Background Separation in Video

Data Analytics - Background Separation Module



Problem motivation

> Given a sequence of surveillance video frames, identify “actions”
that stand out from the background.

> First step and the focus of this module: separate the background
from the foreground.

» One possible approach, in line with many other modules in this
course.

» Statistical model for background, model for movements, occlusion,
geometry arising from perspective view, etc.

» A second possible, more naive, approach via robust PCA.

» But first an example video from an |ISc surveillance camera.



The second approach first: Robust PCA main idea

» Vectorise each frame into a column of numbers.

» Stack columns into a matrix.

» If camera does not move, if background is still, we expect to see
L=[vvv - ]

L is a rank 1 matrix.
Let us assume rank r; captures slow background variations.

» With foreground movement, there can be occlusions of the
background.
M=L+S

S captures foreground variations across the frames. If movement is
limited to a small region, S is sparse, i.e., very few nonzero entries,
but don’'t know where, and the nonzero entries can be arbitrary.

» Problem: Given M = L + S, decompose into L and S.



First try: Principal Component Analysis

» Minimise the following:

min ||M — L||op
subject to rank(L) <'r.

> Here ||A||op is the operator norm of A and equals the largest singular

value of A: 1Ax]
X |2

A 1= max = o01(A).
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PCA solution

» Solution: Obtain the singular value decomposition; pick the first r.

» Singular value decomposition (say rank is upper case R):

or 0 --- 0 vy
o -+ 0 v R
M:UZVT:[U1U2'--UR] 2 :ZJ,'U,'V,-T.
. i=1
0O 0 --- ogr VRT

» M is of size m x n. U is the matrix of left singular vectors
(orthonormal eigenvectors of MMT). V is the matrix of right
singular vectors (orthonormal vectors of M7 M).

» First r components: >_;_, oju;v;".

» Works very well when S is diffuse; a small perturbation of L.
Also, it's the maximum likelihood estimate when the entries of S are
random, i.i.d. Gaussian.

> If some pixels are grossly corrupted, won't work well.
This is the norm for us: foreground occludes parts of background.



Relaxing the rank constraint

» If we do not know the rank ...

» Try rank 1, then rank 2, and so on, until all ‘'significant’ components
have been captured.

» There is a natural way to do this that also encourages sparsity in the
number of components.

» The nuclear norm of a matrix:

min{m,n}

||A‘|nuc: Z Ui(A)~

i=1
» Relax the problem to

min  |[|M — L||op min  max; o;(M — L)

subject to  ||L||pue < T subject to  ||L||pue < T



Encouraging sparsity in the entries

» We would like to encourage the entries of the solution S = M — L to
be at the extreme points, in particular 0.

» Thus

min [|[M — L||;
subject to ||L||pue < T

» Lagrangian relaxation of this problem is to minimise the following for
a suitable weight parameter A:

min [||L]lnue + A[IM — L||1]

» This encourages sparsity in the number of components (via nuclear
norm of L) as well as sparsity in the number of nonzero entries of
S =M — L (via the 1-norm).



Discussion - Can we really recover L and 57

» M = ee/ . It is both low-rank and sparse. Is this part of L or S?

» For the 'recovery’ problem to make sense, we need the low rank part
to be 'diffuse’ or 'incoherent’.

Definition
We say that a matrix L is p-incoherent if the SVD L = ULV satisfies
the following:

UTell, < “fﬁ i=1,...,m,
m
o

||VTejH2 < W ./:17 , N,

where L has dimensions m x n and has rank r.

» Sum of squares of all entries of U is r. If this is spread out equally
across rows, then each row has energy r/m or norm \/r/m.
The above says there are no 'heavy-weight’ rows.



Size of entries in UV T

» To assess the sizes of entries in UV T ...

» if all singular values are the same, this would provide some measure
the spread of entries of the low rank matrix.

IOVTlle = max|e] UV g

= max|(UTe, VTe)|
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( by p-incoherence).



A surprising result (Candes, Li, Ma, Wright 2011)

» Impose p-incoherence on L and additionally ||UV || < f}%

» Some mild randomness on the sparsity. Let Sy be an arbitrary
matrix. Identify (uniformly at random) a subset of ¢ entries. S
equals Sy on these entries and is zero outside.

Theorem

Suppose L is p-incoherent. Suppose further that ||[UV || < %

Let S be any matrix whose support is uniformly distributed among sets of
cardinality c.

