

Lecture 4 : Multiple Access Channels

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

We need the following from the previous lecture: For any $\delta > 0$, the following hold for all sufficiently large n .

1. $\Pr \left\{ Z_{[m]}^n \in T_{\delta}^{(n)} \right\} \geq 1 - \delta$ and therefore $\Pr \left\{ Z_A^n \in T_{\delta}^{(n)}(Z_A) \right\} \geq 1 - \delta$.
2. $\tilde{Z}_{[m]} \sim p_{Z_A} p_{Z_B|Z_A} p_{Z_C|Z_A}$, $A \cup B \cup C = [m]$, $A \cap B = B \cap C = C \cap A = \emptyset$, $\tilde{Z}_{[m]}^n$ i.i.d. copies with generic distribution that of $\tilde{Z}_{[m]}$. Then, $\Pr \left\{ \tilde{Z}_{[m]}^n \in T_{\delta}^{(n)} \right\} \stackrel{\Delta}{=} 2^{-nI(Z_B;Z_C|Z_A) \pm 7n\delta}$.

1 Continuing with the proof on page 2 of lecture 2

In Lecture 2, we indicated the frequency typical set $T_{\delta}^{(n)}$. In the last lecture, we studied some properties of these sets. We now complete the proof of Proposition 3 (of Lecture 2).

- Since $E_{11} = \left\{ q^n x_1^n(1) x_2^n(1) y^n \in T_{\delta}^{(n)} \right\}$, we have by Lemma 1.1, $\Pr \{E_{11}^c\} \leq \delta$.

Since $\Pr \{E_{1b}\}$ is the same for all $b > 1$, we have

$$\begin{aligned}
 \Pr \left\{ \bigcup_{b>1} E_{1b} \right\} &\leq \sum_{b>1} \Pr \{E_{1b}\} \\
 &= (M_2 - 1) \Pr \{E_{12}\} \\
 &= (M_2 - 1) \Pr \left\{ \tilde{Z}^n \in T_{\delta}^{(n)} \right\} && A = QX_1, B = X_2, C = Y \text{ in Lemma 1.5} \\
 &\leq (M_2 - 1) 2^{-nI(X_2;Y|X_1,Q) + 7n\delta} && \text{from Lemma 1.5} \\
 &\leq 2^{n(R_2 - \eta - I(X_2;Y|X_1,Q) + 7\delta)} && \text{refer Eqn. 1 of Lecture 2} \\
 &\leq \delta && \text{if } 7\delta < \eta
 \end{aligned}$$

Similarly

$$\Pr \left\{ \bigcup_{a>1} E_{a1} \right\} \leq 2^{n(R_1 - \eta - I(X_1;Y|X_2,Q) + 7\delta)} \leq \delta$$

and

$$\Pr \left\{ \bigcup_{\substack{a>1 \\ b>1}} E_{ab} \right\} \leq 2^{n(R_1 + R_2 - \eta - I(X_1, X_2; Y|Q) + 7\delta)} \leq \delta$$

if $7\delta < \eta$. Therefore,

$$\Pr \{E\} \leq 4\delta \leq \lambda \text{ if } \delta < \lambda/4.$$

Setting $\delta = \min\{\lambda/4, \eta/7\}$, completes the proof.

Theorem 1 $\mathcal{C}_{\text{MAC}} = \mathcal{C}$

Proof Proposition 3 of Lecture 2 shows that $\mathcal{C} \subseteq \mathcal{C}_{\text{MAC}}$. It is sufficient to show the converse, i.e., $\mathcal{C}_{\text{MAC}} \subseteq \mathcal{C}$.

- Suppose (R_1, R_2) is achievable, i.e., $(R_1, R_2) \in \mathcal{C}_{\text{MAC}}$. For an $\eta > 0, \lambda \in (0, 1)$, consider a sequence of (n, M_1, M_2) codes with

$$\left. \begin{array}{l} (1) \quad P_e^{(n)} \leq \lambda \\ (2) \quad \frac{\log M_k}{n} > R_k - \eta, \quad k = 1, 2. \end{array} \right\} \quad \text{Eqn. (0)}$$

where the inequalities hold for all sufficiently large n .

