## Lecture 4 : Multiple Access Channels

Instructor: Rajesh Sundaresan
Scribe: Premkumar K.

We need the following from the previous lecture: For any $\delta>0$, the following hold for all sufficiently large $n$.

1. $\operatorname{Pr}\left\{Z_{[m]}^{n} \in T_{\delta}^{(n)}\right\} \geqslant 1-\delta$ and therefore $\operatorname{Pr}\left\{Z_{A}^{n} \in T_{\delta}^{(n)}\left(Z_{A}\right)\right\} \geqslant 1-\delta$.
2. $\widetilde{Z}_{[m]} \sim p_{Z_{A}} p_{Z_{B} \mid Z_{A}} p_{Z_{C} \mid Z_{A}}, A \cup B \cup C=[m], A \cap B=B \cap C=C \cap A=\emptyset, \widetilde{Z}_{[m]}^{n}$ i.i.d. copies with generic distribution that of $\widetilde{Z}_{[m]}$. Then, $\operatorname{Pr}\left\{\widetilde{Z}_{[m]}^{n} \in T_{\delta}^{(n)}\right\} \stackrel{\circ}{=} 2^{-n I\left(Z_{B} ; Z_{C} \mid Z_{A}\right) \pm 7 n \delta}$.

## 1 Continuing with the proof on page 2 of lecture 2

In Lecture 2, we indicated the frequency typical set $T_{\delta}^{(n)}$. In the last lecture, we studied some properties of these sets. We now complete the proof of Proposition 3 (of Lecture 2).

- Since $E_{11}=\left\{q^{n} x_{1}^{n}(1) x_{2}^{n}(1) y^{n} \in T_{\delta}^{(n)}\right\}$, we have by Lemma 1.1, $\operatorname{Pr}\left\{E_{11}^{c}\right\} \leqslant \delta$.

Since $\operatorname{Pr}\left\{E_{1 b}\right\}$ is the same for all $b>1$, we have

$$
\begin{aligned}
\operatorname{Pr}\left\{\bigcup_{b>1} E_{1 b}\right\} & \leqslant \sum_{b>1} \operatorname{Pr}\left\{E_{1 b}\right\} & & \\
& =\left(M_{2}-1\right) \operatorname{Pr}\left\{E_{12}\right\} & & \\
& =\left(M_{2}-1\right) \operatorname{Pr}\left\{\widetilde{Z}^{n} \in T_{\delta}^{(n)}\right\} & & A=Q X_{1}, B=X_{2}, C=Y \text { in Lemma } 1.5 \\
& \leqslant\left(M_{2}-1\right) 2^{-n I\left(X_{2} ; Y \mid X_{1}, Q\right)+7 n \delta} & & \text { from Lemma 1.5 } \\
& \leqslant 2^{n\left(R_{2}-\eta-I\left(X_{2} ; Y \mid X_{1}, Q\right)+7 \delta\right)} & & \text { refer Eqn. 1 of Lecture } 2 \\
& \leqslant \delta & & \text { if } 7 \delta<\eta
\end{aligned}
$$

Similarily

$$
\operatorname{Pr}\left\{\bigcup_{a>1} E_{a 1}\right\} \leqslant 2^{n\left(R_{1}-\eta-I\left(X_{1} ; Y \mid X_{2}, Q\right)+7 \delta\right)} \underset{n}{\leqslant}
$$

and

$$
\operatorname{Pr}\left\{\bigcup_{\substack{a>1 \\ b>1}} E_{a b}\right\} \leqslant 2^{n\left(R_{1}+R_{2}-\eta-I\left(X_{1}, X_{2} ; Y \mid Q\right)+7 \delta\right)} \underset{n}{\leqslant} \delta
$$

if $7 \delta<\eta$. Therefore,

$$
\operatorname{Pr}\{E\} \underset{n}{\leqslant} 4 \delta \leqslant \lambda \text { if } \delta<\lambda / 4
$$

Setting $\delta=\min \{\lambda / 4, \eta / 7\}$, completes the proof.

Theorem $1 \mathscr{C}_{M A C}=\mathscr{C}$
Proof Proposition 3 of Lecture 2 shows that $\mathscr{C} \subseteq \mathscr{C}_{\text {MAC }}$. It is sufficient to show the converse, i.e, $\mathscr{C}_{\text {MAC }} \subseteq \mathscr{C}$.

