
E2–301 Topics in Multiuser Communication August 16, 2007

Lecture 1 : Multiple Access Channels (MAC)
Instructor: Rajesh Sundaresan Scribe: Premkumar K.

We begin with some examples.

1 Examples

Example 1 [GMAC] Consider a Gaussian multiple–access channel (GMAC):

Y =

m
∑

k=1

Xk + Z. (1)

• Each user has an average power constraint P . The average is over codewords and time. Z ∼
N(0, σ2)

• Users transmit independent data. So the power of
m

Xk
k=1

is at most mP . Under this constraint, even

if they cooperate,
∑

k∈S

Rk 6 C
(

|S|P
σ2

)

, ∀S ⊆ {1, 2, 3, · · · , m}, where C(x) = 1
2 log(1 + x) is the

Shannon capacity at SNR x.

• For m = 2: Let P > 0.

Rk 6
1

2
log

(

1 +
P

σ2

)

, k = 1, 2

R1 + R2 6
1

2
log

(

1 +
2P

σ2

)

=
1

2
log

(

1 +
P

σ2

)

+
1

2
log

(

1 +
P

P + σ2

)

< 2 ·
1

2
log

(

1 +
P

σ2

)

So B′B will not allow both users to transmit at their respective capacities.
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Figure 1: Capacity region (as we will see soon) of two user Gaussian MAC with transmit power
constraint P and Gaussian channel noise power σ2.
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• Naive TDMA strategy : User 1 uses channel for α fraction of the time. User 2 for 1 − α. Power
constraint per (transmitted) sample remains P . The achievable rate is

(

αC( P
σ2 ), (1 − α)C( P

σ2 )
)

.
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Figure 2: Naive TDMA: Achievable rate region of two user Gaussian multiple access channel with
transmit power constraint P and Gaussian channel noise power σ2.

• Smart TDMA: User 1 can transmit at a higher power per sample given that it remains silent for
a fraction of time. The average power constraints for both users, when user 1 gets the channel for
a fraction α of time is

(

α

(

P

α
, 0

)

, (1 − α)

(

0,
P

1 − α

))

so that
{

(R1, R2) : R1 = α 1
2 log

(

1 + P
ασ2

)

, R2 = (1 − α) 1
2 log

(

1 + P
(1−α)σ2

)}

is achievable.
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Figure 3: Smart TDMA: Achievable rate region of two user Gaussian multiple access channel with
transmit power constraint P and Gaussian channel noise power σ2.

- Note: A, A′ are achieved.
- In general,

R1 + R2 = α
1

2
log

(

1 +
P

ασ2

)

+ (1 − α)
1

2
log

(

1 +
P

(1 − α)σ2

)

6
1

2
log

(

1 +
2P

σ2

)

, by Jensen’s inequality.

- By the condition for equality in Jensen’s inequality, observe that the point C given by

( 1
4 log(1 + 2P

σ2 ), 1
4 log(1 + 2P

σ2 )) is achieved. C is a point on the outer bound’s boundary.
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Example 2 [Multiplication Channel]

• Y = X1X2, Xk ∈ {0, 1}, k = 1, 2.

• In this example, there is no noise; multiple access interference (MAI) is the only source of infor-
mation corruption.

• The extreme point A = (1, 0) (or A′ = (0, 1)) can be achieved if user 2 (or user 1) transmits all 1s.

• By time–sharing, any point on the line AA′ can be achieved.

• Since Y provides at most one bit of information, we expect R1 + R2 6 1. So the triangle OAA′ is
indeed the capacity region.

Example 3 [Addition Channel]

• Y = X1 + X2, Xk ∈ {0, 1}, k = 1, 2, where the addition is integer addition.

• The extreme point A (or A′) can be achieved if user 2 (or user 1) transmits a deterministic sequence.

• No ambiguity if X1 = X2 = 0 or X1 = X2 = 1.

• Suppose user 1 sends 1 bit, X1. User 2’s channel is then viewed as an erasure channel as shown
in Figure 4. An erasure occurs to user 2 whenever both users send different bits. User 2 can thus
send at most 1/2 bit. Receiver decodes user 2 first and then user 1 (point B in Figure 5). Similarly
point B′ can be achieved, and time–sharing gets us the line BB′. From later results, this is indeed
the capacity region.
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Figure 4: User 2 sees an erasure channel.
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Figure 5: Capacity region of 2 user addition
channel.