There exist positive numerical constants p,, ps, and v such that

if rank(L) < p,m/(ulog n)?, if c < psmn, then with A\ = 1//n, the
solution to

min [[|L]|puc + Al[M — L[|1]

recovers L and S exactly with probability at least 1 — v//n*0.



Remarks

v

A convex optimisation problem, ready-made tools available.

Rank of L can be quite large, as high as n/(logn)?, if uu is of the
order of a constant.

A fixed parameter A = 1/4/n works. No tuning based on how many
sparse entries, level of incoherence, etc., which one might anticipate
is needed to balance the nuclear norm and sparsity objectives.

The optimisation takes some computational effort (cubic).

The main point is that exact recovery is possible under suitable
assumptions.

Perhaps one of you can take this up as a project.

We will discuss an alternative method, a very natural one.



An alternating projection approach

» [ is a low rank matrix, has rank < r.

> Getting a low rank approximation of a matrix is relatively easy. Use
SVD.

> S is sparse.

> Getting a sparse approximation of a matrix is also easy.
Hard threshold at a suitable level and keep only the large values.

» So here's a natural algorithm.
(i) Start with the lowest rank approximation. L% = 0.
(i) Hard threshold M to get S°, a sparse matrix.
(i) Get a low rank approximation L! of M — S°.
(iv) Hard threshold M — L! to get St.
epeat until convergence. [Picture on the board.]

» Some careful tweaking of thresholds needed (Netrapalli et al. 2014).



Notation

» H,(A) indicates hard-thresholding a matrix A at level 7.

» P,(A) indicates projection of a matrix A into the space of matrices
with rank r or lower.

» M : Given matrix L + S of size m x n.
€ : convergence parameter.
r : rank of L.
(B: a tuning parameter associated with the thresholding.

~

» [, §: estimated low rank and sparse components of given M.



The Alternating Projection Algorithm: ALTPROJ

» Input: Matrix M, accuracy ¢, rank r, tuning parameter .

» Output: Z S
» Initialise: L° =0, 7 = Bo1(M), S® = H, (M — LO).

for ‘stage’ k =1 to r do:
T :=10logy(nB|IM — S°||op/)
for ‘iteration' t =0 to T do:

ﬂ(0k+1(M — St) + 27t0'k(M — St))

T =
L7 = P(M —SY)
St o= H (M- L")

end for
if Boki1 (L) < e/(2n) then
return: L7, ST
else
S0.=5T7
end if
end for
return: L7, ST



Remarks on the algorithm

» r =1: Threshold changes in each iteration.
Initial harsh thresholding, but threshold decreases to allow for a
larger St.

> After the first stage, residuals are of size 0.
Do not enter stage 2 (rank 2 approximation) until a good quality L™
and ST at this rank.
When entering stage 2, set a threshold for the next level of target
residuals.

» [ enables tuning for spikiness.

» Complexity:
In each iteration: Py takes O(kmn) (PCA).
Number of iterations in each stage: O(log1/¢) + O(log(ngB||M||op).
Number of stages: r.
Total: O(r?mn(log(1/¢) + log(nB||M||op)))-



ALTPROJ's performance (Netrapalli et al. 2014)

Theorem
Suppose L has rank at most r and L is p-incoherent.
Suppose that each row and column of S has at most « fraction of

nonzero entries, where
1

<.
= 5102,

Fix ¢ and take 3 = 4ur/\/mn.
Then the outputs LT, ST of ALTPROJ satisfy

A €
- <
IL= Lo < N
A €
- <
15 —=5llee < N
Supp(S) < Supp(S).



A comparison of the two results

(Candes et al. 2011)
» Stricter constraint on ||UV T ||s < pus/r//mn.

» Randomness in the support set.
> But exact recovery w.h.p.
(Netrapalli et al. 2014)
» Do not impose the stricter constraint on |[UVT||w.

» No randomness in the support set. But sparsity required on each
row and each column.

» Approximate recovery only, but via an easier algorithm.



Main steps in the proof of ALTPROJ's performance

» Focus on the symmetric case m = n.
» Let L have eigenvalues o1, 0,...,0,, indexed so that

1| > |oa| = -+ > o .

» St and L' are the tth iterates in stage k (suppressed).
Et:= S — St error in the sparse matrix.

>» M—-St=14+S5S—-S"=L+E"
» Let M — St = L + E* have eigenvalues A1, ..., \,, indexed so that
Al > [A2] > > A

(Both t and k suppressed. Let's get comfortable with this.)



