E2–301 Topics in Multiuser Communication

August 22, 2007

Lecture 2 : Multiple Access Channels

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

A generalization of the time–sharing notion is the use of a time–sharing random variable, Q that takes values from an arbitrary finite set \mathbb{Q} .

Definition 1 (\mathfrak{P}^*) $\mathfrak{P}^* := set of all Z = QX_1X_2Y$ such that

(a) X_1 and X_2 are conditionally independent given Q, and

(b) $Pr\{Y = y | Q = q, X_1 = x_1, X_2 = x_2\} = p(y|x_1x_2)$ (conforms to the given channel)

Remark:

$$\Pr\{Q = q, X_1 = x_1, X_2 = x_2, Y = y\}$$

$$= \Pr\{Q = q\}\Pr\{X_1 = x_1, X_2 = x_2 | Q = q\}\Pr\{Y = y | Q = q, X_1 = x_1, X_2 = x_2\}$$

$$= \Pr\{Q = q\}\underbrace{\Pr\{X_1 = x_1 | Q = q\}\Pr\{X_2 = x_2 | Q = q\}}_{\text{from } (a)}\underbrace{\Pr\{Y = y | X_1 = x_1, X_2 = x_2\}}_{\text{from } (b)}$$

 $= p_Q(q) p_{X_1|Q}(x_1|q) p_{X_2|Q}(x_2|q) p_{Y|X_1X_2}(y|x_1,x_2)$

Definition 2 (\mathscr{C} , Capacity region defined by \mathcal{P}^*)

$$\begin{split} \mathscr{C}(Z) &:= \; \left\{ \begin{array}{ccc} (R_1,R_2): & 0 \leqslant R_1 \leqslant I\left(X_1;Y|X_2Q\right), \\ & 0 \leqslant R_2 \leqslant I\left(X_2;Y|X_1Q\right), \\ & R_1 + R_2 \leqslant I\left(X_1X_2;Y|Q\right) \end{array} \right\}, \quad a \; pentagon \\ \mathscr{C} &:= \; closure\left(\bigcup_{Z \in \mathfrak{P}^*} \mathscr{C}(Z) \right) \end{split}$$

Remarks: In $\mathscr{C}(Z)$, Q serves to average the bounds.

Proposition 3 Any element of \mathscr{C} is achievable, i.e., $\mathscr{C} \subseteq \mathscr{C}_{MAC}$

Proof Fix arbitrary $Z = QX_1X_2Y \in \mathcal{P}^*$. It is sufficient to show that $\mathscr{C}(Z)$ is achievable. Fix $R = (R_1, R_2) \in \mathscr{C}(Z)$. Fix $\eta > 0, \lambda \in (0, 1)$. Set $M_k = \lceil 2^{n(R_k - \eta)} \rceil$ so that $\frac{\log M_k}{n} \ge R_k - \eta, k = 1, 2$, for all sufficiently large n. Observe that

$$M_k - 1 \leqslant 2^{n(R_k - \eta)}, \quad k = 1, 2.$$
 (1)

- 1. Codebook generation:
 - Pick $q^n = (q_1, q_2, \cdots, q_n) \sim \prod_{i=1}^n p_Q(q_i)$
 - Pick $x_k^n(w_k) \sim \prod_{i=1}^n p_{X_k|Q}(x_{ki}|q_i)$

Do these pickings independently for $w_k = 1, 2, \dots, M_k$, k = 1, 2. We thus generate the codebook, $c = \{x_1^n(1), x_1^n(2), \dots, x_1^n(M_1); x_2^n(1), x_2^n(2), \dots, x_2^n(M_2)\}$. Let C be the code book random variable and let its pmf be p_C .

- Reveal q^n, c to both encoders and to the decoder.
- 2. Encoding: W_k has the uniform distribution over $\{1, 2, \dots, M_k\}$, k = 1, 2. W_1 and W_2 are independent. Set $f_k(w_k) := x_k^n(w_k)$.

