
E2–301 Topics in Multiuser Communication August 29, 2007

Lecture 4 : Multiple Access Channels

Instructor: Rajesh Sundaresan Scribe: Premkumar K.

We need the following from the previous lecture: For any δ > 0, the following hold for all sufficiently
large n.

1. Pr
{

Zn
[m] ∈ T

(n)
δ

}
> 1 − δ and therefore Pr

{
Zn

A ∈ T
(n)
δ (ZA)

}
> 1 − δ.

2. Z̃[m] ∼ pZA
pZB |ZA

pZC |ZA
, A ∪ B ∪ C = [m], A ∩ B = B ∩ C = C ∩ A = ∅, Z̃n

[m] i.i.d. copies with

generic distribution that of Z̃[m]. Then, Pr
{

Z̃n
[m] ∈ T

(n)
δ

}
$ 2−nI(ZB;ZC |ZA)±7nδ.

1 Continuing with the proof on page 2 of lecture 2

In Lecture 2, we indicated the frequency typical set T
(n)
δ . In the last lecture, we studied some properties

of these sets. We now complete the proof of Proposition 3 (of Lecture 2).

• Since E11 =
{
qnxn

1 (1)xn
2 (1)yn ∈ T

(n)
δ

}
, we have by Lemma 1.1, Pr{Ec

11} 6 δ.

Since Pr {E1b} is the same for all b > 1, we have

Pr

{
⋃

b>1

E1b

}
6

∑

b>1

Pr{E1b}

= (M2 − 1)Pr {E12}

= (M2 − 1)Pr
{
Z̃n ∈ T

(n)
δ

}
A = QX1, B = X2, C = Y in Lemma 1.5

6 (M2 − 1)2−nI(X2;Y |X1,Q)+7nδ from Lemma 1.5

6 2n(R2−η−I(X2;Y |X1,Q)+7δ) refer Eqn. 1 of Lecture 2

6
n

δ if 7δ < η

Similarily

Pr

{
⋃

a>1

Ea1

}
6 2n(R1−η−I(X1;Y |X2,Q)+7δ) 6

n
δ

and

Pr






⋃

a>1
b>1

Eab





6 2n(R1+R2−η−I(X1,X2;Y |Q)+7δ) 6

n
δ

if 7δ < η. Therefore,

Pr {E} 6
n

4δ 6 λ if δ < λ/4.

Setting δ = min{λ/4, η/7}, completes the proof.
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Theorem 1 CMAC = C

Proof Proposition 3 of Lecture 2 shows that C ⊆ CMAC. It is sufficient to show the converse, i.e,
CMAC ⊆ C .

• Suppose (R1, R2) is achievable, i.e., (R1, R2) ∈ CMAC. For an η > 0, λ ∈ (0, 1), consider a sequence
of (n, M1, M2) codes with

(1) P (n)
e 6 λ

(2)
log Mk

n
> Rk − η, k = 1, 2.



 Eqn. (0)

where the inequalities hold for all sufficiently large n.

• Fix n. Consider the random vector sequence W1W2X
n
1 Xn

2 Y n induced by the code.

W1W2X
n
1 Xn

2 Y n ∼ pW1
(w1)pW2

(w2)pXn
1
|W1

(xn
1 |w1)pXn

2
|W2

(xn
2 |w2)pY n|Xn

1
Xn

2
(yn|xn

1 xn
2 )

pW1
(w1) ∼ uniform on {1, 2, · · · , M1}

pW2
(w2) ∼ uniform on {1, 2, · · · , M2}

pXn
1
|W1

(xn
1 |w1) =

{
1 if xn

1 = f1(w1),

0 if xn
1 6= f1(w1),

pXn
2
|W2

(xn
2 |w2) =

{
1 if xn

2 = f2(w2),

0 if xn
2 6= f2(w2),

pY n|Xn
1

Xn
2
(yn|xn

1 xn
2 ) =

n∏

i=1

pY |X1X2
(yi|x1i, x2i)

• Let P
(n)
e (k) denote the average probability of error of user k. Clearly, P

(n)
e (k) 6 P

(n)
e 6 λ.

