

Lecture 2 : Multiple Access Channels

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

A generalization of the time-sharing notion is the use of a time-sharing random variable, Q that takes values from an arbitrary finite set \mathbb{Q} .

Definition 1 (\mathcal{P}^*) $\mathcal{P}^* := \text{set of all } Z = QX_1X_2Y \text{ such that}$

- (a) X_1 and X_2 are conditionally independent given Q , and
- (b) $\Pr\{Y = y|Q = q, X_1 = x_1, X_2 = x_2\} = p(y|x_1x_2)$ (conforms to the given channel)

Remark:

$$\begin{aligned}
 & \Pr\{Q = q, X_1 = x_1, X_2 = x_2, Y = y\} \\
 &= \Pr\{Q = q\} \Pr\{X_1 = x_1, X_2 = x_2|Q = q\} \Pr\{Y = y|Q = q, X_1 = x_1, X_2 = x_2\} \\
 &= \Pr\{Q = q\} \underbrace{\Pr\{X_1 = x_1|Q = q\} \Pr\{X_2 = x_2|Q = q\}}_{\text{from (a)}} \underbrace{\Pr\{Y = y|X_1 = x_1, X_2 = x_2\}}_{\text{from (b)}} \\
 &= p_Q(q) p_{X_1|Q}(x_1|q) p_{X_2|Q}(x_2|q) p_{Y|X_1X_2}(y|x_1, x_2)
 \end{aligned}$$

Definition 2 (\mathcal{C} , Capacity region defined by \mathcal{P}^*)

$$\begin{aligned}
 \mathcal{C}(Z) &:= \left\{ (R_1, R_2) : \begin{array}{l} 0 \leq R_1 \leq I(X_1; Y|X_2Q), \\ 0 \leq R_2 \leq I(X_2; Y|X_1Q), \\ R_1 + R_2 \leq I(X_1X_2; Y|Q) \end{array} \right\}, \quad \text{a pentagon} \\
 \mathcal{C} &:= \text{closure} \left(\bigcup_{Z \in \mathcal{P}^*} \mathcal{C}(Z) \right)
 \end{aligned}$$

Remarks: In $\mathcal{C}(Z)$, Q serves to average the bounds.

Proposition 3 Any element of \mathcal{C} is achievable, i.e., $\mathcal{C} \subseteq \mathcal{C}_{MAC}$

Proof Fix arbitrary $Z = QX_1X_2Y \in \mathcal{P}^*$. It is sufficient to show that $\mathcal{C}(Z)$ is achievable. Fix $R = (R_1, R_2) \in \mathcal{C}(Z)$. Fix $\eta > 0, \lambda \in (0, 1)$. Set $M_k = \lceil 2^{n(R_k - \eta)} \rceil$ so that $\frac{\log M_k}{n} \geq R_k - \eta, k = 1, 2$, for all sufficiently large n . Observe that

$$M_k - 1 \leq 2^{n(R_k - \eta)}, \quad k = 1, 2. \quad (1)$$

1. Codebook generation:

- Pick $q^n = (q_1, q_2, \dots, q_n) \sim \prod_{i=1}^n p_Q(q_i)$
- Pick $x_k^n(w_k) \sim \prod_{i=1}^n p_{X_k|Q}(x_{ki}|q_i)$

Do these pickings independently for $w_k = 1, 2, \dots, M_k, k = 1, 2$. We thus generate the codebook, $c = \{x_1^n(1), x_1^n(2), \dots, x_1^n(M_1); x_2^n(1), x_2^n(2), \dots, x_2^n(M_2)\}$. Let C be the code book random variable and let its pmf be p_C .

- Reveal q^n, c to both encoders and to the decoder.

2. Encoding: W_k has the uniform distribution over $\{1, 2, \dots, M_k\}, k = 1, 2$. W_1 and W_2 are independent. Set $f_k(w_k) := x_k^n(w_k)$.

3. **Receiver:** Observe y^n . Let $T_\delta^{(n)}(Z)$ be the frequency typical set (to be defined soon).

