

E2 203 Wireless Communications (Jan.-Apr. 2011)

Problem Set 2

Rajesh Sundaresan and Neelesh B. Mehta
 Due: March 1, 2011, 1:00 PM

Remarks:

- You may collaborate, discuss, work in teams to solve problems.
- Each student must write the solution in his/her own words.

I. PROBLEMS TO WORK ON AND SUBMIT

1) (ML rule practice) Consider a receiver that observes n samples y_1, \dots, y_n , which are given as follows:

$$y_n = e^{jn\theta} + w_n, \quad n = 1, \dots, N, \quad (1)$$

where w_1, \dots, w_n are circular symmetric white Gaussian noise with unit variance and $\theta \in [-\pi, \pi]$. Find the maximum likelihood estimate of θ and interpret your answer.

2) (Maximal ratio combining) In an L -branch diversity system the received signal is given by

$$y[i] = h[i]x + n[i], \quad i = 1, \dots, L, \quad (2)$$

where x is the transmitted symbol and $n[1], \dots, n[L]$ are i.i.d. circular symmetric additive white Gaussian noise with variance σ^2 .

Consider a coherent receiver that linearly weights the received signals as $w_i y[i]$ and adds them to get $Z = \sum_{i=1}^L w_i y[i]$. Show that the optimal weights that maximize the instantaneous (i.e., not averaged over fading) SNR of Z are given by

$$w_i = h[i]^*. \quad (3)$$

What is the final expression for the instantaneous SNR? Interpret it.

Hint: Use the Cauchy-Schwartz inequality.

3) Exercise 3.37 (first part).
 4) The Nakagami- m fading distribution is given by

$$f_X(x) = \frac{2m^m}{\Gamma(m)\Omega^m} x^{2m-1} \exp\left(-\frac{mx^2}{\Omega}\right), \quad x \geq 0 \text{ and } m > 0.5. \quad (4)$$

- Verify that this is a valid distribution and show that $m = 1$ corresponds to Rayleigh fading.
- What is the value of $\mathbf{E}[X^2]$?
- What is the probability of a deep fade if the fading follows the Nakagami- m distribution?

5) Exercise 3.19 of [Tse & Viswanath]

II. PROBLEMS TO WORK ON BUT NOT SUBMIT

1) Prove that $Q^2(x) = \frac{1}{\pi} \int_0^{\frac{\pi}{4}} \exp\left(-\frac{x^2}{\sin^2 \theta}\right) d\theta$.
 2) Exercise 3.12 of [Tse & Viswanath]