Problem Set 1

Instructor: Rajesh Sundaresan

1. Consider the game of matching pennies. The winner gets 1 and the loser gets -1 . Identify all the pure and mixed strategy Nash equilibria.
2. Consider player i. For a probability distribution σ_{i} on the finite set of actions S_{i}, write $\delta\left(\sigma_{i}\right)=\left\{s_{i} \in S_{i}: \sigma_{i}\left(s_{i}\right)>0\right\}$ for the support set of σ_{i}. Prove the following statement.
The mixed strategy profile ($\sigma_{i}^{*}, i \in I$) is a mixed strategy Nash equilibrium if and only if the following hold for each i :

- $u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)$ is the same for all $s_{i} \in \delta\left(\sigma_{i}^{*}\right)$,
- $u_{i}\left(s_{i}^{\prime}, \sigma_{-i}^{*}\right) \leq u_{i}\left(s_{i}, \sigma_{-i}^{*}\right)$ for each $s_{i}^{\prime} \notin \delta\left(\sigma_{i}^{*}\right)$ and $s_{i} \in \delta\left(\sigma_{i}^{*}\right)$.

3. Prove or disprove:

- For a finite two-player game, if iterated elimination of weakly dominated strategies results in elimination of all but one strategy profile, then that survivor is a Nash equilibrium.
- For a finite two-player game, iterated elimination of weakly dominated strategies cannot eliminate a Nash equilibrium.

4. Consider the finite game $\left(I,\left(S_{i}, i \in I\right),\left(u_{i}, i \in I\right)\right)$, where $|I|=n$. For a mixed strategy profile $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$ define $f_{i}(\sigma) \in \Sigma_{i}$ as follows

$$
f_{i}(\sigma)\left(s_{i}\right)=\frac{\sigma_{i}\left(s_{i}\right)+\left[u_{i}\left(s_{i}, \sigma_{-i}\right)-u_{i}\left(\sigma_{i}, \sigma_{-i}\right)\right]_{+}}{\sum_{s_{i}^{\prime} \in S_{i}}\left[\sigma_{i}\left(s_{i}^{\prime}\right)+\left[u_{i}\left(s_{i}^{\prime}, \sigma_{-i}\right)-u_{i}\left(\sigma_{i}, \sigma_{-i}\right)\right]_{+}\right]}, \quad s_{i} \in S_{i} .
$$

and further define $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$. This time, apply Brouwer's fixed point theorem (every continuous function from a compact convex subset of a Euclidean space to itself has a fixed point) to the function f and establish Nash's theorem.