- Suppose $\left(R_{1}, R_{2}\right)$ is achievable, i.e., $\left(R_{1}, R_{2}\right) \in \mathscr{C}_{\text {MAC }}$. For an $\eta>0, \lambda \in(0,1)$, consider a sequence of $\left(n, M_{1}, M_{2}\right)$ codes with

$$
\left.\begin{array}{rlrl}
\text { (1) } & P_{e}^{(n)} & \leqslant \lambda  \tag{0}\\
\text { (2) } & \frac{\log M_{k}}{n} & >R_{k}-\eta, \quad k=1,2 .
\end{array}\right\}
$$

where the inequalities hold for all sufficiently large $n$.

- Fix $n$. Consider the random vector sequence $W_{1} W_{2} X_{1}^{n} X_{2}^{n} Y^{n}$ induced by the code.

$$
\left.\begin{array}{rl}
W_{1} W_{2} X_{1}^{n} X_{2}^{n} Y^{n} \sim p_{W_{1}}\left(w_{1}\right) p_{W_{2}}\left(w_{2}\right) p_{X_{1}^{n} \mid W_{1}}\left(x_{1}^{n} \mid w_{1}\right) p_{X_{2}^{n} \mid W_{2}}\left(x_{2}^{n} \mid w_{2}\right) p_{Y^{n} \mid X_{1}^{n} X_{2}^{n}}\left(y^{n} \mid x_{1}^{n} x_{2}^{n}\right) \\
p_{W_{1}}\left(w_{1}\right) & \sim \text { uniform on }\left\{1,2, \cdots, M_{1}\right\} \\
p_{W_{2}}\left(w_{2}\right) & \sim \text { uniform on }\left\{1,2, \cdots, M_{2}\right\}
\end{array}\right\} \begin{aligned}
p_{X_{1}^{n} \mid W_{1}}\left(x_{1}^{n} \mid w_{1}\right) & = \begin{cases}1 & \text { if } x_{1}^{n}=f_{1}\left(w_{1}\right), \\
0 & \text { if } x_{1}^{n} \neq f_{1}\left(w_{1}\right),\end{cases} \\
p_{X_{2}^{n} \mid W_{2}}\left(x_{2}^{n} \mid w_{2}\right) & = \begin{cases}1 & \text { if } x_{2}^{n}=f_{2}\left(w_{2}\right), \\
0 & \text { if } x_{2}^{n} \neq f_{2}\left(w_{2}\right),\end{cases} \\
p_{Y^{n} \mid X_{1}^{n} X_{2}^{n}}\left(y^{n} \mid x_{1}^{n} x_{2}^{n}\right) & =\prod_{i=1}^{n} p_{Y \mid X_{1} X_{2}}\left(y_{i} \mid x_{1 i}, x_{2 i}\right)
\end{aligned}
$$

- Let $P_{e}^{(n)}(k)$ denote the average probability of error of user $k$. Clearly, $P_{e}^{(n)}(k) \leqslant P_{e}^{(n)} \leqslant \lambda$. Therefore, by Fano's inequality,

$$
\left.\begin{array}{rlr}
H\left(W_{1}, W_{2} \mid Y^{n}\right) & \leqslant\left(\log M_{1} M_{2}\right) P_{e}^{(n)}+1 \leqslant & \left(\log M_{1} M_{2}\right) \lambda+1 \\
H\left(W_{k} \mid Y^{n}\right) & \leqslant\left(\log M_{k}\right) P_{e}^{(n)}(k)+1 \leqslant \quad\left(\log M_{k}\right) \lambda+1
\end{array}\right\} \quad \text { Eqn (1). }
$$

- Moreover,

$$
\left.\begin{array}{rlrl}
H\left(W_{1}, W_{2} \mid Y^{n}\right) & =H\left(W_{1} W_{2}\right)-I\left(W_{1} W_{2} ; Y^{n}\right) & & =\log M_{1} M_{2}-I\left(W_{1} W_{2} ; Y^{n}\right)  \tag{2}\\
H\left(W_{k} \mid Y^{n}\right) & =H\left(W_{k}\right)-I\left(W_{k} ; Y^{n}\right) & & =\log M_{k}-I\left(W_{k} ; Y^{n}\right)
\end{array}\right\}
$$

- Substitution of Eqn. (2) in Eqn. (1) yields,

$$
\begin{gathered}
(1-\lambda) \log M_{1} M_{2} \leqslant I\left(W_{1} W_{2} ; Y^{n}\right)+1 \\
(1-\lambda) \log M_{1} \leqslant I\left(W_{1} ; Y^{n}\right)+1 \\
(1-\lambda) \log M_{2} \leqslant I\left(W_{2} ; Y^{n}\right)+1 .
\end{gathered}
$$

