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Smoking leads Preventable Deaths in the US for Men

Deaths attributable to individual risks (thousands) in men
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Smoking leads Preventable Deaths in the US for Women As Well

Deaths attributable to individual risks (thousands) in women *
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Differential Effects on Women

« Effects of smoking are more serious for women than for men
o more vulnerable to cigarette smoke-induced respiratory diseases
o adverse affects on fertility, early menopause, pregnancy complications
o higher risk of type-2 diabetes
o higher absolute risk for lung cancer

o additional hazards such as breast cancer, ovarian cancer, and cancer of the
cervix

« On the positive side, women have been found to have higher survival rates regardless
of lung cancer type, stage and therapy
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Genes & Gene Expression

* ~20,000 genes in each cell of the body, coded in (largely) read-only DNA
e Genes are transcribed to mRNA, then translated to protein
» Proteins react chemically to drive various biological functions

e The amount of gene-->mRNA transcription (gene expression) is dynamic, as a
function of the cell type, the stimulus, age etc

» How does gene expression for the various genes respond to smoke?
e Which gene increase in expression, which decrease?

e Are these different between men and women?

» What biological functions do these differential genes influence?

« Does the disruption in these functions explain observed pathology due to smoking?
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Measuring Gene Expression

A gene is a double stranded sequence of A, C, G, Ts, very stable

¢ The two strands are complementary

e Could be thousands or tens of thousands of characters long

+ mRNA is a single stranded sequence, but highly unstable, meant for temporary purposes

e mRNA can be extracted from a cell and converted to the complementary single stranded DNA (called cDNA)
e Aprobe is a shorter DNA sequence, ~25-100 characters long, complementary to this cDNA

e Many copies of a probe can be spotted on a glass surface, with different spots carrying probes for cDNA from different
genes

« Typically use a few distinct probes per gene, so tens of thousands of spots

* mRNA converted to cDNA from a collection of cells is then poured on the glass slide
e cDNA from each gene gravitates towards its respective spot

¢ A cDNA molecule hybridized to its probe glows

¢ The glow at a spot is proportional to the amount of mRNA for that gene
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A Microarray Picture

e Image analysis identifies each spot and
measures its intensity

e For each probe, we now have the
intensity

¢ And we also know the corresponding
gene for each probe

* So, we now have one or more
measurements of the expression level
of each of the 20,000 genes

¢ And we can repeat this for multiple
humans, some who are smokers, some
non-smokers, some males, some
females
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The Data

e Data is generated from white blood cells from 48 individuals reference
« Asingle file with 48 columns of data, plus some auxiliary columns, here
e Auxiliary columns: Probe name, Gene Symbol, Entrez Gene Id, ignore the rest
« Asingle gene (identified by a Gene Symbol or Entrez Gene Id) could have multiple probes
e Totally 41,094 probes
e Data Columns:
o 12.Male Non-smokers (106-117)
o 12 Male Smokers (118-129)
o 12 Female Non-Smokers (130-141)
o 12 Female Smokers (142-153)
e Values are logs to the base 2 of the original value

e There are some 0 values as well, due to thresholding low value before taking the log
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Distribution for a Single Individual
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« Values go from roughly 0 to 20 on the
log scale, so roughly 0-1,000,000 on
the linear scale

¢ Median roughly 8.6, or 400 on the
linear scale

« Distribution not quite Gaussian
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Distribution for a Single Probe & Normality

¢ This Normal Probability Plot
displays the 48 data points for
probe A_2/4_P470079 against
a corresponding number of
(almost) equi-area-distant
data points from a Gaussian
N(0, 1) distribution (
&1 (ﬂ )

n

e Astraight line indicates the
datais close to Gaussian

Mormal Distribution

¢ This will be important later
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Are Probe Variances the Same in the Various Groups?
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¢ Take the standard deviation across
samples in a group for a single probe

« Take the difference of the above
between two groups

e Plot the distribution of this quantity
across all probes

« It turns out to be a distribution centered
around 0, indicating standard
deviations are similar in the various
groups