Small low-rank projection error ensures small sparsity error

Lemma (LS)
If .
2ucr
L4 = Lo < FE (o] +27 o),
then
Supp(E**Y)  C Supp(S)
Tulr

A

IE oo < == (loksa| + 27 ow])-




Small sparsity error ensures small low-rank projection error

Lemma (SL)
If
Supp(E*) < Supp(S)
1B < S o]+ 2o,
then
2uPr

1L = L < (lowsa| + 27 ow])-

Note that the constraint on ||E*||s on the previous page was tighter.
We will need it when we do the induction and jump across stages.



Proof for symmetric matrices

» Start off induction at k =1 and t = —1.

2
> To show: [|L0 — L|lo = [|L]|se < 22 (|a] + 2|0 ]).

- n

» Use p-incoherence:

le Lej| = |6 ULV "¢ (UTe, 2V Te)l
U7 eill2- [[EV gl

lo1| - pi?r/n.

IAIA

» This enables induction, establishes ||E*||s and ||L — L*||oo bounds
for all t in stage k = 1.

» Also, if we can ensure validity in the move from (k, T) to (k + 1,0),
the bounds hold for all t and k until termination.



We have established, for a particular stage k, for its last iteration
t=T,

Supp(ET)

N

Supp(S)
Tu2r

n

1E oo

IN

(Jowsa| + 27 Towl).-

Claim: If Box+1(LT) < €/(2n), then the algorithm terminates, and
IL= LTl </n, 1S = STl <&/n.

Claim: If Box+1(LT) > ¢/(2n), then

2,8} ur
UL~ LTS = 57} < 2B o) 1 2l

Note the k 4+ 2 and kK + 1, t = —1. This enables continuation of
induction in the next stage.

The lemmas and the claims help us complete the proof for the
symmetric case.



Preliminary 1. Weyl's perturbation result

Lemma
Let A+ E=B.
A has eigenvalues o1 > 0 > - -+ > o,.
B has eigenvalues \y > Xp > -+ > A\,
Then
IAi — ail <|E]|op for each i.

We will take this as granted.



Preliminary 2: From sup-norm to operator norm for sparse
matrices

Lemma
Suppose S is a-sparse. Then ||S||op < an||S||co-

Can all the nonzero entries of S conspire to have a large operator norm
(order larger than an)? No.

Proof: For the left and right singular unit vectors u’ and v associated
with the top singular value, we have

1
1Sllop = uTSv =" uiSijv; < 5 > (W + )i
i i

Now it's clear that each summation encounters at most «n nonzero
entries.



The number of iterations is sufficiently large

» The number of iterations T in a stage is sufficiently large to drive
the error in ||ET||op, comparable to |ox1].

> T =log,(nB|IM — S°||op/€).

IM—=S%0p > [ILllop — 1| E®l]op
> Jow| = anl|[E%|
Tu’r
> Joul = an- = (low] +2loul)
> |ok| — (a small fraction) |o|
> (3/4)|ow-

> Thus T > log (n- (%£7) - ((3/4)lowl) /<) = log(3u?rlokl/e).

» This implies 277 < &/(3u?r|ok]).
Increase multiplier inside log and we can make this even smaller.



Bound on ||E7 ||

» Since we have enough iterations,

IET o <
<

<

Tu2r _
/; (Jokst] +27 Mokl
Tu2r €
(el g
Tu?r Te
Bl o] + o
n 3n

Increasing the factor inside log, the 2nd term is (small fraction) ¢/n.

» We also have, by Weyl,

oK1 (M = ST) = oy

||ET||op < an x above expression

INIA

7aM2f|0k+1| + (small fraction) .

» The two cases nBloki1(M — ST)| = 4p2rlok1(M — ST)| = /2

discussion.



Recall the two claims

» Claim: If Boky1(LT) < £/(2n), then the algorithm terminates, and

IL= LT[ <&/n, 1S = STl < /n.

» Claim: If Boky1(LT) > €/(2n), then

2,8} uPr
UL~ LTS = 57} < 2B o) 1 2l

» The discussion establishes how both are valid.



Towards Lemma LS, proximity of eigenvalues

Lemma
Recall L has eigenvalues o1, ... ,0, in decreasing order.
M — St = L + E* has eigenvalues A1, ..., )\, in decreasing order.

Suppose E satisfies the E-conditions (used in the induction).
We are in stage k, iteration t.
Then

(7/8)(orsal + 27 Jowl) < (INga] + 27 Aul) < (9/8)(lowesa| + 27 o).

Proof: The above is the same as absolute value of the difference is not
greater than 1/8 times (|ok41| + 27 ok|).