- a) Search for a unique $\hat{w}_1 \hat{w}_2$ such that $q^n x_1^n(\hat{w}_1) x_2^n(\hat{w}_2) y^n \in T_\delta^{(n)}(QX_1X_2Y)$. If such a pair exists, set $g(y^n) = \hat{w}_1 \hat{w}_2$.
- b) If no such $\hat{w}_1 \hat{w}_2$ exists, set $g(y^n) = \phi$, and declare an error.

4. **Probability of error analysis:**

- a) By symmetry, we can condition on the event that the transmitted messages are 11.

$$\begin{aligned}
 \mathbb{E}p_e^{(n)}(C) &= \sum_c p_C(c) \sum_{w_1 w_2} p_{e, w_1 w_2}^{(n)}(c) \frac{1}{M_1 M_2} \\
 &= \frac{1}{M_1 M_2} \sum_{w_1 w_2} \underbrace{\sum_c p_C(c) p_{e, w_1 w_2}^{(n)}(c)}_{\mathbb{E}p_{e, w_1 w_2}^{(n)}(C)} \\
 &= \mathbb{E}p_{e, 11}^{(n)}(C), \quad (*)
 \end{aligned}$$

where Eqn.(*) follows because $\mathbb{E}p_{e, w_1 w_2}^{(n)}(C)$ does not depend on $w_1 w_2$. Hence, we assume that $w_1 w_2 = 11$, by symmetry of the random code construction.

- b) Error events: Define the event,

$$E_{ab} := \left\{ (q^n x_1^n(a) x_2^n(b) y^n) \in T_\delta^{(n)}(QX_1X_2Y) \right\}.$$

Let E denote the error event, i.e., $g(y^n) \neq 11$. Then,

$$\begin{aligned}
 E^c &= E_{11} \cap \bigcap_{b>1} E_{1b}^c \cap \bigcap_{a>1} E_{a1}^c \cap \bigcap_{\substack{a>1, \\ b>1}} E_{ab}^c \\
 \text{and therefore, } E &= E_{11}^c \cup \bigcup_{b>1} E_{1b} \cup \bigcup_{a>1} E_{a1} \cup \bigcup_{\substack{a>1, \\ b>1}} E_{ab}
 \end{aligned}$$

- c) An observation: To evaluate probabilities of events $E_{11}, E_{1b}, E_{a1}, E_{ab}$, we observe that the corresponding random vector sequences have distribution:

$$\begin{aligned}
 Q^n X_1^n(1) X_2^n(1) Y^n &\sim p_{Q^n} p_{X_1^n|Q^n} p_{X_2^n|Q^n} p_{Y^n|X_1^n X_2^n} && \text{(true distribution)} \\
 Q^n X_1^n(1) X_2^n(b) Y^n &\sim p_{Q^n} p_{X_1^n|Q^n} p_{X_2^n|Q^n} p_{Y^n|X_1^n Q^n} && (X_2^n(b) \text{ does not determine } Y^n) \\
 Q^n X_1^n(a) X_2^n(1) Y^n &\sim p_{Q^n} p_{X_1^n|Q^n} p_{X_2^n|Q^n} p_{Y^n|X_2^n Q^n} && (X_1^n(a) \text{ does not determine } Y^n) \\
 Q^n X_1^n(a) X_2^n(b) Y^n &\sim p_{Q^n} p_{X_1^n|Q^n} p_{X_2^n|Q^n} p_{Y^n|Q^n} && (\text{Both } X_1^n(a), X_2^n(b) \text{ do not determine } Y^n)
 \end{aligned}$$

- Typicality is w.r.t. joint distribution $p_Q p_{X_1|Q} p_{X_2|Q} p_Y|X_1 X_2 = p_Q p_{X_1|Q} p_{X_2|Q} p_{Y|X_1 X_2 Q}$.

We look at frequency typicality in Lecture 3 and complete the proof in Lecture 4. ■