E2–201 Information Theory

Discussion: Saturday 03 January 2025

Problem Set 1

Instructor: Rajesh Sundaresan TAs: Deepthi, Prachi, Narasimha, Tejashree

Remarks:

- Collaboration, discussion, and working in teams to solve problems is strongly encouraged.
- To test your understanding, practice the solution to each problem in your own words without referring to a friend, text, class notes, or AI engines.

Problems:

- 1. Exercises on sequences.
 - Recall the notation that \leq_n stands for the relation "is less than or equals for all sufficiently large n". Recall that the definition of $\limsup_{n\to\infty} x_n = \inf_{n\geq 0} \sup_{m\geq n} x_m$.
 - Suppose that for each $\varepsilon > 0$, we have $a_n \leq_n a + \varepsilon$. Show that $\limsup_{n \to \infty} a_n \leq a$.
 - Let $a_n \leq_n b_n$. Show that $\limsup_{n\to\infty} a_n \leq \limsup_{n\to\infty} b_n$.
 - Let $a = \limsup_{n \to \infty} a_n \in \mathbb{R}$. Show that for every $\varepsilon > 0$, the inequality $a_n > a \varepsilon$ occurs infinitely often.
 - What are the analogous statements for liminf?
 - Show that $\liminf_{n\to\infty} a_n \leq \limsup_{n\to\infty} a_n$.
 - Show that $\liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n = a \in \mathbb{R}$ if and only if the following holds: for every $\varepsilon > 0$, there exists an N such that $n \geq N$ implies $|a_n a| \leq \varepsilon$. This establishes that the usual notion of a limit and the one via limsup and liminf are equivalent.
- 2. Problem 3.1 of Cover and Thomas (2nd edition).
- 3. Problem 3.3 of Cover and Thomas (2nd edition).
- 4. Problem 3.7 of Cover and Thomas (2nd edition).
- 5. Problem 3.13 of Cover and Thomas (2nd edition).