
Background Separation in Video

Data Analytics - Background Separation Module



Problem motivation

I Given a sequence of surveillance video frames, identify “actions”
that stand out from the background.

I First step and the focus of this module: separate the background
from the foreground.

I One possible approach, in line with many other modules in this
course.

I Statistical model for background, model for movements, occlusion,
geometry arising from perspective view, etc.

I A second possible, more naive, approach via robust PCA.

I But first an example video from an IISc surveillance camera.



The second approach first: Robust PCA main idea

I Vectorise each frame into a column of numbers.

I Stack columns into a matrix.

I If camera does not move, if background is still, we expect to see

L = [v v v · · · ]

L is a rank 1 matrix.
Let us assume rank r ; captures slow background variations.

I With foreground movement, there can be occlusions of the
background.

M = L + S

S captures foreground variations across the frames. If movement is
limited to a small region, S is sparse, i.e., very few nonzero entries,
but don’t know where, and the nonzero entries can be arbitrary.

I Problem: Given M = L + S , decompose into L and S .



First try: Principal Component Analysis

I Minimise the following:

min ||M − L||op
subject to rank(L) ≤ r .

I Here ||A||op is the operator norm of A and equals the largest singular
value of A:

||A||op := max
x :x 6=0

||Ax ||2
||x ||2

= σ1(A).



PCA solution

I Solution: Obtain the singular value decomposition; pick the first r .

I Singular value decomposition (say rank is upper case R):

M = UΣV T = [u1u2 · · · uR ]
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. . .

0 0 · · · σR
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 =
R∑
i=1

σiuiv
T
i .

I M is of size m × n. U is the matrix of left singular vectors
(orthonormal eigenvectors of MMT ). V is the matrix of right
singular vectors (orthonormal vectors of MTM).

I First r components:
∑r

i=1 σiuiv
T
i .

I Works very well when S is diffuse; a small perturbation of L.
Also, it’s the maximum likelihood estimate when the entries of S are
random, i.i.d. Gaussian.

I If some pixels are grossly corrupted, won’t work well.
This is the norm for us: foreground occludes parts of background.



Relaxing the rank constraint

I If we do not know the rank ...

I Try rank 1, then rank 2, and so on, until all ‘significant’ components
have been captured.

I There is a natural way to do this that also encourages sparsity in the
number of components.

I The nuclear norm of a matrix:

||A||nuc =

min{m,n}∑
i=1

σi (A).

I Relax the problem to

min ||M − L||op

subject to ||L||nuc ≤ τ
≡

min maxi σi (M − L)

subject to ||L||nuc ≤ τ



Encouraging sparsity in the entries

I We would like to encourage the entries of the solution S = M − L to
be at the extreme points, in particular 0.

I Thus

min ||M − L||1
subject to ||L||nuc ≤ τ.

I Lagrangian relaxation of this problem is to minimise the following for
a suitable weight parameter λ:

min [||L||nuc + λ||M − L||1]

I This encourages sparsity in the number of components (via nuclear
norm of L) as well as sparsity in the number of nonzero entries of
S = M − L (via the 1-norm).



Discussion - Can we really recover L and S?

I M = e1e
T
1 . It is both low-rank and sparse. Is this part of L or S?

I For the ’recovery’ problem to make sense, we need the low rank part
to be ’diffuse’ or ’incoherent’.

Definition
We say that a matrix L is µ-incoherent if the SVD L = UΣV T satisfies
the following:

||UT ei ||2 ≤ µ
√
r√
m

i = 1, . . . ,m,

||V T ej ||2 ≤ µ
√
r√
n

j = 1, . . . , n,

where L has dimensions m × n and has rank r .

I Sum of squares of all entries of U is r . If this is spread out equally
across rows, then each row has energy r/m or norm

√
r/m.

The above says there are no ’heavy-weight’ rows.



Size of entries in UV T

I To assess the sizes of entries in UV T ...

I if all singular values are the same, this would provide some measure
the spread of entries of the low rank matrix.

||UV T ||∞ = max
i,j
|eTi UV T ej |

= max
i,j
|〈UT ei ,V

T ej〉|

≤ max
i,j
||UT ei ||2 · ||V T ej ||2

≤ µ2r√
mn

( by µ-incoherence).



