Lecture 2 : Multiple Access Channels

A generalization of the time-sharing notion is the use of a time-sharing random variable, Q that takes values from an arbitrary finite set \mathbb{Q}.

Definition $1\left(\mathcal{P}^{*}\right) \quad \mathcal{P}^{*}:=$ set of all $Z=Q X_{1} X_{2} Y$ such that
(a) X_{1} and X_{2} are conditionally independent given Q, and
(b) $\operatorname{Pr}\left\{Y=y \mid Q=q, X_{1}=x_{1}, X_{2}=x_{2}\right\}=p\left(y \mid x_{1} x_{2}\right)$ (conforms to the given channel)

Remark:

$$
\begin{aligned}
& \operatorname{Pr}\left\{Q=q, X_{1}=x_{1}, X_{2}=x_{2}, Y=y\right\} \\
= & \operatorname{Pr}\{Q=q\} \operatorname{Pr}\left\{X_{1}=x_{1}, X_{2}=x_{2} \mid Q=q\right\} \operatorname{Pr}\left\{Y=y \mid Q=q, X_{1}=x_{1}, X_{2}=x_{2}\right\} \\
= & \operatorname{Pr}\{Q=q\} \underbrace{\operatorname{Pr}\left\{X_{1}=x_{1} \mid Q=q\right\} \operatorname{Pr}\left\{X_{2}=x_{2} \mid Q=q\right\}}_{\text {from (a) }} \underbrace{\operatorname{Pr}\left\{Y=y \mid X_{1}=x_{1}, X_{2}=x_{2}\right\}}_{\text {from (b) }} \\
= & p_{Q}(q) p_{X_{1} \mid Q}\left(x_{1} \mid q\right) p_{X_{2} \mid Q}\left(x_{2} \mid q\right) p_{Y \mid X_{1} X_{2}}\left(y \mid x_{1}, x_{2}\right)
\end{aligned}
$$

Definition $2\left(\mathscr{C}\right.$, Capacity region defined by $\left.\mathcal{P}^{*}\right)$

$$
\begin{aligned}
\mathscr{C}(Z) & :=\left\{\begin{aligned}
&\left(R_{1}, R_{2}\right): 0 \leqslant R_{1} \leqslant I\left(X_{1} ; Y \mid X_{2} Q\right), \\
& 0 \leqslant R_{2} \leqslant I\left(X_{2} ; Y \mid X_{1} Q\right), \\
& R_{1}+R_{2} \leqslant I\left(X_{1} X_{2} ; Y \mid Q\right)
\end{aligned}\right\}, \quad \text { a pentagon } \\
\mathscr{C} & :=\text { closure }\left(\bigcup_{Z \in \mathcal{P}^{*}} \mathscr{C}(Z)\right)
\end{aligned}
$$

Remarks: In $\mathscr{C}(Z), Q$ serves to average the bounds.
Proposition 3 Any element of \mathscr{C} is achievable, i.e., $\mathscr{C} \subseteq \mathscr{C}_{M A C}$
Proof Fix arbitrary $Z=Q X_{1} X_{2} Y \in \mathcal{P}^{*}$. It is sufficient to show that $\mathscr{C}(Z)$ is achievable. Fix $R=\left(R_{1}, R_{2}\right) \in \mathscr{C}(Z)$. Fix $\eta>0, \lambda \in(0,1)$. Set $M_{k}=\left\lceil 2^{n\left(R_{k}-\eta\right)}\right\rceil$ so that $\frac{\log M_{k}}{n} \geq R_{k}-\eta, k=1,2$, for all sufficiently large n. Observe that

$$
\begin{equation*}
M_{k}-1 \leqslant 2^{n\left(R_{k}-\eta\right)}, \quad k=1,2 . \tag{1}
\end{equation*}
$$

1. Codebook generation:

- Pick $q^{n}=\left(q_{1}, q_{2}, \cdots, q_{n}\right) \sim \prod_{i=1}^{n} p_{Q}\left(q_{i}\right)$
- Pick $x_{k}^{n}\left(w_{k}\right) \sim \prod_{i=1}^{n} p_{X_{k} \mid Q}\left(x_{k i} \mid q_{i}\right)$

Do these pickings independently for $w_{k}=1,2, \cdots, M_{k}, k=1,2$. We thus generate the codebook, $c=\left\{x_{1}^{n}(1), x_{1}^{n}(2), \cdots, x_{1}^{n}\left(M_{1}\right) ; x_{2}^{n}(1), x_{2}^{n}(2), \cdots, x_{2}^{n}\left(M_{2}\right)\right\}$. Let C be the code book random variable and let its pmf be p_{C}.

- Reveal q^{n}, c to both encoders and to the decoder.