We already saw

Ak = okl <{IEop < anl|E¥||oo < 8p"ra(|ow] + 27 |ok-1]).

Discussion on how to use this.



Recall: Small low-rank projection error ensures small
sparsity error

Lemma (LS)
If ,
2ucr
L4 = L]0 < E ok +27 o),
then
Supp(E**') € Supp(S)
Tulr

A

IE oo < = =(loksal +27"|owl).




Proof of Lemma LS - support

v

Support. St = H, (M — L*F1) = H (S + L — Lt+1).

v

Suppose S;; = 0. We must show E,.Jt.+1 =0.

v

Efft =S5 — Sitt = —Si = (L — LiPO1{L; — LY > 7.

» But this can’t hold by assumption on L and proximity of A and o.



Proof of Lemma LS - S error is bounded

b St = H (M — L) = H(S + L — Lt+1).

> Suppose |Mj — LiH| > 7.
» Then S;™ = S;+ Lj — L}", hard-thresholding does not affect entry.

> EI.;“ =5;— 55.“ =—(L; — L,?J.“) which is small.

» Suppose |M;; — ij“\ <7
» Then S/** =0 and |S; + Lj — L;""| < 7, hard-thresholding zeros
entry.

> Ei;+1 = S,j — 55—+1 = SU

» So |SU‘ <7+ “_,J — ij+1|.
7 is bounded by 4 x (--+) and ||L — L™™||o is bounded by 2 x (-).
So the 7 x (---) bound holds.



Recall: Small sparsity error ensures small low-rank
projection error

Lemma (SL)
If

Supp(E') € Supp(S)

1 < 2 ol + 2.
then

I Ll < 22T

- (loksa] + 27 |ok]).



An attempt

» Recall that L1 = P (M — St) = P (L + EY).
> If
n
M—St=>"Nuu] = UMU] + U Uf
i=1

then ,
L =" N = Ui\ U
i=1

> Thus L— L = M — 5 — (M — St — UbA U] ) = UsNoUT — EX.

» Bounding sup-norm of error L — L+ via sup-norm of E? is not good
enough.

> There is greater cancellation in UsA; U2T — Et.
We should leverage pi-incoherence.



Another expression for the error

» For the first r eigenvectors (or fewer if some eigenvalues are zero)
(L + Et)u; = \y;

and by rearrangement

t\ —1 t\p
U = )\i, </ — i) Lu; = )% Z (i’.’) Lu;. Invertible?

p=>0 !

» We can then write

r
Lt+1 — E )\iUiU,'T
i=1

) (e

_ Z(Et)pLU1A;(p+q+1) UlTL((Et)q)T

T
) Lu’)
p.q

_ LU1/\1_1U1TL—|- Z (Et)pLul/\;(p+q+1)UlTL((Et)q)T'

papt+a>0

(E%)?
29



Another expression for the error (contd.)

» So we can write the error as

L1 = (L= LA )+ (EYP LU, PH D uT L(EY)9)T.
P,q:p+q>0

» Claim 3: First expression sup-norm bounded by
w2
T(|0k+l|) + small frac - ||E*||s-
which then yields

2y 2r _
“T(|ok+1|) + small frac “T(|ok+1| +2-2 o)

IN

IN

2
r _
EL (lowsal +27oel) x 2.

» Claim 4: A similar (small frac -||E*||o) bound holds for the
summation term.



Invertibility
Lemma
Under the E-bound,

[|E*||op < small frac |o] and lok| < (14 small frac)|Al.

Proof. We already saw

1Ellop an||E*|

small frac |ok|

IAINA

where the second inequality is because of E-bound assumption and the
assumption on ap?r.

Proximity of Ak and o is due to Weyl's inequality, and the above bound
on operator norm.



Proof steps for Claim 3. Claim 4 has a similar proof.

» Claim 3 says:

2

L — LUATUT L] < - (|ak+1|)+small frac - ||EY||oo-

» First: sup-norm bounded by operator-norm through a factor via
p-incoherence:

2
_ r _
1L = LUAT O] Lo < B2 1IL = LU U] L lop

» Second: substitute L = Ui Ay Uy + UsAoU) — Et and use U; and U
are made of orthogonal columns to get

L—LUATMUT L= UL U] Ef (UL U ED)T —ERULA U (ED) T+ Un A Uy —

» Operator norm ||L — LU; AT U L||,p then bounded by

[1E*[[2,

Al

3/E*[lop +

A

+ M1l < |okga] +6[|EF]|op

IN

|okr1| + 6an|| |-
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» Data sets: http:
//perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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