Lecture 2 : Multiple Access Channels-1

- 3. <u>Receiver</u>: Observe y^n . Let $T^{(n)}_{\delta}(Z)$ be the frequency typical set (to be defined soon).
 - a) Search for a unique $\widehat{w}_1 \widehat{w}_2$ such that $q^n x_1^n (\widehat{w}_1) x_2^n (\widehat{w}_2) y^n \in T_{\delta}^{(n)}(QX_1X_2Y)$. If such a pair exists, set $g(y^n) = \widehat{w}_1 \widehat{w}_2$.
 - b) If no such $\widehat{w}_1 \widehat{w}_2$ exists, set $g(y^n) = \phi$, and declare an error.

4. Probability of error analysis:

a) By symmetry, we can condition on the event that the transmitted messages are 11.

$$\mathbb{E}p_{e}^{(n)}(C) = \sum_{c} p_{C}(c) \sum_{w_{1}w_{2}} p_{e,w_{1}w_{2}}^{(n)}(c) \frac{1}{M_{1}M_{2}}$$

$$= \frac{1}{M_{1}M_{2}} \sum_{w_{1}w_{2}} \underbrace{\sum_{c} p_{C}(c)p_{e,w_{1}w_{2}}^{(n)}(c)}_{\mathbb{E}p_{e,w_{1}w_{2}}^{(n)}(C)}$$

$$= \mathbb{E}p_{e,11}^{(n)}(C), \quad (*)$$

where Eqn.(*) follows because $\mathbb{E}p_{e,w_1w_2}^{(n)}(C)$ does not depend on w_1w_2 . Hence, we assume that $w_1w_2 = 11$, by symmetry of the random code construction.

b) Error events: Define the event,

$$E_{ab} := \left\{ (q^n x_1^n(a) x_2^n(b) y^n) \in T_{\delta}^{(n)} (QX_1 X_2 Y) \right\}.$$

Let E denote the error event, i.e., $g(y^n) \neq 11$. Then,

$$E^{c} = E_{11} \cap \bigcap_{b>1} E^{c}_{1b} \cap \bigcap_{a>1} E^{c}_{a1} \cap \bigcap_{a>1, b>1} E^{c}_{ab}$$

and therefore,
$$E = E^{c}_{11} \cup \bigcup_{b>1} E_{1b} \cup \bigcup_{a>1} E_{a1} \cup \bigcup_{a>1, b>1} E_{ab}$$

c) An observation: To evaluate probabilities of events $E_{11}, E_{1b}, E_{a1}, E_{ab}$, we observe that the corresponding random vector sequences have distribution:

$Q^n X_1^n(1) X_2^n(1) Y^n$	\sim	$p_{Q^n}p_{X_1^n Q^n}p_{X_2^n Q^n}p_{Y^n X_1^nX_2^n}$	(true distribution)
$Q^n X_1^n(1) X_2^n(b) Y^n$	\sim	$p_{Q^n}p_{X_1^n Q^n}p_{X_2^n Q^n}p_{Y^n X_1^nQ^n}$	$(X_2^n(b)$ does not determine $Y^n)$
$Q^n X_1^n(a) X_2^n(1) Y^n$	\sim	$p_{Q^n}p_{X_1^n} _{Q^n}p_{X_2^n} _{Q^n}p_{Y^n} _{X_2^n}Q^n$	$(X_1^n(a)$ does not determine $Y^n)$
$Q^n X_1^n(a) X_2^n(b) Y^n$	\sim	$p_{Q^n}p_{X_1^n Q^n}p_{X_2^n Q^n}p_{Y^n Q^n}$	(Both $X_1^n(a), X_2^n(b)$ do not determine Y^n)

• Typicality is w.r.t. joint distribution $p_Q p_{X_1|Q} p_{X_2|Q} p_{Y|X_1X_2} = p_Q p_{X_1|Q} p_{X_2|Q} p_{Y|X_1X_2Q}$.

We look at frequency typicality in Lecture 3 and complete the proof in Lecture 4.

Lecture 2 : Multiple Access Channels-2