{op} \leq \alpha n \times \text{above expression} \\ &\leq 7\alpha\mu^2 r |\sigma_{k+1}| + (\text{small fraction}) \varepsilon.\end{aligned}$$

- ▶ The two cases $n\beta|\sigma_{k+1}(M - S^T)| = 4\mu^2 r |\sigma_{k+1}(M - S^T)| \gtrsim \varepsilon/2$ discussion.

Recall the two claims

- ▶ Claim: If $\beta\sigma_{k+1}(L^T) < \varepsilon/(2n)$, then the algorithm terminates, and

$$\|L - L^T\|_\infty \leq \varepsilon/n, \quad \|S - S^T\|_\infty \leq \varepsilon/n.$$

- ▶ Claim: If $\beta\sigma_{k+1}(L^T) \geq \varepsilon/(2n)$, then

$$\{\|L - L^T\|_\infty, \|S - S^T\|_\infty\} \leq \frac{\{2, 8\}\mu^2 r}{n}(|\sigma_{k+2}| + 2|\sigma_{k+1}|).$$

- ▶ The discussion establishes how both are valid.

Towards Lemma LS, proximity of eigenvalues

Lemma

Recall L has eigenvalues $\sigma_1, \dots, \sigma_n$ in decreasing order.

$M - S^t = L + E^t$ has eigenvalues $\lambda_1, \dots, \lambda_n$ in decreasing order.

Suppose E satisfies the E -conditions (used in the induction).

We are in stage k , iteration t .

Then

$$(7/8)(|\sigma_{k+1}| + 2^{-t}|\sigma_k|) \leq (|\lambda_{k+1}| + 2^{-t}|\lambda_k|) \leq (9/8)(|\sigma_{k+1}| + 2^{-t}|\sigma_k|).$$

Proof: The above is the same as absolute value of the difference is not greater than $1/8$ times $(|\sigma_{k+1}| + 2^{-t}|\sigma_k|)$.

We already saw

$$|\lambda_k - \sigma_k| \leq \|E^t\|_{op} \leq \alpha n \|E^t\|_\infty \leq 8\mu^r r \alpha (|\sigma_k| + 2^{-t}|\sigma_{k-1}|).$$

Discussion on how to use this.

Recall: Small low-rank projection error ensures small sparsity error

Lemma (LS)

If

$$\|L^{t+1} - L\|_\infty \leq \frac{2\mu^2 r}{n} (|\sigma_{k+1}| + 2^{-t}|\sigma_k|),$$

then

$$\begin{aligned} \text{Supp}(E^{t+1}) &\subseteq \text{Supp}(S) \\ \|E^{t+1}\|_\infty &\leq \frac{7\mu^2 r}{n} (|\sigma_{k+1}| + 2^{-t}|\sigma_k|). \end{aligned}$$

Proof of Lemma LS - support

- ▶ Support. $S^{t+1} = H_\tau(M - L^{t+1}) = H_\tau(S + L - L^{t+1})$.
- ▶ Suppose $S_{i,j} = 0$. We must show $E_{ij}^{t+1} = 0$.
- ▶ $E_{ij}^{t+1} = S_{ij} - S_{ij}^{t+1} = -S_{ij}^{t+1} = (L_{ij} - L_{ij}^{t+1})\mathbf{1}|\{L_{ij} - L_{ij}^{t+1}\}| > \tau$.
- ▶ But this can't hold by assumption on L and proximity of λ and σ .

Proof of Lemma LS - S error is bounded

- ▶ $S^{t+1} = H_\tau(M - L^{t+1}) = H_\tau(S + L - L^{t+1}).$
- ▶ Suppose $|M_{ij} - L_{ij}^{t+1}| > \tau.$
 - ▶ Then $S_{ij}^{t+1} = S_{ij} + L_{ij} - L_{ij}^{t+1}$, hard-thresholding does not affect entry.
 - ▶ $E_{ij}^{t+1} = S_{ij} - S_{ij}^{t+1} = -(L_{ij} - L_{ij}^{t+1})$ which is small.
- ▶ Suppose $|M_{ij} - L_{ij}^{t+1}| \leq \tau.$
 - ▶ Then $S_{ij}^{t+1} = 0$ and $|S_{ij} + L_{ij} - L_{ij}^{t+1}| < \tau$, hard-thresholding zeros entry.
 - ▶ $E_{ij}^{t+1} = S_{ij} - S_{ij}^{t+1} = S_{ij}.$
 - ▶ So $|S_{ij}| \leq \tau + |L_{ij} - L_{ij}^{t+1}|.$
 τ is bounded by $4 \times (\dots)$ and $\|L - L^{t+1}\|_\infty$ is bounded by $2 \times (\cdot)$.
So the $7 \times (\dots)$ bound holds.

Recall: Small sparsity error ensures small low-rank projection error

Lemma (SL)

If

$$\begin{aligned} \text{Supp}(E^t) &\subseteq \text{Supp}(S) \\ \|E^t\|_\infty &\leq \frac{8\mu^2 r}{n}(|\sigma_{k+1}| + 2^{-t}|\sigma_k|), \end{aligned}$$

then

$$\|L^{t+1} - L\|_\infty \leq \frac{2\mu^2 r}{n}(|\sigma_{k+1}| + 2^{-t}|\sigma_k|).$$

An attempt

- ▶ Recall that $L^{t+1} = P_k(M - S^t) = P_k(L + E^t)$.
- ▶ If

$$M - S^t = \sum_{i=1}^n \lambda_i u_i u_i^T = U_1 \Lambda_1 U_1^T + U_2 \Lambda_2 U_2^T$$

then

$$L^{t+1} = \sum_{i=1}^r \lambda_i u_i u_i^T = U_1 \Lambda_1 U_1^T.$$

- ▶ Thus $L - L^{t+1} = M - S - (M - S^t - U_2 \Lambda_2 U_2^T) = U_2 \Lambda_2 U_2^T - E^t$.
- ▶ Bounding sup-norm of error $L - L^{t+1}$ via sup-norm of E^t is not good enough.
- ▶ There is greater cancellation in $U_2 \Lambda_2 U_2^T - E^t$.
We should leverage μ -incoherence.