- Fix n . Consider the random vector sequence $W_1 W_2 X_1^n X_2^n Y^n$ induced by the code.

$$W_1 W_2 X_1^n X_2^n Y^n \sim p_{W_1}(w_1) p_{W_2}(w_2) p_{X_1^n|W_1}(x_1^n|w_1) p_{X_2^n|W_2}(x_2^n|w_2) p_{Y^n|X_1^n X_2^n}(y^n|x_1^n x_2^n)$$

$$\begin{aligned} p_{W_1}(w_1) &\sim \text{uniform on } \{1, 2, \dots, M_1\} \\ p_{W_2}(w_2) &\sim \text{uniform on } \{1, 2, \dots, M_2\} \\ p_{X_1^n|W_1}(x_1^n|w_1) &= \begin{cases} 1 & \text{if } x_1^n = f_1(w_1), \\ 0 & \text{if } x_1^n \neq f_1(w_1), \end{cases} \\ p_{X_2^n|W_2}(x_2^n|w_2) &= \begin{cases} 1 & \text{if } x_2^n = f_2(w_2), \\ 0 & \text{if } x_2^n \neq f_2(w_2), \end{cases} \\ p_{Y^n|X_1^n X_2^n}(y^n|x_1^n x_2^n) &= \prod_{i=1}^n p_{Y|X_1 X_2}(y_i|x_{1i}, x_{2i}) \end{aligned}$$

- Let $P_e^{(n)}(k)$ denote the average probability of error of user k . Clearly, $P_e^{(n)}(k) \leq P_e^{(n)} \leq \lambda$. Therefore, by Fano's inequality,

$$\left. \begin{array}{l} H(W_1, W_2|Y^n) \leq (\log M_1 M_2) P_e^{(n)} + 1 \leq (\log M_1 M_2) \lambda + 1 \\ H(W_k|Y^n) \leq (\log M_k) P_e^{(n)}(k) + 1 \leq (\log M_k) \lambda + 1 \end{array} \right\} \quad \text{Eqn (1).}$$

- Moreover,

$$\left. \begin{array}{l} H(W_1, W_2|Y^n) = H(W_1 W_2) - I(W_1 W_2; Y^n) = \log M_1 M_2 - I(W_1 W_2; Y^n) \\ H(W_k|Y^n) = H(W_k) - I(W_k; Y^n) = \log M_k - I(W_k; Y^n) \end{array} \right\} \quad \text{Eqn. (2)}$$

- Substitution of Eqn. (2) in Eqn. (1) yields,

$$\begin{aligned} (1 - \lambda) \log M_1 M_2 &\leq I(W_1 W_2; Y^n) + 1 \\ (1 - \lambda) \log M_1 &\leq I(W_1; Y^n) + 1 \\ (1 - \lambda) \log M_2 &\leq I(W_2; Y^n) + 1. \end{aligned}$$

- Using Eqn. (0), we get

$$\begin{aligned}
(R_1 + R_2) &\leq \frac{1}{n(1-\lambda)} I(W_1 W_2; Y^n) + 2\eta + \frac{1}{n(1-\lambda)} \\
&= \frac{1}{n} I(W_1 W_2; Y^n) + \frac{\lambda}{n(1-\lambda)} I(W_1 W_2; Y^n) + 2\eta + \frac{1}{n(1-\lambda)} \\
&\leq \frac{1}{n} I(W_1 W_2; Y^n) + \frac{\lambda}{n(1-\lambda)} \log |\mathbb{Y}| + 2\eta + \frac{1}{n(1-\lambda)} \\
&\leq \frac{1}{n} I(W_1 W_2; Y^n) + \epsilon
\end{aligned} \tag{Eqn. (3)}$$

where Eqn. (3) holds for an arbitrary ϵ by choosing η and λ small enough.

- Similarly,

$$R_k \leq \frac{1}{n} I(W_1 W_2; Y^n) + \frac{\lambda}{n(1-\lambda)} \log |\mathbb{Y}| + \eta + \frac{1}{n(1-\lambda)}, \quad k = 1, 2 \tag{Eqn. (4)}$$

Before we proceed further, we need the following two lemmas.

Lemma 2 Consider (A^n, B^n) . Given A_i , the random variable B_i is independent of all other variables, for each $i = 1, 2, \dots, n$. Then,

$$I(A^n; B^n) \leq \sum_{i=1}^n I(A_i; B_i)$$

with equality if and only if Y_1, Y_2, \dots, Y_n are independent.