¢ This will be important as well later

Ramesh Hariharan



Differential Expression Analysis

e Which of the ~20,000 genes behaves differently between
o Males and Females, independent of Smoking Status
o Smokers and Non-smokers, independent of Gender
o Male Smokers and Non-smokers, vs Female Smokers and Non-smokers

» What do these genes tell us about our observations on females being more
susceptible to smoking-related diseases but more robust to surviving smoking-
related cancer?
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Male vs Female Differential Response (RPS4Y2, A23 P324384)

154

104

T
"M, NS

T
"M,5"

T
"F.NS"

T
g

e The RSPY2 gene is clearly different
between males and females, regardless
of smoking status

¢ The gene is located on the Y
chromosome, which explains it

e There are 3 paralogs (similar copies) in
the genome, one on the X chromosome
and 2 on the Y chromosome

« Females express both copies on the X
chromosome, while males express one
on X and the two on Y, the latter to a
lesser degree link
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Smoker vs Non-Smoker Diff. Response (AHR, A23_P215566)

¢ The Aryl Hydrocarbon receptor (AHR) is
a sensor of xenobiotic chemicals, such
l as those found in smoke

o It also causes the expression of other
genes which metabolize (break down)

27 these chemicals
] ¢ Side-effects of this breakdown include

free radicals which cause DNA damage,
which is widespread in smokers

I « In addition, AHR expression is also
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found to be increased in many cancer
cells, indicating a link to cancer
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Gender x Smo. Status Diff. Response (S1PR5, A23_ P107744)

13 4 ¢ S1PR5 is not so different between
smokers and non-smokers in men

e Or between men and women non-

12 smokers
e However, its expression appears quite
reduced in female smokers relative to
0 — both female non-smokers and with

males as a whole

e Little is known about the function of
this gene
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¢ Indeed, it is known that changes in the immune system of women smokers are more pronounced than in men ref


https://erj.ersjournals.com/content/42/Suppl_57/P610

Summary of Analysis

» Genes associated with cancer and the immune system are altered in both females and male
smokers vs non-smokers

e Many more immune function genes were down-regulated in female smokers than in
males; these differential changes in immune function in females could explain their
greater susceptibility to several diseases

e Many genes associated with DNA repair, xenobiotic metabolism, free radical scavenging
and natural killer cells cytotoxicity are down-regulated in female smokers relative to male
smokers; these could explain the increased susceptibility of females to smoke-induced
cancer

» There may also be some clues as to why females survive cancer better, though a conclusive
answer is still not there (e.g., CYP4F2, CYP4F12)
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Switching now to The Hypothesis Testing Problem

» Suppose you have an hypothesis, e.g.
o Male and female heights have the same distribution, versus
o Male and female heights do NOT have the same distribution
« How would you verify which is the case?

 You sample a few males and a few females independently at random, and measure their
heights

e From this random sample, you could estimate the mean and variance of the underlying
distribution(s) (how?)

e And then check if the means of the two distributions are the same or not (how?)
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Sample Mean and Distribution Mean

» How does the sample mean relate to the mean of the underlying distribution?

e Let X be a random variable denoting the underlying distribution

o Let B(X) = p, Var(X) = o2

e Let X1,...,X, betheindependent sample values (say heights of samples males)
e Then E(X;) = p, Vi

e E(XX;/n) =%, E(X;)/n = 3;u/n = u (note: Linearity of Expectation, regardless of
independence)

» So the expected value of the sample mean is

« But how close does the sample mean get to y?
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Distribution of the Sample Mean

 The distribution of the sample mean (which is different from the underlying distribution) has
mean f

o What is the variance of this distribution?
e This is where independence comes in
« Var(2X;/n) = £;Var(X;)/n? = 02 /n (note: Linearity of Variance, given independence)

¢ Variance %, Std Devox -

NG
« In fact, as m increases, the distribution of the sample mean gets closer to N (i, o/+4/n) (the
Normal distribution, regardless of the underlying distribution)
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Estimating the Mean of the Underlying Distribution

» Suppose you want to estimate the underlying distribution mean so with greater than 95%
probability you are within 10% of the actual number

o Choose m so that N (u, 0/4/n) has less than 5% outside p(1 & 0.1)

o Then pick n samples independently at random

o Take the sample mean as an estimate of the underlying distribution mean
« Catch: You need to know the variance o2 !!

