E2–301 Topics in Multiuser Communication

August 30, 2007 Due: September 06, 2007 4:00 PM

Homework 1

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

1. (FDMA vs \mathscr{C}_{MAC})

- a) Consider a single user communication system having a passband of $[f_c B/2, f_c + B/2]$ Hz and having an average power constraint of \overline{P} Joules/sec. What is the capacity $C(\overline{P}, B)$?
- b) Consider the same system as above, but the passband is $[f_c B/2, f_c]$ Hz. What is the capacity, $C(\overline{P}, B/2)$?
- c) Show that $C(\overline{P}, B/2) \leq C(\overline{P}, B)$ by proving $C(\overline{P}, B)$ is an increasing function of B.
- d) Consider a two user FDMA system having an average power constraint $(\overline{P}, \overline{P})$. User 1 uses $[f_c B/2, f_c]$ and user 2 uses $[f_c, f_c + B/2]$. Show that $C(\overline{P}, B/2) + C(\overline{P}, B/2) = C(2\overline{P}, B)$. Argue that FDMA achieves the sum capacity and the symmetric capacity (define symmetric capacity as $\sup \{R : (R, R) \in \mathscr{C}_{MAC}\}$).
- e) Is there any other point on the dominant facet $(R_1 + R_2 = C(2\overline{P}, B))$ that is attained by FDMA.

(Hint: A passband B requires B complex dimensions per second or 2B real dimensions per second)

- 2. (Frequency typicality) For every $\delta > 0$, the following hold for all sufficiently large n. Prove them (Notation is as given in lecture notes).
 - (a) $\Pr\left\{Z_{[m]}^{n} \in T_{\delta}^{(n)}\right\} \ge 1 \delta$ and therefore $\Pr\left\{Z_{A}^{n} \in T_{\delta}^{(n)}(Z_{A})\right\} \ge 1 \delta$. (b) $z_{A}^{n} \in T_{\delta}^{(n)}(Z_{A}) \implies \left|\frac{1}{n}\log p_{Z_{A}^{n}}(z_{A}^{n}) + H(Z_{A})\right| \le \delta$ (c) $(z_{A}^{n}, z_{B}^{n}) \in T_{\delta}^{(n)}(Z_{A\cup B}), \quad A \cap B = \emptyset \implies \left|\frac{1}{n}\log p_{Z_{A}^{n}}(z_{B}^{n}|z_{B}^{n}) + H(Z_{A}|Z_{B})\right| \le 2\delta$
 - (d) $(1-\delta)2^{nH(Z_A)-n\delta} \le \left| T_{\delta}^{(n)}(Z_A) \right| \le 2^{nH(Z_A)+n\delta}$ so that $\left| T_{\delta}^{(n)}(Z_A) \right| \stackrel{\circ}{=} 2^{nH(Z_A)\pm 2n\delta}$
 - (e) $\widetilde{Z}_{[m]} \sim p_{Z_A} p_{Z_B | Z_A} p_{Z_C | Z_A}$, $A \cup B \cup C = [m], A \cap B = B \cap C = C \cap A = \emptyset, \widetilde{Z}_{[m]}^n$ i.i.d. copies with generic distribution that of $\widetilde{Z}_{[m]}$. Show that $\Pr\left\{\widetilde{Z}_{[m]}^n \in T^{(n)}_{\delta}\right\} \stackrel{\circ}{=} 2^{-nI(Z_B; Z_C | Z_A) \pm 7n\delta}$
- 3. (Conditional frequency typicality) For every $\delta > 0$, the following hold for all sufficiently large n. Prove them.
 - (a) $z_A^n \in T_{\delta}^{(n)}(Z_A) \implies \Pr\left\{Z_{A^c}^n \in T_{2\delta}^{(n)}\left(Z_{A^c}|z_A^n\right) \middle| Z_A^n = z_A^n\right\} \ge 1 \delta$, so that for any $B \subseteq A^c$, $\Pr\left\{Z_B^n \in T_{2\delta}^{(n)}\left(Z_B|z_A^n\right) \middle| Z_A^n = z_A^n\right\} \ge 1 - \delta$. (b) $z_A^n \in T_{\delta}^{(n)}(Z_A)$ and $B \subseteq A^c$, $\implies (1-\delta)2^{nH(Z_B|Z_A)-2n\delta} \le \left|T_{2\delta}^{(n)}\left(Z_B|z_A^n\right)\right| \le 2^{nH(Z_B|Z_A)+2n\delta}$.
- 4. Consider (A^n, B^n) . Given A_i , the random variable B_i is independent of all other variables, for each $i = 1, 2, \dots, n$. Prove that

$$I(A^n; B^n) \le \sum_{i=1}^n I(A_i; B_i)$$

with equality if and only if B_1, B_2, \dots, B_n are independent.

Homework 1-1

5. Problem 15.6 (page 598) of Cover and Thomas (2nd edition).

Homework 1-2