Proof See solution to Homework 1. ■

Corollary: Let $W_1 W_2 X_1^n X_2^n Y^n \sim p_{W_1} p_{W_2} p_{X_1^n|W_1} p_{X_2^n|W_2} p_{Y^n|X_1^n X_2^n}$ such that $p_{Y^n|X_1^n X_2^n}$ satisfies Eqn. (2) of Lecture 1.

$$\begin{aligned}
I(W_1; Y^n) &\leq \sum_{i=1}^n I(X_{1i}; Y_i | X_{2i}) \\
I(W_2; Y^n) &\leq \sum_{i=1}^n I(X_{2i}; Y_i | X_{1i}) \\
I(W_1 W_2; Y^n) &\leq \sum_{i=1}^n I(X_{1i} X_{2i}; Y_i)
\end{aligned}$$

Proof Observe that

$$\begin{aligned}
W_1 &\longrightarrow X_1^n \longrightarrow Y^n \\
W_2 &\longrightarrow X_2^n \longrightarrow Y^n \\
(W_1, W_2) &\longrightarrow X_1^n X_2^n \longrightarrow Y^n
\end{aligned}$$

$$\begin{aligned}
\text{Thus } I(W_1; Y^n) &\leq I(X_1^n; Y^n) && \text{(data processing)} \\
&\leq I(X_1^n; Y^n X_2^n) && \text{(MI is nonnegative, chain rule)} \\
&= I(X_1^n; Y^n | X_2^n) && (X_1^n \text{ is independent of } X_2^n) \\
&= \sum_{x_2^n \in \mathbb{X}_2^n} I(X_1^n; Y^n | X_2^n = x_2^n) p_{X_2^n}(x_2^n) \\
&\leq \sum_{x_2^n \in \mathbb{X}_2^n} p_{X_2^n}(x_2^n) \left[\sum_{i=1}^n I(X_{1i}; Y_i | X_2^n = x_2^n) \right] && \text{(Lemma 2, for a fixed } x_2^n) \\
&= \sum_{x_2^n \in \mathbb{X}_2^n} p_{X_2^n}(x_2^n) \left[\sum_{i=1}^n I(X_{1i}; Y_i | X_{2i} = x_{2i}) \right] \\
&= \sum_{i=1}^n I(X_{1i}; Y_i | X_{2i})
\end{aligned}$$

Others follow analogously. ■

- An application of the above corollary to Eqn. (3) and Eqn. (4) yields

$$\begin{aligned}
(R_1 + R_2) &\leq \frac{1}{n} \sum_{i=1}^n I(X_{1i} X_{2i}; Y_i) + \epsilon \\
R_1 &\leq \frac{1}{n} \sum_{i=1}^n I(X_{1i}; Y_i | X_{2i}) + \epsilon \\
R_2 &\leq \frac{1}{n} \sum_{i=1}^n I(X_{2i}; Y_i | X_{1i}) + \epsilon
\end{aligned}$$

- We claim that

$$\left. \begin{aligned}
\frac{1}{n} \sum_{i=1}^n I(X_{1i}; Y_i | X_{2i}) &= I(\overline{X}_1; \overline{Y} | \overline{X}_2 Q) \\
\frac{1}{n} \sum_{i=1}^n I(X_{2i}; Y_i | X_{1i}) &= I(\overline{X}_2; \overline{Y} | \overline{X}_1 Q) \\
\frac{1}{n} \sum_{i=1}^n I(X_{1i} X_{2i}; Y_i) &= I(\overline{X}_1, \overline{X}_2; \overline{Y} | Q)
\end{aligned} \right\} \text{Eqn. (5)}$$

for a $Z = Q \overline{X}_1 \overline{X}_2 \overline{Y} \in \mathcal{P}^*$, so that $(R_1 - \epsilon, R_2 - \epsilon) \in \mathcal{C}$. Since ϵ is arbitrary, \mathcal{C} is closed, we have $(R_1, R_2) \in \mathcal{C}$.

- To verify the claim in Eqn. (5),

– Let $\mathbb{Q} = \{1, 2, \dots, n\}$ and define $Z = Q \overline{X}_1 \overline{X}_2 \overline{Y}$ via

$$\Pr \{Q = i, \overline{X}_1 = a_1, \overline{X}_2 = a_2, \overline{Y} = b\} := \frac{1}{n} \Pr \{X_{1i}(W_1) = a_1, X_{2i}(W_2) = a_2, Y_i = b\}$$