A surprising result (Candes, Li, Ma, Wright 2011)

I Impose µ-incoherence on L and additionally ||UV T ||∞ ≤ µ
√
r√

mn
.

I Some mild randomness on the sparsity. Let S0 be an arbitrary
matrix. Identify (uniformly at random) a subset of c entries. S
equals S0 on these entries and is zero outside.

Theorem
Suppose L is µ-incoherent. Suppose further that ||UV T ||∞ ≤ µ

√
r√

mn
.

Let S be any matrix whose support is uniformly distributed among sets of
cardinality c.
There exist positive numerical constants ρr , ρs , and ν such that
if rank(L) ≤ ρrm/(µ log n)2, if c ≤ ρsmn, then with λ = 1/

√
n, the

solution to
min [||L||nuc + λ||M − L||1]

recovers L and S exactly with probability at least 1− ν/n10.



Remarks

I A convex optimisation problem, ready-made tools available.

I Rank of L can be quite large, as high as n/(logn)2, if µ is of the
order of a constant.

I A fixed parameter λ = 1/
√
n works. No tuning based on how many

sparse entries, level of incoherence, etc., which one might anticipate
is needed to balance the nuclear norm and sparsity objectives.

I The optimisation takes some computational effort (cubic).
The main point is that exact recovery is possible under suitable
assumptions.
Perhaps one of you can take this up as a project.

I We will discuss an alternative method, a very natural one.



An alternating projection approach

I L is a low rank matrix, has rank ≤ r .

I Getting a low rank approximation of a matrix is relatively easy. Use
SVD.

I S is sparse.
I Getting a sparse approximation of a matrix is also easy.

Hard threshold at a suitable level and keep only the large values.

I So here’s a natural algorithm.
(i) Start with the lowest rank approximation. L0 = 0.
(ii) Hard threshold M to get S0, a sparse matrix.
(iii) Get a low rank approximation L1 of M − S0.
(iv) Hard threshold M − L1 to get S1.
Repeat until convergence. [Picture on the board.]

I Some careful tweaking of thresholds needed (Netrapalli et al. 2014).



Notation

I Hτ (A) indicates hard-thresholding a matrix A at level τ .

I Pr (A) indicates projection of a matrix A into the space of matrices
with rank r or lower.

I M : Given matrix L + S of size m × n.
ε : convergence parameter.
r : rank of L.
β: a tuning parameter associated with the thresholding.

I L̂, Ŝ : estimated low rank and sparse components of given M.



The Alternating Projection Algorithm: ALTPROJ

I Input: Matrix M, accuracy ε, rank r , tuning parameter β.
I Output: L̂, Ŝ .
I Initialise: L0 = 0, τ0 = βσ1(M), S0 = Hτ0(M − L0).

for ‘stage’ k = 1 to r do:
T := 10 log2(nβ||M − S0||op/ε)
for ‘iteration’ t = 0 to T do:

τ := β(σk+1(M − S t) + 2−tσk(M − S t))

Lt+1 := Pk(M − S t)

S t+1 := Hτ (M − Lt+1)

end for
if βσk+1(Lt+1) < ε/(2n) then

return: LT , ST

else
S0 := ST

end if
end for
return: LT , ST



Remarks on the algorithm

I r = 1: Threshold changes in each iteration.
Initial harsh thresholding, but threshold decreases to allow for a
larger S t .

I After the first stage, residuals are of size σ1.
Do not enter stage 2 (rank 2 approximation) until a good quality LT

and ST at this rank.
When entering stage 2, set a threshold for the next level of target
residuals.

I β enables tuning for spikiness.

I Complexity:
In each iteration: Pk takes O(kmn) (PCA).
Number of iterations in each stage: O(log 1/ε) + O(log(nβ||M||op).
Number of stages: r .
Total: O(r2mn(log(1/ε) + log(nβ||M||op))).



ALTPROJ’s performance (Netrapalli et al. 2014)

Theorem
Suppose L has rank at most r and L is µ-incoherent.
Suppose that each row and column of S has at most α fraction of
nonzero entries, where

α ≤ 1

512µ2r
.

Fix ε and take β = 4µ2r/
√
mn.

Then the outputs LT ,ST of ALTPROJ satisfy

||L− L̂||∞ ≤ ε√
mn

||S − Ŝ ||∞ ≤ ε√
mn

Supp(Ŝ) ⊆ Supp(S).



