
E2–301 Topics in Multiuser Communication August 30, 2007

Due: September 06, 2007 4:00 PM

Homework 1

Instructor: Rajesh Sundaresan Scribe: Premkumar K.

1. (FDMA vs CMAC)

a) Consider a single user communication system having a passband of
[
fc − B/2, fc + B/2

]
Hz

and having an average power constraint of P Joules/sec. What is the capacity C(P , B)?

b) Consider the same system as above, but the passband is [fc−B/2, fc]Hz. What is the capacity,
C(P , B/2)?

c) Show that C(P , B/2) 6 C(P , B) by proving C(P , B) is an increasing function of B.

d) Consider a two user FDMA system having an average power constraint (P , P ). User 1 uses
[fc −B/2, fc] and user 2 uses [fc, fc +B/2]. Show that C(P , B/2)+C(P, B/2) = C(2P , B).
Argue that FDMA achieves the sum capacity and the symmetric capacity (define symmetric
capacity as sup {R : (R, R) ∈ CMAC}).

e) Is there any other point on the dominant facet (R1 + R2 = C(2P , B)) that is attained by
FDMA.

(Hint: A passband B requires B complex dimensions per second or 2B real dimensions per second)

2. (Frequency typicality) For every δ > 0, the following hold for all sufficiently large n. Prove
them (Notation is as given in lecture notes).
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3. (Conditional frequency typicality) For every δ > 0, the following hold for all sufficiently large
n. Prove them.
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4. Consider (An, Bn). Given Ai, the random variable Bi is independent of all other variables, for
each i = 1, 2, · · · , n. Prove that

I(An; Bn) ≤
n∑

i=1

I(Ai; Bi)

with equality if and only if B1, B2, · · · , Bn are independent.
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5. Problem 15.6 (page 598) of Cover and Thomas (2nd edition).
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