E2-301 Topics in Multiuser Communication August 16, 2007

Lecture 1 : Multiple Access Channels (MAC)

Instructor: Rajesh Sundaresan Scribe: Premkumar K.

We begin with some examples.

1 Examples

Example 1 [GMAC] Consider a Gaussian multiple-access channel (GMAC):
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e Each user has an average power constraint P. The average is over codewords and time. Z ~

N(0,0%)
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e Users transmit independent data. So the power of X is at most mP. Under this constraint, even
k=1
if they cooperate, > Ry < C (‘i#) , VS € {1,2,3,---,m}, where C(z) = 3log(1l + z) is the
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Shannon capacity at SNR x.
e For m = 2: Let P > 0.
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So B’B will not allow both users to transmit at their respective capacities.
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Figure 1: Capacity region (as we will see soon) of two user Gaussian MAC with transmit power

constraint P and Gaussian channel noise power o2.
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e Naive TDMA strategy : User 1 uses channel for « fraction of the time. User 2 for 1 — a. Power

P

constraint per (transmitted) sample remains P. The achievable rate is (aC(%), (1 — a)C(£)).

).0) Ry

Figure 2: Naive TDMA: Achievable rate region of two user Gaussian multiple access channel with

transmit power constraint P and Gaussian channel noise power 2.

e Smart TDMA: User 1 can transmit at a higher power per sample given that it remains silent for
a fraction of time. The average power constraints for both users, when user 1 gets the channel for

a fraction « of time is
Po).a-a(0-L
a a b b a b 1 _ a

so that {(Rl, Ry): Ry =ajglog(14+ L3) Ry = (1 —a)ilog (1 + ﬁ)} is achievable.
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Figure 3: Smart TDMA: Achievable rate region of two user Gaussian multiple access channel with

transmit power constraint P and Gaussian channel noise power 2.

- Note: A, A’ are achieved.
- In general,

Ri+Ry, = L) 1+P + (1 )11 1+ P
! 2T ags ao? W58 (1 - a)o?

1 2P
3 log (1 + —2) , by Jensen’s inequality.
o

N

- By the condition for equality in Jensen’s inequality, observe that the point C' given by

Liog(1 + 28), L1og(1 + L)) is achieved. C is a point on the outer bound’s boundary.
4 g o 4 g P
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Example 2 [Multiplication Channel]
° Y:XlXQ, XkE{O,l}, k:1,2

e In this example, there is no noise; multiple access interference (MAI) is the only source of infor-
mation corruption.

e The extreme point A = (1,0) (or A’ = (0,1)) can be achieved if user 2 (or user 1) transmits all 1s.
e By time-sharing, any point on the line AA’ can be achieved.

e Since Y provides at most one bit of information, we expect R; + Rs < 1. So the triangle OAA’ is
indeed the capacity region.

Example 3 [Addition Channel]
o YV =X, + X5, X;e{0,1}, k=1,2, where the addition is integer addition.
e The extreme point A (or A") can be achieved if user 2 (or user 1) transmits a deterministic sequence.
e No ambiguity if X; = Xo=0o0r X; = Xs =1.

e Suppose user 1 sends 1 bit, X;. User 2’s channel is then viewed as an erasure channel as shown
in Figure 4. An erasure occurs to user 2 whenever both users send different bits. User 2 can thus
send at most 1/2 bit. Receiver decodes user 2 first and then user 1 (point B in Figure 5). Similarly
point B’ can be achieved, and time-sharing gets us the line BB’. From later results, this is indeed
the capacity region.

: N
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Figure 4: User 2 sees an erasure channel. Figure 5: Capacity region of 2 user addition
channel.

2 Definitions

Definition 1 (DM-MAC) A (two user) discrete memoryless multiple access channel (DM-MAC) de-
noted by (Xl, X2,Y, py|x, X, (y|1:1:c2)), consists of three finite sets X1, Ko, and Y and a collection of prob-

ability mass functions py | x, x, (:|r122) on Y, one for each 129 € Ry x Ro, with the interpretation that X,
is the input of user k, k = 1,2 andY is the output. Forn € N, with X]' = (X1, Xp2, -+, Xgn), £ = 1,2
as inputs, the output sequence Y™ has pmf

n
pyeixpxp @ 12tas) =[] pyixox. ileriza:) (2)

=1
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Figure 6: A MAC system diagram.

Definition 2 (Code) An (n, My, Ms) code for the channel (Xl,Xg,Y,py‘XIXZ (y|x1x2)) consists of the
following:

1. An index set of messages for each user k, Wy ={1,2,--- , Mj}.

2. An encoder fi, for each user k, fi : Wi, — X}, k =1,2. Note that Wi, > Wy, — fi(Wy) € X}t. The
codebook can be represented by an ordered set

c = {f(1), [1(2),---, fr(Mr); f2(1), f2(2),- -, fo(M2)} .

3. A decoding rule, g : Y* — ¢ U (W1 X Wg), e, Yy — g(y") = (W1,w2) € ¢ U (Wl X Wg). Note

that g partitions Y™ into decision regions.

Definition 3 (Probability of error) Let Wy, be the message transmitted by user k and let Y™ be the
signal received. The conditional probability of error when (W1Ws) = (wiws) was transmitted is given by

PN (e) = Pr{g(Y")# WiWa|WiWs = wiws} .

e, w1 wsa
The average probability of error for the code c is given by

1

Pe(n) (C) = M1M2 Z Pe(,nuglum (C)

wiwse

Note that the above equation assumes that all messages are equally likely and the users choose their
messages independently.

Definition 4 (Achievability) The rate pair (R1, R2) is achievable, if for everyn > 0,X € (0,1),
there exists a sequence of (n, My, Ms) codes that satisfy

1. Pe(") <\, and
g, ol gy
for all sufficiently large n.

Definition 5 (Capacity region) The capacity region is the set of all achievable rate pairs, denoted by
Cmac -

3 What can we expect?

o R+ Ry < (max) I(X1X2;Y), (full cooperation)
p(T1,T2

. Ry < n(la>§ max [(Xg; Y| Xge = xkc), k=1,2 (the other user is benevolent)
p(xk ke
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4 Time Sharing
Lemma 6 Gac is a closed convex set.

Proof: (convexity) The idea is time sharing. Let R = (R1, R2) € Gmac and R’ = (R}, R}) € Gumac. Fix
€ (0,1). We will show tR+ (1 —t)R’' € Gmac. For a given (n/2,1/2), pick a sequence of (n, My, M)
codes and another sequence of (n, M{, Mj) codes such that for all sufficiently large n,

A

P Z

e (C) — 2 ’

log M,

08 Mk > R — Q,
n 2

A

P (N < Z

) < 3
log M, ,m
- > R — 5"

For each n, use the code of length |tn] from the first sequence and the code of length n — |tn] from the

second sequence. The overall probability of error, Pe(") is upper bounded by the sum of the individual
codes’ errors. Since both |tn] and n — |[tn] — oo, we have for all sufficiently large n,

. A A
P < R
Since
logM; > [tn|(R1 —n/2)
log My > [tn](R2 —n/2)
logM; > (n— [tn])(R} —n/2)
log My > (n— [tn])(R —n/2).

For all sufficiently large n, the overall rate satisfies

log MM, log Mj n log M;,
n B n n
[tn|log My, n— |tn] log M,
= +
n [tn] n  n—|tn]

U Ry =2y + =L gy )

t(Ri —n/2) + (1 —t) (B —n/2)
tRy+(1—t)Ry, —n, k=1,2

3V o] 3wV
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