
E1–244 Detection and Estimation Theory

Discussion: Mondays 4:00-5:00 PM
Due: 27 March 2015

Problem Set 5

Instructor: Rajesh Sundaresan TA: None

1. We solved the scalar estimation problem. Suppose instead that Λ = R

m and assume that the cost
function is given by

C(a, θ) =

m
∑

i=1

(ai − θi)
2.

What is the optimal Bayes estimate? How would your answer change if you had a more general
C(a, θ) =

∑m

i=1
Ci(ai, θi)?

2. Coupled cost: Suppose that for the vector problem, we now have a coupled cost given by

C(a, θ) = (a− θ)tA(a− θ)

for some (symmetric) positive definite A. What is the optimal Bayes estimate for θ given Y ? Are
you surprised?

3. Suppose Yi = Θsi + Zi, i = 1, . . . , n, where Θ ∼ N(µ, v2), Z ∼ N(0,K), and s ∈ R

n is a known
signal. Find the MMSE estimate of Θ. Specialise to the case when Σ = σ2In, and s = [1, 1, . . . , 1]T .
What is your answer when there are no samples (n = 0)? When n → ∞? Interpret your answers.

4. Suppose that Y = X + Z where X = 1 or −1 with equal probability and Z ∼ N(0, σ2). Find the
MMSE estimate for X given Y . Why might a real valued estimate for a binary valued random
variable be useful?

5. In the above problem, what happens as σ2 → +∞? As σ2 → 0?

6. Suppose Yi = θsi + Zi, i = 1, . . . , n, where θ is a scalar parameter, Z ∼ N(0,K), and s ∈ R

n is a
known signal. Let the conditional distribution of Y = [Y1, . . . , Yn]

T given θ be denoted Pθ. Find
a scalar sufficient statistic for the family {Pθ, θ ∈ R}. (Hint: See Problem 3 above.)

7. See the programming exercise on equalisation techniques for multiple access channels in the next
four pages.

Problem Set 5-1

1 Equalisers for Multiuser Detection

In this programming exercise, you will implement equalisation techniques for multiple access channels.
We are particularly interested in the reception of one particular user in the presence of interference from
other users and white Gaussian noise. You can follow the Specific steps outlined in one of the later
sections. Some theory behind the LMS and the blind adaptive equalisers will follow a little later in the
course.

2 Detection schemes

The detection schemes studied are:

• Matched Filter - This receiver directly matches to the transmitted pulse without taking into account
multiple access interference.

• Minimum Mean Square Error (MMSE) Equaliser - This receiver minimises the mean squared error,
where error is the difference between the equaliser output and the transmitted symbol (i.e., ±1).
To obtain this filter, we assume that the users’ transmitted bits are independent and that their
signatures are known. However, the transmissions of the various users may interfere with each
other.

• Least Mean Square (LMS) Equaliser - This receiver operates without knowledge of the interfering
users’ signatures, but requires a training sequence.

• Blind Adaptive Equaliser - This receiver does not require a training sequence. All it needs is the
signature waveform of the user of interest.

3 Model

We assume the following synchronous model where all users start transmission at the same time,

y =

L
∑

j=1

Ajdjsj + n

where

• sj : signature waveform of user j; belongs to {−1, 1}N , normalised to have unit energy.

• Aj : amplitude of user j.

• dj : transmitted symbol of user j; one of ±1.

• n : white Gaussian noise vector composed of zero mean and unit variance components.

• y: received signal vector bearing signal, interference and noise.

4 Implementation

All receivers will be of the form
d̂1 = sign(cty)

i.e., we restrict our attention to linear Multi-User Detectors (MUD). Note that we are interested only in
the detection of user 1’s transmitted symbols.

You will implement the following receivers.

Problem Set 5-2

(a) Matched filter : c = s1.

(b) MMSE : This receiver minimises E
[

(d1 − cty)
2
]

. The solution is given by

c = A1





L
∑

j=1

A2

jsjs
t
j + σ2IN





−1

s1,

where IN is the N ×N identity matrix, and σ2 = 1. Note that the MMSE is given by

MMSE = 1−A1c
ts1.

(c) LMS : This is an iterative procedure that works with training across several symbols periods. At
time k, let the error be denoted by

e(k) = d1(k)− ct(k − 1)y(k).

Take c(0) = s1. Then the adaptation rule is given by

c(k) = c(k − 1) + 2µe(k)y(k).

where µ is a positive real parameter.