2 Definitions

Definition 1 (DM–MAC) A (two user) discrete memoryless multiple access channel (DM–MAC) de-

noted by
( �

1,
�

2, � , pY |X1X2
(y|x1x2)

)

, consists of three finite sets
�

1,
�

2, and � and a collection of prob-

ability mass functions pY |X1X2
(·|x1x2) on � , one for each x1x2 ∈

�
1×

�
2, with the interpretation that Xk

is the input of user k, k = 1, 2 and Y is the output. For n ∈ � , with Xn
k = (Xk1, Xk2, · · · , Xkn), k = 1, 2

as inputs, the output sequence Y n has pmf

pY n|Xn

1
Xn

2
(yn|xn

1 xn
2 ) =

n
∏

i=1

pY |X1X2
(yi|x1ix2i) (2)
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Figure 6: A MAC system diagram.

Definition 2 (Code) An (n, M1, M2) code for the channel
(

�
1,
�

2, � , pY |X1X2
(y|x1x2)

)

consists of the
following:

1. An index set of messages for each user k, � k = {1, 2, · · · , Mk}.

2. An encoder fk for each user k, fk : � k →
�

n
k , k = 1, 2. Note that � k 3 Wk 7→ fk(Wk) ∈

�
n
k . The

codebook can be represented by an ordered set

c = {f1(1), f1(2), · · · , f1(M1); f2(1), f2(2), · · · , f2(M2)} .

3. A decoding rule, g : � n → φ ∪
(

� 1 × � 2

)

, i.e., yn 7→ g(yn) = (ŵ1, ŵ2) ∈ φ ∪
(

� 1 × � 2

)

. Note

that g partitions � n into decision regions.

Definition 3 (Probability of error) Let Wk be the message transmitted by user k and let Y n be the
signal received. The conditional probability of error when (W1W2) = (w1w2) was transmitted is given by

P (n)
e,w1w2

(c) = Pr {g(Y n) 6= W1W2|W1W2 = w1w2} .

The average probability of error for the code c is given by

P (n)
e (c) =

1

M1M2

∑

w1w2

P (n)
e,w1w2

(c)

Note that the above equation assumes that all messages are equally likely and the users choose their
messages independently.

Definition 4 (Achievability) The rate pair (R1, R2) is achievable, if for every η > 0, λ ∈ (0, 1),
there exists a sequence of (n, M1, M2) codes that satisfy

1. P
(n)
e ≤ λ, and

2. log
2

Mk

n
> Rk − η

for all sufficiently large n.

Definition 5 (Capacity region) The capacity region is the set of all achievable rate pairs, denoted by
CMAC .

3 What can we expect?

• R1 + R2 6 max
p(x1,x2)

I(X1X2; Y ), (full cooperation)

• Rk 6 max
p(xk)

max
xkc

I(Xk; Y |Xkc = xkc), k = 1, 2 (the other user is benevolent)
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4 Time Sharing

Lemma 6 CMAC is a closed convex set.

Proof: (convexity) The idea is time sharing. Let R = (R1, R2) ∈ CMAC and R′ = (R′
1, R

′
2) ∈ CMAC. Fix

t ∈ (0, 1). We will show tR + (1 − t)R′ ∈ CMAC. For a given (η/2, λ/2), pick a sequence of (n, M1, M2)
codes and another sequence of (n, M ′

1, M
′
2) codes such that for all sufficiently large n,

P (n)
e (c) ≤

λ

2
,

log Mk

n
> Rk −

η

2
,

P (n)
e (c′) ≤

λ

2
,

log M ′
k

n
> R′

k −
η

2
.

For each n, use the code of length btnc from the first sequence and the code of length n−btnc from the

second sequence. The overall probability of error, P
(n)
e is upper bounded by the sum of the individual

codes’ errors. Since both btnc and n − btnc → ∞, we have for all sufficiently large n,

P (n)
e ≤

λ

2
+

λ

2
.

Since

log M1 > btnc(R1 − η/2)

log M2 > btnc(R2 − η/2)

log M ′
1 > (n − btnc)(R′

1 − η/2)

log M ′
2 > (n − btnc)(R′

2 − η/2).

For all sufficiently large n, the overall rate satisfies

log MkM ′
k

n
=

log Mk

n
+

log M ′
k

n

=
btnc

n

log Mk

btnc
+

n − btnc

n

log M
′

k

n − btnc

>
n

btnc

n
(Rk − η/2) +

n − btnc

n
(R′

k − η/2)

→ t (Rk − η/2) + (1 − t) (R′
k − η/2)

>
n

tRk + (1 − t)R′
k − η, k = 1, 2

�
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