« How does one estimate the variance of the underlying distribution?
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Estimating the Variance of the Underlying Distribution

e Would sample variance estimate the variance of the underlying distribution?

e Sample variance = %Zi (X; — X;X;/n)?

* B[ %i(Xi — 3 X;/n)?]

o = S E[B X7 + 3:(2;X;/n)? — 25, X;(3;X;/n)]

« = LE[S: X7 — (3X;)?/n] = LE[Zi 22 X7 — 25, X, X))

. = LTS E(X]) - 25y, B(Xi X))

e = 2[(n — 1)E(X?) — (n — 1)p?] (note B(X;X;) = E(X;)E(X;) by independence)

n
n—1

e = 2 [E(X2) — p?] = "T_la2 (note: not quite the distribution variance)
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An Unbiased Estimator for the Distribution Variance

¢ The sample variance underestimates the variance of the underlying distribution!
« BA%(X; - B X;/n)?] = 212

« Use L= %;(X; — 3;X;/n)? instead!

¢ In summary

o the sample mean is an unbiased estimator for the distribution mean

n—1
n

o

times the sample variance is an unbiased estimator for the distribution variance

o pick 1 so the distribution of the sample mean is tight around the distribution mean (based on the estimated
distribution variance), or based on what you can afford
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Are the Male and Female Distributions Significantly Different?

e You take an independent random sample of males, and a separate sample of females; measure heights in each sample
and find the sample means fi,, and fi (the hat typically indicates sample as opposed to distribution)

e Are the two distributions different, i.e., are the sample means significantly different? (Assumption: variances are the
same)

e What does signficant mean?
e |fiyr — fip| > A for some suitable A?
» If o is large, then even if the two distributions were the same, fi;; and fir could be quite different (recall sample mean

~ N(u,0/+/n))

¢ So perhaps el A7
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Test Statistics and P-Values

N i‘ — |ﬂM—ﬂF|
6% +6%

is called a test statistic

« This statistic has a certain distribution T' (imagine sampling many many times and seeing what values of
the statistic you get)

e T' depends on the two underlying distribution(s) and the sample size

« The probability that T' > £ assuming that the two underlying distributions are the same (i.e., same means)
is called the p-value

¢ A small p-value indicates that the two underlying distributions are likely to be different
¢ The conventional cut-off is 0.05

 To derive a p-value, one must first define a statistic (as a function of the sample values) and then obtain the
distribution of this statistic assuming identical underlying distributions
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The ANOVA Approach for Heights

¢ Two models:

o The gender-specific model: Males h = ups + €, females h = up + €, where € is random variable with some distribution
(to be determined) with mean o

o The universal model: h = p + € (we will call this the null model)

¢ Now we sample females with height izl, ceey izn and males iln_i,_]_ R (.
¢ From this sample, we determine the values of pps, pr that minimize
o =miny_, [S0 (b — pr)? + X001 (hi — par)?]) = S, €2 using standard linear regression

« Next we do the same for the null model: find g that minimizes > = min, [Y"7*, (h; — p)?] = ¥ &2

a72 ch'2—c1;2 . . . . i .