(d) Blind adaptive equaliser : We write

c = s1 + x1, where ||s1|| = 1 and st
1
x1 = 0, (1)

i.e., the equaliser has a signal component equal to the normalised matched filter and an orthogonal
component. The adaptation rule adapts the orthogonal component by attempting to minimise
E[(cty)2] subject to the constraints in (1). The adaptation rule is given by

x(k) = x(k − 1)− 2µZ(k)(y(k)− ZMF (k)s1),

where

Z(k) = ct(k − 1)y(k),

ZMF (k) = st
1
y(k),

c(k) = s1 + x(k).

Note that this algorithm does not require any training sequence. Neither does it require knowledge
of interfering users’ signatures. All it needs is the desired user’s signature.

Problem Set 5-3

5 Specific steps

1. Create a function data = randBinary(numUsers, numSymbols) whose output is a matrix of size
numUsers × numSymbols that contains equilikely ±1 data symbols.

2. Write a main program to test your randBinary function. The output data symbols should be
printed on the screen. Test for several numUsers and several numSymbols.

3. Create a function signatures = getSignatures(numUsers, sf, ρ) whose output is such that
the ith row is the signature sequence for user i. You may assume sf is a power of 2. The correlation
between user 1 and user 2 (st

1
s2) should be as close to ρ as possible. All others users’ signatures

should be randomly generated. All signatures should have unit energy.

4. Append your main program to test getSignatures. Do this by printing out signatures for various
values of sf, numUsers, ρ and verifying they are correct via prints on screen. For the rest of the
session, use ρ = 0.4.

5. Create a function rxIntf = generateInterference(signatures, data, A) that is a vector of
received signal (without noise) of size 1× (sf · numSymbols), where A is a vector of gains. No

loops.

6. Update your main program to test generateInterference via prints on screen. Verify for different
values of A as well.

7. Create a function rxSignal = getRxSignal(rxIntf, variance) that models the received signal
embedded in zero-mean white Gaussian noise of variance variance. The output vector should be
1 × sf · numSymbols in size.

8. Update your main program to test getRxSignal via prints on screen. Verify match with rxIntf

for variance = 0. Do this for two users with A = [1, 2]. Then reshape rxSignal to a matrix of
size sf × numSymbols. Each symbol period of received symbols should be in one column. For
subsequent steps set variance = 1.

9. Create a function errorRateMF = MF(signatures, rxSignal, data). The output should be the
error rate for matched filter. Do the matched filter on each symbol, compute the number of errors,
and compute the error rate. Note that data is used only for statistics generation. No loops.

10. Update your main program to test the above function. Set A = [1, 0]. Verify error rate for
numSymbols = 10000 matches with theory (Q function evaluated at an appropriate point).

11. Create a function
[errorRateMMSE, estimatedMMSE, MMSE, cMMSE, MSETrajectory]

= MMSE(signatures, rxSignal, data).
The output should be the error rate, estimated MMSE, and true MMSE computed using formula,
the MMSE filter, a trajectory of the MSE over time. (No loops. Use backslash or mldivide for
computing R−1x).

12. Update your main program to test the above function and plot the MSE trajectory. Set A = [1, 0].
The estimated MMSE should be close to the true MMSE for numSymbols = 10000. What should
the MMSE filter be for this case? What should the error rate be for this case? For subsequent
tests, set A = [2, 1].

13. Create a function
[errorRateLMS, squaredErrorTrajectory, cLMS] = LMS(signatures, rxSignal, data, µ).
The output should be the error rate averaged over time, the squared error at each time instant,
and the converged LMS filter. Use the formulae provided. (A for loop is allowed for the time
updates).

Problem Set 5-4

14. Update your main program to test the above function. Use numSymbols = 500. Take µ = 0.0001.
Get a plot of the quantity squaredErrorTrajectory versus time. Compare with MMSE filter’s
MSETrajectory. Compare cLMS and cMMSE.

15. Create a function [errorRateBlind, energyTrajectory, cBlind] = blind(signatures, rxSignal,

data, µ). The vector energyTrajectory should have kth component Z(k)2. Use the formulae
provided. (A for loop is allowed for the time updates).

16. Update your main program to test the above function. Use numSymbols = 500. Plot the energyTrajectory
versus time. Compare the cBlind with cMMSE.

17. (Reading and homework questions) To which filter does the LMS algorithm converge? The blind
adaptive algorithm?

Problem Set 5-5