A comparison of the two results

(Candes et al. 2011)

I Stricter constraint on ||UV T ||∞ ≤ µ
√
r/
√
mn.

I Randomness in the support set.

I But exact recovery w.h.p.

(Netrapalli et al. 2014)

I Do not impose the stricter constraint on ||UV T ||∞.

I No randomness in the support set. But sparsity required on each
row and each column.

I Approximate recovery only, but via an easier algorithm.



Main steps in the proof of ALTPROJ’s performance

I Focus on the symmetric case m = n.

I Let L have eigenvalues σ1, σ2, . . . , σr , indexed so that

|σ1| ≥ |σ2| ≥ · · · ≥ |σr |.

I S t and Lt are the tth iterates in stage k (suppressed).
E t := S − S t , error in the sparse matrix.

I M − S t = L + S − S t = L + E t .

I Let M − S t = L + E t have eigenvalues λ1, . . . , λn, indexed so that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

(Both t and k suppressed. Let’s get comfortable with this.)



Small low-rank projection error ensures small sparsity error

Lemma (LS)

If

||Lt+1 − L||∞ ≤
2µ2r

n
(|σk+1|+ 2−t |σk |),

then

Supp(E t+1) ⊆ Supp(S)

||E t+1||∞ ≤ 7µ2r

n
(|σk+1|+ 2−t |σk |).



Small sparsity error ensures small low-rank projection error

Lemma (SL)

If

Supp(E t) ⊆ Supp(S)

||E t ||∞ ≤ 8µ2r

n
(|σk+1|+ 2−t |σk |),

then

||Lt+1 − L||∞ ≤
2µ2r

n
(|σk+1|+ 2−t |σk |).

Note that the constraint on ||E t ||∞ on the previous page was tighter.
We will need it when we do the induction and jump across stages.



Proof for symmetric matrices

I Start off induction at k = 1 and t = −1.

I To show: ||L0 − L||∞ = ||L||∞ ≤ 2µ2r
n (|σ2|+ 2|σ1|).

I Use µ-incoherence:

|eTi Lej | = |eiUΣV T ej | = |〈UT ei ,ΣV T ej〉|
≤ ||UT ei ||2 · ||ΣV T ej ||2
≤ |σ1| · µ2r/n.

I This enables induction, establishes ||E t ||∞ and ||L− Lt ||∞ bounds
for all t in stage k = 1.

I Also, if we can ensure validity in the move from (k,T ) to (k + 1, 0),
the bounds hold for all t and k until termination.



I We have established, for a particular stage k , for its last iteration
t = T ,

Supp(ET ) ⊆ Supp(S)

||ET ||∞ ≤ 7µ2r

n
(|σk+1|+ 2−T |σk |).

I Claim: If βσk+1(LT ) < ε/(2n), then the algorithm terminates, and

||L− LT ||∞ ≤ ε/n, ||S − ST ||∞ ≤ ε/n.

I Claim: If βσk+1(LT ) ≥ ε/(2n), then

{||L− LT ||∞, ||S − ST ||∞} ≤
{2, 8}µ2r

n
(|σk+2|+ 2|σk+1|).

I Note the k + 2 and k + 1, t = −1. This enables continuation of
induction in the next stage.

I The lemmas and the claims help us complete the proof for the
symmetric case.



Preliminary 1: Weyl’s perturbation result

Lemma
Let A + E = B.
A has eigenvalues σ1 ≥ σ2 ≥ · · · ≥ σn.
B has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.
Then

|λi − σi | ≤ ||E ||op for each i .

We will take this as granted.



Preliminary 2: From sup-norm to operator norm for sparse
matrices

Lemma
Suppose S is α-sparse. Then ||S ||op ≤ αn||S ||∞.

Can all the nonzero entries of S conspire to have a large operator norm
(order larger than αn)? No.

Proof: For the left and right singular unit vectors uT and v associated
with the top singular value, we have

||S ||op = uTSv =
∑
i,j

uiSi,jvj ≤
1

2

∑
i,j

(u2i + v2
j )Si,j .

Now it’s clear that each summation encounters at most αn nonzero
entries.