Therefore, by Fano’s inequality,

H(W1, W2|Y
n) 6 (log M1M2)P

(n)
e + 1 6 (log M1M2)λ + 1

H(Wk|Y
n) 6 (log Mk)P (n)

e (k) + 1 6 (log Mk)λ + 1

}
Eqn (1).

• Moreover,

H(W1, W2|Y
n) = H(W1W2) − I(W1W2; Y

n) = log M1M2 − I(W1W2; Y
n)

H(Wk|Y
n) = H(Wk) − I(Wk ; Y n) = log Mk − I(Wk ; Y n)

}
Eqn. (2)

• Substitution of Eqn. (2) in Eqn. (1) yields,

(1 − λ) log M1M2 6 I(W1W2; Y
n) + 1

(1 − λ) log M1 6 I(W1; Y
n) + 1

(1 − λ) log M2 6 I(W2; Y
n) + 1.
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• Using Eqn. (0), we get

(R1 + R2) 6
1

n(1 − λ)
I(W1W2; Y

n) + 2η +
1

n(1 − λ)

=
1

n
I(W1W2; Y

n) +
λ

n(1 − λ)
I(W1W2; Y

n) + 2η +
1

n(1 − λ)

6
1

n
I(W1W2; Y

n) +
λ

n(1 − λ)
log |

�
| + 2η +

1

n(1 − λ)

6
1

n
I(W1W2; Y

n) + ε Eqn. (3)

where Eqn. (3) holds for an arbitrary ε by choosing η and λ small enough.

• Similarly,

Rk 6
1

n
I(W1W2; Y

n) +
λ

n(1 − λ)
log |

�
| + η +

1

n(1 − λ)
, k = 1, 2 Eqn. (4)

Before we proceed further, we need the following two lemmas.

Lemma 2 Consider (An, Bn). Given Ai, the random variable Bi is independent of all other variables,
for each i = 1, 2, · · · , n. Then,

I(An; Bn) ≤
n∑

i=1

I(Ai; Bi)

with equality if and only if Y1, Y2, · · · , Yn are independent.

Proof See solution to Homework 1. �

Corollary: Let W1W2X
n
1 Xn

2 Y n ∼ pW1
pW2

pXn
1
|W1

pXn
2
|W2

pY n|Xn
1

Xn
2

such that pY n|Xn
1

Xn
2

satisfies Eqn. (2)
of Lecture 1.

I(W1; Y
n) 6

n∑

i=1

I(X1i; Yi|X2i)

I(W2; Y
n) 6

n∑

i=1

I(X2i; Yi|X1i)

I(W1W2; Y
n) 6

n∑

i=1

I(X1iX2i; Yi)

Proof Observe that

W1 −→ Xn
1 −→ Y n

W2 −→ Xn
2 −→ Y n

(W1, W2) −→ Xn
1 Xn

2 −→ Y n
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Thus I(W1; Y
n) 6 I(Xn

1 ; Y n) (data processing)

6 I(Xn
1 ; Y nXn

2 ) (MI is nonnegative, chain rule)

= I(Xn
1 ; Y n|Xn

2 ) (Xn
1 is independent of Xn

2 )

=
∑

xn
2
∈ � n

2

I(Xn
1 ; Y n|Xn

2 = xn
2 )pXn

2
(xn

2 )

6
∑

xn
2
∈ � n

2

pXn
2
(xn

2 )

[
n∑

i=1

I(X1i; Yi|X
n
2 = xn

2 )

]
(Lemma 2, for a fixed xn

2 )

=
∑

xn
2
∈ � n

2

pXn
2
(xn

2 )

[
n∑

i=1

I(X1i; Yi|X2i = x2i)

]

=

n∑

i=1

I(X1i; Yi|X2i)

Others follow analogously. �

• An application of the above corollary to Eqn. (3) and Eqn. (4) yields

(R1 + R2) 6
1

n

n∑

i=1

I(X1iX2i; Yi) + ε

R1 6
1

n

n∑

i=1

I(X1i; Yi|X2i) + ε

R2 6
1

n

n∑

i=1

I(X2i; Yi|X1i) + ε

• We claim that

1

n

n∑

i=1

I(X1i; Yi|X2i) = I(X1; Y |X2Q)