5 1= 5 s called the F-statistic (with a small modification later)
e 4

e The statistic we useis F' =
[s5

o If it is large, then the null model is a less likely candidate from which the data at hand could have been drawn

o What is the distribution of this statistic under the null model? How do we get a p-value?
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The Gender-Specific Model in Matrix Form

il ~
,‘Ll 10 fl
2 €2
: A E ( wr ) |- )
: (274 :
; 0 1 ;
h, 0 1 €n
\o 1/

*There arem1's and n — m 0's in the first column
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The Universal (Null) Model in Matrix Form

Zl 1 %1
2 €2
: e @
N 1 .
hy €n

1
\ 1/
e Further, we will need some assumption of the distribution from which &;'s are drawn; typical assumption is N (0, o2 ),

but needs to be justified
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The N (0, o) Assumption

¢ Adult male heights mean

80
- Normal @-Q Plot 70in, s.d 4in link
: g
& - o e Adult female heights mean
% s’ 65in, s.d 3.5in link
H 2 |
% 0 = ¢ Both appear Gaussian as
e

shown by the Q-Q Plot link

o
Sample Quantiles

160

70
Height (inches)

150
o

-2 =1 0 1 2
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https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwikgr-ws4flAhWJpI8KHRjMCYwQjRx6BAgBEAQ&url=https://www.researchgate.net/figure/Normal-probability-plot-for-the-distribution-of-heights-of-118-female-students-in-a-first_fig1_251384904&psig=AOvVaw2cd10yJOb9HKLe3uuvb5Sq&ust=1570443308408324

Linear Regression to Minimize Sum of Squared Errors

o For each model, A and A’, in turn (shown below for A only)
oh=A%+¢
o (h— AZ)T (h — AZ) =

T -
E é=%;é2

o To minimize the RHS over #, we need to solve ATh = AT A%
o Thebest Z = (AT A)t AT h, where { is the pseudoinverse

z 27 2 2T 2
o The minimum value of X; &2 thenis (h — A(AT A)TATh)T (h — A(ATA)tATh) = h (I — A(ATA)tAT)h
.1
o The above follows because (I — A(AT A)t AT) is idempotent (X is idempotent if XX = X).
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The F-Statistic & P-value

e The two A's of interest are:

2T - T -

... h(I-AATA) AT h (A(ATA)t AT —A(AT A)T AT)R

o F-Statistic= 41(, @ 4) 3 —1=" ET ) ( 1 ) 1 0 1

h (I-AAT AT AR h (I-A(AT A)tAT)A ( \ {

¢ To compute the p-value, we need the distribution of this statistic under the
assumption that the universal (null) model holds, i.e., each €; is drawn

- I _
independently from N (0, 02), i.e., h; is drawn from N (u, 0?). A= A = 3)
01 1
¢ A small p-value means the universal (null) model is unlikely to support the 0 1 1
F-statistic derived from the data at hand, so the universal (null) model can be \ 01 } \ 1 )

rejected

 Additionally, since we have evidence that heights are distributed as Gaussian
and with the same/similar variance for males and females, then a low p-
value shows that the gender-specific model is likely
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Distribution of the Num/Denom under the Null Model

2T 2
 What is the distribution of h f(X Y)h, where f(X,Y) = X(XTX)I XT —Y(YTY)tYT?

B HX,Y)ATH = 0 x A“ F(X, v) A=A

-
P

h—A

(because f(X,Y)A'p = 0) .2

£ has entries that are independently sampled from a standard normal N (0, 1)

)

e Claim: If the column space of Y is a subspace of the column space of X, and ALL eigenvalues of
X(XTX)IXT ) Y(YTY)'YT areeitheroorithen...... 3

o Distribution of §~ f(X,Y)g is thatof § X where X is the diagonal eigenvalue matrix of f(X,Y) with
rank(X) — rank(Y) 1 eignvalues

o Which is the sum of squares of rank(X) — rank(Y") independent N (0, 1) random variables, or a Chi Square
distribution with rank(X) — rank(Y) degrees of freedom

o E[§ f(X,Y)F] = rank(X) — rank(Y)
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Chi Square Distributions for various Degrees of Freedom