The number of iterations is sufficiently large

I The number of iterations T in a stage is sufficiently large to drive
the error in ||ET ||op comparable to |σk+1|.

I T = log2(nβ||M − S0||op/ε).

||M − S0||op ≥ ||L||op − ||E 0||op
≥ |σk | − αn||E 0||∞

≥ |σk | − αn ·
7µ2r

n
(|σk+1|+ 2|σk |)

≥ |σk | − (a small fraction) |σk |
≥ (3/4)|σk |.

I Thus T ≥ log
(
n ·
(

4µ2r
n

)
· ((3/4)|σk |) /ε

)
= log(3µ2r |σk |/ε).

I This implies 2−T ≤ ε/(3µ2r |σk |).
Increase multiplier inside log and we can make this even smaller.



Bound on ||ET ||∞
I Since we have enough iterations,

||ET ||∞ ≤ 7µ2r

n

(
|σk+1|+ 2−T |σk |

)
≤ 7µ2r

n

(
|σk+1|+

ε

3µ2r |σ1|
|σk |

)
≤ 7µ2r

n
|σk+1|+

7ε

3n
.

Increasing the factor inside log, the 2nd term is (small fraction) ε/n.

I We also have, by Weyl,

|σk+1(M − ST )− σk+1| ≤ ||ET ||op ≤ αn × above expression

≤ 7αµ2r |σk+1|+ (small fraction) ε.

I The two cases nβ|σk+1(M − ST )| = 4µ2r |σk+1(M − ST )| ≷ ε/2
discussion.



Recall the two claims

I Claim: If βσk+1(LT ) < ε/(2n), then the algorithm terminates, and

||L− LT ||∞ ≤ ε/n, ||S − ST ||∞ ≤ ε/n.

I Claim: If βσk+1(LT ) ≥ ε/(2n), then

{||L− LT ||∞, ||S − ST ||∞} ≤
{2, 8}µ2r

n
(|σk+2|+ 2|σk+1|).

I The discussion establishes how both are valid.



Towards Lemma LS, proximity of eigenvalues

Lemma
Recall L has eigenvalues σ1, . . . , σn in decreasing order.
M − S t = L + E t has eigenvalues λ1, . . . , λn in decreasing order.
Suppose E satisfies the E-conditions (used in the induction).
We are in stage k, iteration t.
Then

(7/8)(|σk+1|+ 2−t |σk |) ≤ (|λk+1|+ 2−t |λk |) ≤ (9/8)(|σk+1|+ 2−t |σk |).

Proof: The above is the same as absolute value of the difference is not
greater than 1/8 times (|σk+1|+ 2−t |σk |).

We already saw

|λk − σk | ≤ ||E t ||op ≤ αn||E t ||∞ ≤ 8µr rα(|σk |+ 2−t |σk−1|).

Discussion on how to use this.



Recall: Small low-rank projection error ensures small
sparsity error

Lemma (LS)

If

||Lt+1 − L||∞ ≤
2µ2r

n
(|σk+1|+ 2−t |σk |),

then

Supp(E t+1) ⊆ Supp(S)

||E t+1||∞ ≤ 7µ2r

n
(|σk+1|+ 2−t |σk |).



Proof of Lemma LS - support

I Support. S t+1 = Hτ (M − Lt+1) = Hτ (S + L− Lt+1).

I Suppose Si,j = 0. We must show E t+1
ij = 0.

I E t+1
ij = Sij − S t+1

ij = −S t+1
ij = (Lij − Lt+1

ij )1|{Lij − Lt+1
ij }| > τ .

I But this can’t hold by assumption on L and proximity of λ and σ.



Proof of Lemma LS - S error is bounded

I S t+1 = Hτ (M − Lt+1) = Hτ (S + L− Lt+1).

I Suppose |Mij − Lt+1
ij | > τ .

I Then S t+1
ij = Sij +Lij −Lt+1

ij , hard-thresholding does not affect entry.

I E t+1
ij = Sij − S t+1

ij = −(Lij − Lt+1
ij ) which is small.

I Suppose |Mij − Lt+1
ij | ≤ τ .

I Then S t+1
ij = 0 and |Sij + Lij − Lt+1

ij | < τ , hard-thresholding zeros
entry.

I E t+1
ij = Sij − S t+1

ij = Sij .

I So |Sij | ≤ τ + |Lij − Lt+1
ij |.

