

Homework 1

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

1. (FDMA vs \mathcal{C}_{MAC})

- Consider a single user communication system having a passband of $[f_c - B/2, f_c + B/2]$ Hz and having an average power constraint of \bar{P} Joules/sec. What is the capacity $C(\bar{P}, B)$?
- Consider the same system as above, but the passband is $[f_c - B/2, f_c]$ Hz. What is the capacity, $C(\bar{P}, B/2)$?
- Show that $C(\bar{P}, B/2) \leq C(\bar{P}, B)$ by proving $C(\bar{P}, B)$ is an increasing function of B .
- Consider a two user FDMA system having an average power constraint (\bar{P}, \bar{P}) . User 1 uses $[f_c - B/2, f_c]$ and user 2 uses $[f_c, f_c + B/2]$. Show that $C(\bar{P}, B/2) + C(\bar{P}, B/2) = C(2\bar{P}, B)$. Argue that FDMA achieves the sum capacity and the symmetric capacity (define symmetric capacity as $\sup \{R : (R, R) \in \mathcal{C}_{\text{MAC}}\}$).
- Is there any other point on the dominant facet ($R_1 + R_2 = C(2\bar{P}, B)$) that is attained by FDMA.

(Hint: A passband B requires B complex dimensions per second or $2B$ real dimensions per second)2. (Frequency typicality) For every $\delta > 0$, the following hold for all sufficiently large n . Prove them (Notation is as given in lecture notes).

- $\Pr \left\{ Z_{[m]}^n \in T_{\delta}^{(n)} \right\} \geq 1 - \delta$ and therefore $\Pr \left\{ Z_A^n \in T_{\delta}^{(n)}(Z_A) \right\} \geq 1 - \delta$.
- $z_A^n \in T_{\delta}^{(n)}(Z_A) \implies \left| \frac{1}{n} \log p_{Z_A^n}(z_A^n) + H(Z_A) \right| \leq \delta$
- $(z_A^n, z_B^n) \in T_{\delta}^{(n)}(Z_{A \cup B})$, $A \cap B = \emptyset \implies \left| \frac{1}{n} \log p_{Z_A^n | Z_B^n}(z_A^n | z_B^n) + H(Z_A | Z_B) \right| \leq 2\delta$
- $(1 - \delta)2^{nH(Z_A) - n\delta} \leq \left| T_{\delta}^{(n)}(Z_A) \right| \leq 2^{nH(Z_A) + n\delta}$ so that $\left| T_{\delta}^{(n)}(Z_A) \right| \stackrel{\Delta}{=} 2^{nH(Z_A) \pm 2n\delta}$
- $\tilde{Z}_{[m]} \sim p_{Z_A} p_{Z_B | Z_A} p_{Z_C | Z_A}$, $A \cup B \cup C = [m]$, $A \cap B = B \cap C = C \cap A = \emptyset$, $\tilde{Z}_{[m]}^n$ i.i.d. copies with generic distribution that of $\tilde{Z}_{[m]}$. Show that $\Pr \left\{ \tilde{Z}_{[m]}^n \in T_{\delta}^{(n)} \right\} \stackrel{\Delta}{=} 2^{-nI(Z_B; Z_C | Z_A) \pm 7n\delta}$

3. (Conditional frequency typicality) For every $\delta > 0$, the following hold for all sufficiently large n . Prove them.

- $z_A^n \in T_{\delta}^{(n)}(Z_A) \implies \Pr \left\{ Z_{A^c}^n \in T_{2\delta}^{(n)}(Z_{A^c} | z_A^n) \middle| Z_A^n = z_A^n \right\} \geq 1 - \delta$, so that for any $B \subseteq A^c$, $\Pr \left\{ Z_B^n \in T_{2\delta}^{(n)}(Z_B | z_A^n) \middle| Z_A^n = z_A^n \right\} \geq 1 - \delta$.
- $z_A^n \in T_{\delta}^{(n)}(Z_A)$ and $B \subseteq A^c \implies (1 - \delta)2^{nH(Z_B | Z_A) - 2n\delta} \leq \left| T_{2\delta}^{(n)}(Z_B | z_A^n) \right| \leq 2^{nH(Z_B | Z_A) + 2n\delta}$.

4. Consider (A^n, B^n) . Given A_i , the random variable B_i is independent of all other variables, for each $i = 1, 2, \dots, n$. Prove that

$$I(A^n; B^n) \leq \sum_{i=1}^n I(A_i; B_i)$$

with equality if and only if B_1, B_2, \dots, B_n are independent.

5. Problem 15.6 (page 598) of Cover and Thomas (2nd edition).