Game Theory

Due: 24 October 2013

Problem Set 4

Instructor: Rajesh Sundaresan

1. Consider a learning scheme where a forecaster uses the function $\Phi(R_t) = \Phi(R_{1,t}, \ldots, R_{N,t}) = \sum_{i=1}^{N} ([R_{i,t}]_+)^2$ and the weights $w_{t+1} = \nabla \Phi(R_t)$. The loss function once again is bounded between 0 and 1 as in class. Argue that normalized worst-case regret

$$\max_{1 \le i \le N} \frac{R_{i,n}}{n}$$

continues to go to zero as $O(1/\sqrt{n})$. How does the normalized worst-case regret scale with N the number of experts?

- 2. Prove or disprove: The half planes $H_i = \{x \in \mathbb{R}^n | x_i \leq 0\}$ are approachable for each i = 1, 2, ..., n if and only if the negative orthant is approachable.
- 3. Let Γ^e be a game in extensive form. Prove or disprove: If τ_i is a mixed representation of a behavioural strategy σ_i of player *i* of the game Γ^e , the σ_i is a behavioural representation of τ_i .
- 4. Consider a game Γ^e in extensive form with perfect recall. For a player *i* and an information state *s* in which player *i* moves, define $C_i^*(s)$ to be the set of all pure strategies in C_i that are compatible with the state *s*. Let *x* be a node where it is player *i*'s turn to move and let the corresponding information state be *s*. Define $B_i(x)$ to be exactly those pure strategies c_i where player *i* makes all the moves necessary for the play to reach node *x*. (See Myerson, p.202. A $c_i \in B_i(x)$ if and only if for any information state *r* at which it is player *i*'s turn and for any move d_r , if there is a branch on the path from the root node to *x* with move label d_r at a decision node *i.r*, then $c_i(r) = d_r$). Argue that $B_i(x) = C_i^*(s)$.