Z~N(0,1)

fk(T) Xz
0.5 [

0.4t

TrTmT
O© O =W

0.371

0.2+

0.0 ‘ : : : : . : —
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Distribution of the F-Statistic under the Null Model

e Modified F-statistic (note the second term with degrees of
2T N
h (A(AT A AT -4 (AT A') AT)h . PTank(4)

freedom) = ?;,T(I—(A(ATA)TAT)E rank(A')—rank(A) 25 ‘ :
d1=1, d2=1 ——
¢ the numerator is Chi Square distributed with d1=2, d2=1 ——
rank(A) — rank(A’) degrees of freedom, the denominator is 1 sz —
Chi Square distributed with n — rank(A) degrees of freedom, 15 | d1=100, d2=100
and the two are independent
« the statistic is distributed as the F-distribution, with 1 n
parameters rank(A’) — rank(A) = 1 and
n —rank(A) =n — 2 0.5 N\ a
* Closed-form and calculators are commonly available for the 0 \b——\f

F-distribution. The p-value is the total area to the right of the 0 1 2 3 4 5
value calculated from the given data.
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Proof of Claims toward the Distribution of the F-Statistic

o AT AZ = 7 has a solution for any vector § in the column space of AT, i.e., & = (AT A)ty
o AT A% is clearly in the column space of AT
o Therefore, the column space of AT A is a subspace of the column space of AT

o It suffices to show that the column spaces of AT A and AT have the same dimension; that would imply equality
of the two spaces

o Since nullspace of AT A and A are the same, the column spaces of AT A and A have the same dimension
o The column space of A has the same dimension as the row space of A

o It follows that the column space of AT A has the same dimension as the column space of AT
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Proof of Claims toward the Distribution of the F-Statistic

o AT AZ = 7 has a solution for any vector § in the column space of AT, i.e., & = (AT A)ty

o = A(AT A)T ATy = 7 for any vector 7 in the column space of A (i.e., j = AZ), and o for all vectors ¥ orthogonal
to this column space. Ditto for A’

« = Eigenvalues of A(AT A)" AT are 0,1 with exactly rank(A) 1's. Ditto for A’
« = Allvectors in the column space of A are eigenvectors of A(AT A)T AT . Ditto for A’
o = (I-A(ATA)TAT)(I — A(ATA)TAT) = (I — A(AT A)T AT) because A(AT A)t AT A = A.Ditto for A’

o = A(ATAYATA p= A'(AT A')t AT A' u, where A’ 1 is the non- gender specific model (because A’ is in the
column space of A’, which in turn is in the column space of A). Ditto for A’
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Proof of Claims toward the Distribution of the F-Statistic

o« = A(ATA)TAT A'(AT AN AT
o have rank(A’) orthonormal eigenvectors in common with eigenvalue 1 (because the column space of A’ is a

contained in that of A)

o have rank(A) — rank(A’) orthonormal eigenvectors in common, but with eigenvalue 1 for A(AT A)f AT
and o for A’ (AT A")T AT (these are in the column space of A but orthogonal to that of A’)

o have n — rank(A) orthonormal eigenvectors in common with eigenvalue o (these are orthogonal to the
column spaces of both A and A’)

o« = A(ATA) AT =VZVT A'(ATA) AT = VE'VT  where %, ¥ are the corresponding diagonal

eigenvalue matrices and the columns of V are the orthonormal eigenvectors

o = A(ATA)TAT — A/(ATANV AT = V(T — 2')VT , where = — %/ has only rank(4) — rank(A’) 1's
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Proof of Claims toward the Distribution of the F-Statistic

o = I— A(ATA)TAT = V(I — Z)VT where I — Zhasonlyn — rank(A)1's

o = § (A(ATA)TAT — A'(AT A ATY) =4 V(E — X')VT§, where § is a vector whose entries are chosen

independently from N (0, 1)

o = § (I—A(ATA)Y AT)j =4 V(I — Z)VT4, where § is a vector whose entries are chosen independently
from N(0,1)

* Since the columns of V are orthonormal, we could rotate the coordinate axes so V becomes I. What happens to § in the
?
process:

¢ Because of spherical symmetry, 3_5 remains a vector whose entries are chosen independently from N(0, 1)!
o = § (A(ATA)TAT — A’'(AT A')t AT)§ has the same distributionas g (T — Z')§

. — 'ﬁT (I — A(AT A)t AT) has the same distribution as ﬁT (I-%)§
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Proof of Claims toward the Distribution of the F-Statistic