1

n

n∑

i=1

I(X2i; Yi|X1i) = I(X2; Y |X1Q)

1

n

n∑

i=1

I(X1iX2i; Yi) = I(X1, X2; Y |Q)





Eqn. (5)

for a Z = QX1X2Y ∈ P∗, so that (R1 − ε, R2 − ε) ∈ C . Since ε is arbitrary, C is closed, we have
(R1, R2) ∈ C .

• To verify the claim in Eqn. (5),

– Let
�

= {1, 2, · · · , n} and define Z = QX1X2Y via

Pr
{
Q = i, X1 = a1, X2 = a2, Y = b

}
:=

1

n
Pr {X1i(W1) = a1, X2i(W2) = a2, Yi = b}

Clearly, Pr {Q = i} = 1
n
, so that Eqn. (5) holds. We need to show Z ∈ P∗. Observe that

pX1,X2,Y |Q(a1a2b|i) = Pr {X1i(W1) = a1, X2i(W2) = a2, Yi = b}
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so that

pX1,X2|Q
(a1a2|i) = Pr {X1i(W1) = a1, X2i(W2) = a2}

= Pr {X1i(W1) = a1}Pr {X2i(W2) = a2} by independence of W1 and W2

= pX1|Q
(a1|i)pX2|Q

(a2|i)

Next,

pY |QX1,X2
(b|ia1a2) = Pr{Yi = b|X1i(W1) = a1, X2i(W2) = a2}

= pY |X1,X2
(b|a1a2) (does not depend on i).

So Z ∈ P∗. This completes the proof. �

We now take a closer look at the time–sharing variable and time–sharing.

Definition 3 D

◦ P :=

{
Z = QX1X2Y : Z ∈ P∗, but |

�
| = 1

}
. Note that we may then write I(X1; Y |X2Q) =

I(X1; Y |X2), and so on.

◦ D := closure conv

( ⋃
Z∈P

C (Z)

)
, where C (Z) is as in Lecture 2.

Remark

◦ We first identify the polyhedrons C (Z), take union, then take convex hull, and finally its closure
to get D .

◦ Recall that C does not have the conv operation, and that for Z ∈ P∗,

C (Z) =






(R1, R2) : 0 6 R1 6 I(X1; Y |X2Q),
0 6 R2 6 I(X2; Y |X1Q),
R1 + R2 6 I(X1X2; Y |Q)




 .

i.e., we first identify the upper bounds

I(X1; Y |X2Q = q),

I(X2; Y |X1Q = q),

I(X1X2; Y |Q = q).

for each q, and then take their convex combination of the upper bounds via the distribution pQ to
obtain the upper bounds

I(X1; Y |X2Q),

I(X2; Y |X1Q),

I(X1X2; Y |Q)

that define the polyhedron C (Z).

◦ C and D may possibly differ as illustrated by the following example.
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Example 1 (Cover and Thomas, pp. 534–535)

F1 =





(r1, r2) : 0 6 r1 6 10,
0 6 r2 6 10,
0 6 r1 + r2 6 100



 ,

F2 =





(r1, r2) : 0 6 r1 6 20,
0 6 r2 6 20,
0 6 r1 + r2 6 20



 ,

So any point in the closure conv (F1 ∪ F2) satisfies r1 + r2 6 20. On the other hand
(

1
2 , 1

2

)
combination

of constraints gives

F =





(r1, r2) : 0 6 r1 6 15,
0 6 r2 6 15,
0 6 r1 + r2 6 60



 .

Clearly (15, 15) ∈ F , but does not belong to closure conv (F1 ∪ F2).

Remark

• In general, we anticipate C is larger than D .

• The property I(X1X2; Y ) 6 I(X1; Y |X2) + I(X2; Y |X1) enables us to say C = D .

Lecture 4 : Multiple Access Channels-6