Another expression for the error

- ▶ For the first r eigenvectors (or fewer if some eigenvalues are zero)

$$(L + E^t)u_i = \lambda_i u_i$$

and by rearrangement

$$u_i = \frac{1}{\lambda_i} \left(I - \frac{E^t}{\lambda_i} \right)^{-1} L u_i = \frac{1}{\lambda_i} \left(\sum_{p \geq 0} \frac{(E^t)^p}{\lambda_i^p} \right) L u_i. \quad \text{Invertible?}$$

- ▶ We can then write

$$\begin{aligned} L^{t+1} &= \sum_{i=1}^r \lambda_i u_i u_i^T \\ &= \sum_{i=1}^r \lambda_i \left(\frac{1}{\lambda_i} \left(\sum_p \frac{(E^t)^p}{\lambda_i^p} \right) L u_i \right) \left(\frac{1}{\lambda_i} \left(\sum_q \frac{(E^t)^q}{\lambda_i^q} \right) L u_i \right)^T \\ &= \sum_{p,q} (E^t)^p L U_1 \Lambda_1^{-(p+q+1)} U_1^T L ((E^t)^q)^T \\ &= L U_1 \Lambda_1^{-1} U_1^T L + \sum_{p,q: p+q>0} (E^t)^p L U_1 \Lambda_1^{-(p+q+1)} U_1^T L ((E^t)^q)^T. \end{aligned}$$

Another expression for the error (contd.)

- ▶ So we can write the error as

$$L - L^{t+1} = (L - LU_1 \Lambda_1^{-1} U_1^T L) + \sum_{p,q: p+q>0} (E^t)^p L U_1 \Lambda_1^{-(p+q+1)} U_1^T L ((E^t)^q)^T.$$

- ▶ Claim 3: First expression sup-norm bounded by

$$\frac{\mu^2 r}{n} (|\sigma_{k+1}|) + \text{small frac} \cdot \|E^t\|_\infty.$$

which then yields

$$\begin{aligned} &\leq \frac{\mu^2 r}{n} (|\sigma_{k+1}|) + \text{small frac} \frac{\mu^2 r}{n} (|\sigma_{k+1}| + 2 \cdot 2^{-t} |\sigma_k|) \\ &\leq \frac{\mu^2 r}{n} (|\sigma_{k+1}| + 2^{-t} |\sigma_k|) \times 2. \end{aligned}$$

- ▶ Claim 4: A similar ($\text{small frac} \cdot \|E^t\|_\infty$) bound holds for the summation term.

Invertibility

Lemma

Under the E -bound,

$$\|E^t\|_{op} \leq \text{small frac } |\sigma_k| \quad \text{and} \quad |\sigma_k| \leq (1 + \text{small frac})|\lambda_k|.$$

Proof. We already saw

$$\begin{aligned} \|E^t\|_{op} &\leq \alpha n \|E^t\|_\infty \\ &\leq \text{small frac } |\sigma_k| \end{aligned}$$

where the second inequality is because of E -bound assumption and the assumption on $\alpha\mu^2r$.

Proximity of λ_k and σ_k is due to Weyl's inequality, and the above bound on operator norm.

Proof steps for Claim 3. Claim 4 has a similar proof.

- ▶ Claim 3 says:

$$\|L - LU_1\Lambda_1^{-1}U_1^T L\|_\infty \leq \frac{\mu^2 r}{n}(|\sigma_{k+1}|) + \text{small frac} \cdot \|E^t\|_\infty.$$

- ▶ First: sup-norm bounded by operator-norm through a factor via μ -incoherence:

$$\|L - LU_1\Lambda_1^{-1}U_1^T L\|_\infty \leq \frac{\mu^2 r}{n} \|L - LU_1\Lambda_1^{-1}U_1^T L\|_{op}$$

- ▶ Second: substitute $L = U_1\Lambda_1U_1^T + U_2\Lambda_2U_2^T - E^t$ and use U_1 and U_2 are made of orthogonal columns to get

$$L - LU_1\Lambda_1^{-1}U_1^T L = U_1U_1^T E^t + (U_1U_1^T E^t)^T - E^t U_1\Lambda_1^{-1}U_1^T (E^t)^T + U_2\Lambda_2U_2^T - E^t.$$

- ▶ Operator norm $\|L - LU_1\Lambda_1^{-1}U_1^T L\|_{op}$ then bounded by

$$\begin{aligned} 3\|E^t\|_{op} + \frac{\|E^t\|_{op}^2}{|\lambda_k|} + |\lambda_{k+1}| &\leq |\sigma_{k+1}| + 6\|E^t\|_{op} \\ &\leq |\sigma_{k+1}| + 6\alpha n\|E^t\|_\infty. \end{aligned}$$

References and data sets

- (1) Candès, Emmanuel J., et al. "Robust principal component analysis?." *Journal of the ACM (JACM)* 58.3 (2011): 11.
- (2) Netrapalli, Praneeth, et al. "Non-convex robust PCA." *Advances in Neural Information Processing Systems*. 2014.

► Data sets: http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html