τ is bounded by 4× (· · · ) and ||L− Lt+1||∞ is bounded by 2× (·).
So the 7× (· · · ) bound holds.



Recall: Small sparsity error ensures small low-rank
projection error

Lemma (SL)

If

Supp(E t) ⊆ Supp(S)

||E t ||∞ ≤ 8µ2r

n
(|σk+1|+ 2−t |σk |),

then

||Lt+1 − L||∞ ≤
2µ2r

n
(|σk+1|+ 2−t |σk |).



An attempt

I Recall that Lt+1 = Pk(M − S t) = Pk(L + E t).

I If

M − S t =
n∑

i=1

λiuiu
T
i = U1Λ1U

T
1 + U2Λ2U

T
2

then

Lt+1 =
r∑

i=1

λiuiu
T
i = U1Λ1U

T
1 .

I Thus L− Lt+1 = M − S − (M − S t − U2Λ2U
T
2 ) = U2Λ2U

T
2 − E t .

I Bounding sup-norm of error L− Lt+1 via sup-norm of E t is not good
enough.

I There is greater cancellation in U2Λ2U
T
2 − E t .

We should leverage µ-incoherence.



Another expression for the error

I For the first r eigenvectors (or fewer if some eigenvalues are zero)

(L + E t)ui = λiui

and by rearrangement

ui =
1

λi

(
I − E t

λi

)−1
Lui =

1

λi

∑
p≥0

(E t)p

λpi

 Lui . Invertible?

I We can then write

Lt+1 =
r∑

i=1

λiuiu
T
i

=
r∑

i=1

λi

(
1

λi

(∑
p

(E t)p

λpi

)
Lui

)(
1

λi

(∑
q

(E t)q

λqi

)
Lui

)T

=
∑
p,q

(E t)pLU1Λ
−(p+q+1)
1 UT

1 L((E t)q)T

= LU1Λ−11 UT
1 L +

∑
p,q:p+q>0

(E t)pLU1Λ
−(p+q+1)
1 UT

1 L((E t)q)T .



Another expression for the error (contd.)

I So we can write the error as

L−Lt+1 =
(
L− LU1Λ−11 UT

1 L
)
+

∑
p,q:p+q>0

(E t)pLU1Λ
−(p+q+1)
1 UT

1 L((E t)q)T .

I Claim 3: First expression sup-norm bounded by

µ2r

n
(|σk+1|) + small frac · ||E t ||∞.

which then yields

≤ µ2r

n
(|σk+1|) + small frac

µ2r

n
(|σk+1|+ 2 · 2−t |σk |)

≤ µ2r

n
(|σk+1|+ 2−t |σk |)× 2.

I Claim 4: A similar (small frac · ||E t ||∞) bound holds for the
summation term.



Invertibility

Lemma
Under the E-bound,

||E t ||op ≤ small frac |σk | and |σk | ≤ (1 + small frac)|λk |.

Proof: We already saw

||E t ||op ≤ αn||E t ||∞
≤ small frac |σk |

where the second inequality is because of E -bound assumption and the
assumption on αµ2r .

Proximity of λk and σk is due to Weyl’s inequality, and the above bound
on operator norm.



Proof steps for Claim 3. Claim 4 has a similar proof.

I Claim 3 says:

||L− LU1Λ−11 UT
1 L||∞ ≤

µ2r

n
(|σk+1|) + small frac · ||E t ||∞.

I First: sup-norm bounded by operator-norm through a factor via
µ-incoherence:

||L− LU1Λ−11 UT
1 L||∞ ≤

µ2r

n
||L− LU1Λ−11 UT

1 L||op

I Second: substitute L = U1Λ1U
T
1 + U2Λ2U

T
2 − E t and use U1 and U2

are made of orthogonal columns to get

L−LU1Λ−11 UT
1 L = U1U

T
1 E t+(U1U

T
1 E t)T−E tU1Λ−11 UT

1 (E t)T+U2Λ2U
T
2 −E t .

I Operator norm ||L− LU1Λ−11 UT
1 L||op then bounded by

3||E t ||op +
||E t ||2op
|λk |

+ |λk+1| ≤ |σk+1|+ 6||E t ||op

≤ |σk+1|+ 6αn||E t ||∞.
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http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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