T - —
e § (X — X')j is the sum of squares of a subset of the entries of

T e
e Likewise for§ (I — X)g
o The two subsets are disjoint because the 1s in ¥/ are a subset of the 1sin X
o —>
T —
o g (A(AT A)T AT — A’(AT A")f A7) is distributed as the sum of squares of rank(A) — rank(A’)
independent N(0, 1) random variables

o §T((I — A(AT A)t AT is distributed as the sum of squares of . — rank(A) independent N(0, 1) random
variables

o The two distributions are independent
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Summarizing ANOVA for Heights

¢ Sample females with height izl geeesy izn and males ﬁn+1, ceey itm

2T s
h (A(AT AT AT—A' (AT A ATR n—rank(A)
rank(A)—rank(A’)

¢ Calculate F-statistic f = — L
h (I-(A(ATA)' AT)R

« Calculate the area to the right of £ in the density plot of the F-distribution with rank(A) — rank(A’) and
n — rank(A) degrees of freedom,; this is the p-value
¢ Reject the universal (null) model if p-value is small
¢ Note, the proofs above hinge on the following two facts
o We have two models A, A’
o The column space of the null model A’ is contained in that for A
o The é's in the null model are all sampled from N (0, 0'2) independently

« Further given there is reason to believe that heights are Gaussian and with equal/similar variance across genders,
unlikeliness of the universal model translates to likeliness of the gender-specific model, with distinct means for males
and females
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Many Groups

e The two A's of interest are:

ooy (1)
1 00 1
100 1
A= 010 ,AI = (4)
010 )
00 1 )
\o 0 1/ \ 1/
« F-Statistic= ;‘:(,I‘A'(A”A')Tﬂj’:‘ 1= ﬁT(AEgTA)*AT—A(ATAfAT)E
h (I-A(AT A)t ATk b (I-A(AT A) AT)h

o The rest of the process is identical to the two-groups case above

¢ Rejection of the null model suggests that the underlying group means are not all the same
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Two-Way ANOVA

e Two dimensions of groups (or factors)
o Status: Smokers vs Non-Smokers
o Gender: Males vs Females
 There are three questions now
o Are the means the same for Males and Females?
= Derive fgender as above.
o Are the means the same for Smokers vs Non-Smokers?
= Derive fgiqtys as above.

o Are the individual means for each of the 4 Status x Gender groups just a simple additive combination of the
Status and the Gender means?

= What about this?
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Status x Gender Model
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F-Statistic for Status x Genter Interaction

\
—

AI

(7)

o O = M- O o o o
= = O O O O O O

- -0 OO O
(=B N == o

=== T T
H H O OKHKHOO

oo ocoococoH+HH
O o C o -=M~OOo

—
~

¢ rank(A) = 4,rank(A’) = 3, the column space of A contains the column space of A’

2T 2
h (A(AT 4)T AT —A'(AT A') AT YR 4 __"rank(4)

o F-statistic for Status x Gender f,gtatus,gender = rank(A)—rank(@)

b (I-(A(A7 )t ATYh
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The Two-Way ANOVA Process

¢ Compute F-statistic for Status x Gender & obtain the p-value

o If too low, then reject the additive (null) distribution, i.e., it is unlikely that the data can be supported by the means for
the individual groups being a sum of the Status-wise and Gender-wise means

e Otherwise

o Do the one way ANOVA process to see if the universal (null) model that assumes the same means for all Genders
can be rejected

o Separately, ditto for Status
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Onw-Way Repeated Measures

« Asingle group of individuals measured repeatedly over time
« Does time make a systematic difference in measurement across multiple individuals?
o E.g., measurements 0, 10, 20 at timepoint 1and 2, 12, 22 at timepoint 2

o The variation among individuals within each time point is large and the difference between the two
timepoints pales in comparison to this variation; so conventional one-way ANOVA will not reject the
universal (null) model

o However, there is indeed a systematic effect of time: measurements increase by 2 for each individual
« Use Individual and Time as two factors

o Use a Universal (on Time) model as the null (individuals have different underlying means but these do
not change with time)

o Compared to an additive model of Individual and Time effects
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F-Statistic for One Way Repeated Measures

