

Problem Set 4

Instructor: Rajesh Sundaresan

TA: None

Problems: With something to think about on each question.

1. Give an approximation for $\mathbb{E}[N|H_0]$ analogous to the approximation $\mathbb{E}[N|H_1]$ obtained in class. Explain why the two expressions are different (both numerator and denominator).
2. Suppose that the target false alarm rate and miss probabilities are identical and given by ε . Assume that the two hypotheses have priors π_0 and $\pi_1 = 1 - \pi_0$. Give an approximation for the limiting value

$$\lim_{\varepsilon \rightarrow 0} \frac{\mathbb{E}[N]}{\log(1/\varepsilon)}.$$

This not only tells how the number of samples grows as ε shrinks, but also gives the proportionality constant.

3. Consider the following sequential detection problem.

$$H_0 : Y_k = Z_k, \quad k = 1, 2, \dots$$

versus

$$H_1 : Y_k = \theta + Z_k, \quad k = 1, 2, \dots, \quad \theta > 0.$$

where Z_k are iid $N(0, 1)$. Find $D(P_1||P_0)$ and $D(P_0||P_1)$. Does the answer surprise you? Assuming that the false alarm rate and miss probability are ε give an expression for the (approximate) expected number of samples for a decision.

4. For the hypothesis testing problem above, take $\theta = 1$. But consider a fixed number of samples n_0 . Using an expression relating power and size of a fixed sample test, describe how to obtain n_0 so that the false alarm rate and miss probability are both ε . For small ε , say $\varepsilon = 0.01$ compare n_0 of this problem and $\mathbb{E}[N|H_j]$ of the previous problem. Which is better?
5. A proof of the Wald-Wolfowitz theorem (Burkholder and Wijsman 1963).
Step 1: In class we considered the case of uniform costs. Consider the more general case where $C_{01} = w$, $C_{10} = 1 - w$, and $C_{11} = C_{00} = 0$. Let c be the cost per sample. For a fixed w , verify that the optimal sequential decision rule is an SPRT test with $\pi_L(c, w) \leq \pi_U(c, w)$ as the lower and upper thresholds, respectively, on the posterior probability.
6. *Step 2:* Let the prior π_1 satisfy $\pi_L(c, w) \leq \pi_1 \leq \pi_U(c, w)$. Identify the threshold A and B for the likelihood ratio in the $\text{SPRT}(A, B)$.
7. *Step 3:* For a fixed w , assume that $\pi_L(c, w)$ and $\pi_U(c, w)$ are continuous, and further assume that $\lim_{c \rightarrow 0} \pi_L(c, w) = 0 = 1 - \lim_{c \rightarrow 0} \pi_U(c, w)$. Is this reasonable?
Fix any $\varepsilon > 0$ and $0 < A \leq 1 \leq B < +\infty$, show that there exist (a) π_1, c, w having $0 < \pi_1 < \varepsilon$ and A, B as given by the formulae in the previous step.
8. *Step 4:* Consider now an SPRT (ϕ, δ) and any other test (ϕ', δ') such that

$$P_F(\phi', \delta') \leq P_F(\phi, \delta) \text{ and } P_M(\phi', \delta') \leq P_M(\phi, \delta).$$

Using the previous steps to argue that $\mathbb{E}_0[N(\phi')] \geq \mathbb{E}_0[N(\phi)]$. Outline the steps to prove the inequality under H_1 .