2. Encoding: W_{k} has the uniform distribution over $\left\{1,2, \cdots, M_{k}\right\}, k=1,2 . W_{1}$ and W_{2} are independent. Set $f_{k}\left(w_{k}\right):=x_{k}^{n}\left(w_{k}\right)$.
3. Receiver: Observe y^{n}. Let $T_{\delta}^{(n)}(Z)$ be the frequency typical set (to be defined soon).
a) Search for a unique $\widehat{w}_{1} \widehat{w}_{2}$ such that $q^{n} x_{1}^{n}\left(\widehat{w}_{1}\right) x_{2}^{n}\left(\widehat{w}_{2}\right) y^{n} \in T_{\delta}^{(n)}\left(Q X_{1} X_{2} Y\right)$. If such a pair exists, set $g\left(y^{n}\right)=\widehat{w}_{1} \widehat{w}_{2}$.
b) If no such $\widehat{w}_{1} \widehat{w}_{2}$ exists, set $g\left(y^{n}\right)=\phi$, and declare an error.

4. Probability of error analysis:

a) By symmetry, we can condition on the event that the transmitted messages are 11.

$$
\begin{aligned}
\mathbb{E} p_{e}^{(n)}(C) & =\sum_{c} p_{C}(c) \sum_{w_{1} w_{2}} p_{e, w_{1} w_{2}}^{(n)}(c) \frac{1}{M_{1} M_{2}} \\
& =\frac{1}{M_{1} M_{2}} \sum_{w_{1} w_{2}} \underbrace{\sum_{c} p_{C}(c) p_{e, w_{1} w_{2}}^{(n)}(c)}_{\mathbb{E} p_{e, w_{1} w_{2}}^{(n)}(C)} \\
& =\mathbb{E} p_{e, 11}^{(n)}(C), \quad\left(^{*}\right)
\end{aligned}
$$

where Eqn. $\left(^{*}\right)$ follows because $\mathbb{E} p_{e, w_{1} w_{2}}^{(n)}(C)$ does not depend on $w_{1} w_{2}$. Hence, we assume that $w_{1} w_{2}=11$, by symmetry of the random code construction.
b) Error events: Define the event,

$$
E_{a b}:=\left\{\left(q^{n} x_{1}^{n}(a) x_{2}^{n}(b) y^{n}\right) \in T_{\delta}^{(n)}\left(Q X_{1} X_{2} Y\right)\right\}
$$

Let E denote the error event, i.e., $g\left(y^{n}\right) \neq 11$. Then,

$$
\begin{aligned}
E^{c} & =E_{11} \cap \bigcap_{b>1} E_{1 b}^{c} \cap \bigcap_{a>1} E_{a 1}^{c} \cap \bigcap_{\substack{a \gg 1, b>1}} E_{a b}^{c} \\
\text { and therefore, } E & =E_{11}^{c} \cup \bigcup_{b>1} E_{1 b} \cup \bigcup_{a>1} E_{a 1} \cup \bigcup_{\substack{a>1, b>1}} E_{a b}
\end{aligned}
$$

c) An observation: To evaluate probabilities of events $E_{11}, E_{1 b}, E_{a 1}, E_{a b}$, we observe that the corresponding random vector sequences have distribution:

$$
\begin{array}{rll}
Q^{n} X_{1}^{n}(1) X_{2}^{n}(1) Y^{n} & \sim p_{Q^{n}} p_{X_{1}^{n} \mid Q^{n}} p_{X_{2}^{n} \mid Q^{n}} p_{Y^{n} \mid X_{1}^{n} X_{2}^{n}} & \text { (true distribution) } \\
Q^{n} X_{1}^{n}(1) X_{2}^{n}(b) Y^{n} & \sim p_{Q^{n}} p_{X_{1}^{n} \mid Q^{n}} p_{X_{2}^{n} \mid Q^{n}} p_{Y^{n} \mid X_{1}^{n} Q^{n}} & \left(X_{2}^{n}(b) \text { does not determine } Y^{n}\right) \\
Q^{n} X_{1}^{n}(a) X_{2}^{n}(1) Y^{n} & \sim p_{Q^{n}} p_{X_{1}^{n} \mid Q^{n}} p_{X_{2}^{n} \mid Q^{n}} p_{Y^{n} \mid X_{2}^{n} Q^{n}} & \left(X_{1}^{n}(a) \text { does not determine } Y^{n}\right) \\
Q^{n} X_{1}^{n}(a) X_{2}^{n}(b) Y^{n} & \sim p_{Q^{n}} p_{X_{1}^{n} \mid Q^{n}} p_{X_{2}^{n} \mid Q^{n}} p_{Y^{n} \mid Q^{n}} & \left(\text { Both } X_{1}^{n}(a), X_{2}^{n}(b) \text { do not determine } Y^{n}\right)
\end{array}
$$

- Typicality is w.r.t. joint distribution $p_{Q} p_{X_{1} \mid Q} p_{X_{2} \mid Q} p_{Y \mid X_{1} X_{2}}=p_{Q} p_{X_{1} \mid Q} p_{X_{2} \mid Q} p_{Y \mid X_{1} X_{2} Q}$.

We look at frequency typicality in Lecture 3 and complete the proof in Lecture 4.

Lecture 2 : Multiple Access Channels-2