(100 1 0) (1 0 0)
1000 1 00
. ac|ororof 10 ®
01001 010
00110 00 1
\0o 010 1/ \0 0 1/

e The first 3 columns of A are individual effects, the last two are time
o A’ has only individual effect columns
 rank(A) = 4,rank(A’) = 3, the column space of A contains the column space of A’

2T 2
h (A(ATA)AT—A' (AT A" AT)R n—rank(A)
rank(A)—rank(4')

* F-statistic fStatus,G’ender = =T =
h (I-(A(AT4)t AT)h
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Correction for Multiple Testing

e Recall, for each gene
o we independently derive a p-value under the null model

o this p-value is the probability that the drawing samples for this gene from the null model yields as high an F-
statistic as is obtained from the data at hand, thus c

o note: this p-value has a uniform distribution between 0 and 1
» But, we have n = 20, 000 genes
¢ Assume 1y of these satisfy the null model (ny is the majority in practice)
« For these my genes, assume p-values are drawn independently from a uniform distribuion (?)

* So the smallest of these will have an expected value of nio , which could be as low as 0.00005!

e Which means that many of these ny genes will have the null model rejected, falsely; expected number nyq if g is the
cut-off.

« The probability that even one of these ng genes passes the cut-offis 1 — (1 — g)™ ngq. Using g/ng instead of q as
the cut-off ensures that this probability is less than g
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Estimating n

* Note, we don't know ng

« But p-values for these genes can be
assumed to be independent and uniformly
distributed in 0..1

¢ The other genes will have p-values biased
towards 0

¢ Draw the histogram of all the p-values (use
a suitable bin size, say 0.1)

o If you see bias closer to 0 (greater density
near 0 than near 1), use the density closer to
1to estimate 1y

e Otherwise, use n as a conservative estimate
of A

Truth
Null

count

Alternative

P-values

link
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http://varianceexplained.org/statistics/interpreting-pvalue-histogram/

False Discovery Rate (FDR)

e Sort all the p-values
« Suppose he ith smallest p-value is p;

 The expected number of false positives from the ng genes with p-values smaller than « is 19 p;
« The fraction of false positives, roughly speaking, is expected to be @

» Control this fraction at say cut-off q

* So pick the largest % such that % <gq

* Or, in other words, pick the largest ¢ such that p; < 7%

¢ Estimate ng as above

e Among all genes which pass this test, you can show that the expected false positive fraction is at most g
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The Asignment

¢ The data file is here

e Your goal is to identify genes which respond differently to smoke in men vs women (Smoking Status x Gender model
vs the Smoking Status + Gender null)

o Use the above 2-way ANOVA framework to generate p-values for each row

o Draw the histogram of p-values

o See if a better (than n) estimate for ny is derivable from this histogram; justify your estimate
o Use an FDR cut-off of 0.05 to shortlist rows

o Create a shortlist of gene symbols from these rows

o Intersect with the following gene lists: Xenobiotic metabolism, Free Radical Response, DNA Repair, Natural
Killer Cell Cytotoxicity

o Report intersection counts for each list, split into four groups; going down in women smokers vs non-
smokers/going up in women smokers vs non-smokers x ditto for men
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https://drive.google.com/file/d/1MMOXSRKbTTc9_jZD1HjK0BHc1LO1gtE7/view?usp=sharing
https://drive.google.com/open?id=1hRAKYSvN6mNa4DWZxmLNP5PnjqFuGZtJ
https://drive.google.com/open?id=16Ot-Kgmyvs-yNBDhobRsy5DSWNvZXu6y
https://drive.google.com/file/d/16b5kBgvLmCSilzfNTD-p2EOTZhpxbnSV/view?usp=sharing
https://drive.google.com/file/d/1vykPnfqafHkSd1ivxBXaORjvPkfZ3IE4/view?usp=sharing