Clearly, $\Pr \{Q = i\} = \frac{1}{n}$, so that Eqn. (5) holds. We need to show $Z \in \mathcal{P}^*$. Observe that

$$p_{\overline{X}_1, \overline{X}_2, \overline{Y} | Q}(a_1 a_2 b | i) = \Pr \{X_{1i}(W_1) = a_1, X_{2i}(W_2) = a_2, Y_i = b\}$$

so that

$$\begin{aligned}
p_{\overline{X}_1, \overline{X}_2|Q}(a_1 a_2|i) &= \Pr \{X_{1i}(W_1) = a_1, X_{2i}(W_2) = a_2\} \\
&= \Pr \{X_{1i}(W_1) = a_1\} \Pr \{X_{2i}(W_2) = a_2\} \quad \text{by independence of } W_1 \text{ and } W_2 \\
&= p_{\overline{X}_1|Q}(a_1|i) p_{\overline{X}_2|Q}(a_2|i)
\end{aligned}$$

Next,

$$\begin{aligned}
p_{\overline{Y}|Q\overline{X}_1, \overline{X}_2}(b|ia_1 a_2) &= \Pr \{Y_i = b | X_{1i}(W_1) = a_1, X_{2i}(W_2) = a_2\} \\
&= p_{Y|X_1, X_2}(b|a_1 a_2) \quad (\text{does not depend on } i).
\end{aligned}$$

So $Z \in \mathcal{P}^*$. This completes the proof. ■

We now take a closer look at the time-sharing variable and time-sharing.

Definition 3 \mathcal{D}

- o $\mathcal{P} := \left\{ Z = QX_1X_2Y : Z \in \mathcal{P}^*, \text{ but } |\mathbb{Q}| = 1 \right\}$. Note that we may then write $I(X_1; Y|X_2Q) = I(X_1; Y|X_2)$, and so on.
- o $\mathcal{D} := \text{closure conv} \left(\bigcup_{Z \in \mathcal{P}} \mathcal{C}(Z) \right)$, where $\mathcal{C}(Z)$ is as in Lecture 2.

Remark

- o We first identify the polyhedrons $\mathcal{C}(Z)$, take union, then take convex hull, and finally its closure to get \mathcal{D} .
- o Recall that \mathcal{C} does not have the conv operation, and that for $Z \in \mathcal{P}^*$,

$$\mathcal{C}(Z) = \left\{ (R_1, R_2) : \begin{array}{l} 0 \leq R_1 \leq I(X_1; Y|X_2Q), \\ 0 \leq R_2 \leq I(X_2; Y|X_1Q), \\ R_1 + R_2 \leq I(X_1X_2; Y|Q) \end{array} \right\}.$$

i.e., we first identify the upper bounds

$$\begin{aligned}
&I(X_1; Y|X_2Q = q), \\
&I(X_2; Y|X_1Q = q), \\
&I(X_1X_2; Y|Q = q).
\end{aligned}$$

for each q , and then take their convex combination of the upper bounds via the distribution p_Q to obtain the upper bounds

$$\begin{aligned}
&I(X_1; Y|X_2Q), \\
&I(X_2; Y|X_1Q), \\
&I(X_1X_2; Y|Q)
\end{aligned}$$

that define the polyhedron $\mathcal{C}(Z)$.

- o \mathcal{C} and \mathcal{D} may possibly differ as illustrated by the following example.

Example 1 (Cover and Thomas, pp. 534–535)

$$F_1 = \left\{ (r_1, r_2) : \begin{array}{l} 0 \leq r_1 \leq 10, \\ 0 \leq r_2 \leq 10, \\ 0 \leq r_1 + r_2 \leq 100 \end{array} \right\},$$

$$F_2 = \left\{ (r_1, r_2) : \begin{array}{l} 0 \leq r_1 \leq 20, \\ 0 \leq r_2 \leq 20, \\ 0 \leq r_1 + r_2 \leq 20 \end{array} \right\},$$

So any point in the closure $\text{conv}(F_1 \cup F_2)$ satisfies $r_1 + r_2 \leq 20$. On the other hand $(\frac{1}{2}, \frac{1}{2})$ combination of constraints gives

$$F = \left\{ (r_1, r_2) : \begin{array}{l} 0 \leq r_1 \leq 15, \\ 0 \leq r_2 \leq 15, \\ 0 \leq r_1 + r_2 \leq 60 \end{array} \right\}.$$

Clearly $(15, 15) \in F$, but does not belong to closure $\text{conv}(F_1 \cup F_2)$.

Remark

- In general, we anticipate \mathcal{C} is larger than \mathcal{D} .
- The property $I(X_1 X_2; Y) \leq I(X_1; Y|X_2) + I(X_2; Y|X_1)$ enables us to say $\mathcal{C} = \mathcal{D}$.