- Using Eqn. (0), we get

$$
\begin{align*}
\left(R_{1}+R_{2}\right) & \leqslant \frac{1}{n(1-\lambda)} I\left(W_{1} W_{2} ; Y^{n}\right)+2 \eta+\frac{1}{n(1-\lambda)} \\
& =\frac{1}{n} I\left(W_{1} W_{2} ; Y^{n}\right)+\frac{\lambda}{n(1-\lambda)} I\left(W_{1} W_{2} ; Y^{n}\right)+2 \eta+\frac{1}{n(1-\lambda)} \\
& \leqslant \frac{1}{n} I\left(W_{1} W_{2} ; Y^{n}\right)+\frac{\lambda}{n(1-\lambda)} \log |\mathbb{Y}|+2 \eta+\frac{1}{n(1-\lambda)} \\
& \leqslant \frac{1}{n} I\left(W_{1} W_{2} ; Y^{n}\right)+\epsilon \tag{3}
\end{align*}
$$

where Eqn. (3) holds for an arbitrary $\epsilon$ by choosing $\eta$ and $\lambda$ small enough.

- Similarly,

$$
\begin{equation*}
R_{k} \leqslant \frac{1}{n} I\left(W_{1} W_{2} ; Y^{n}\right)+\frac{\lambda}{n(1-\lambda)} \log |\mathbb{Y}|+\eta+\frac{1}{n(1-\lambda)}, \quad k=1,2 \tag{4}
\end{equation*}
$$

Before we proceed further, we need the following two lemmas.
Lemma 2 Consider $\left(A^{n}, B^{n}\right)$. Given $A_{i}$, the random variable $B_{i}$ is independent of all other variables, for each $i=1,2, \cdots, n$. Then,

$$
I\left(A^{n} ; B^{n}\right) \leq \sum_{i=1}^{n} I\left(A_{i} ; B_{i}\right)
$$

with equality if and only if $Y_{1}, Y_{2}, \cdots, Y_{n}$ are independent.
Proof See solution to Homework 1.
Corollary: Let $W_{1} W_{2} X_{1}^{n} X_{2}^{n} Y^{n} \sim p_{W_{1}} p_{W_{2}} p_{X_{1}^{n} \mid W_{1}} p_{X_{2}^{n} \mid W_{2}} p_{Y^{n} \mid X_{1}^{n} X_{2}^{n}}$ such that $p_{Y^{n} \mid X_{1}^{n} X_{2}^{n}}$ satisfies Eqn. (2) of Lecture 1.

$$
\begin{aligned}
I\left(W_{1} ; Y^{n}\right) & \leqslant \sum_{i=1}^{n} I\left(X_{1 i} ; Y_{i} \mid X_{2 i}\right) \\
I\left(W_{2} ; Y^{n}\right) & \leqslant \sum_{i=1}^{n} I\left(X_{2 i} ; Y_{i} \mid X_{1 i}\right) \\
I\left(W_{1} W_{2} ; Y^{n}\right) & \leqslant \sum_{i=1}^{n} I\left(X_{1 i} X_{2 i} ; Y_{i}\right)
\end{aligned}
$$

Proof Observe that

$$
\begin{array}{r}
W_{1} \longrightarrow X_{1}^{n} \longrightarrow Y^{n} \\
W_{2} \longrightarrow X_{2}^{n} \longrightarrow Y^{n} \\
\left(W_{1}, W_{2}\right) \longrightarrow X_{1}^{n} X_{2}^{n} \longrightarrow Y^{n}
\end{array}
$$

Lecture 4 : Multiple Access Channels-3

$$
\begin{aligned}
& \leqslant I\left(X_{1}^{n} ; Y^{n} X_{2}^{n}\right) \\
& =I\left(X_{1}^{n} ; Y^{n} \mid X_{2}^{n}\right) \\
& =\sum_{x_{2}^{n} \in X_{2}^{n}} I\left(X_{1}^{n} ; Y^{n} \mid X_{2}^{n}=x_{2}^{n}\right) p_{X_{2}^{n}}\left(x_{2}^{n}\right) \\
& \leqslant \sum_{x_{2}^{n} \in \mathbb{X}_{2}^{n}} p_{X_{2}^{n}}\left(x_{2}^{n}\right)\left[\sum_{i=1}^{n} I\left(X_{1 i} ; Y_{i} \mid X_{2}^{n}=x_{2}^{n}\right)\right] \\
& =\sum_{x_{2}^{n} \in \mathbb{X}_{2}^{n}} p_{X_{2}^{n}}\left(x_{2}^{n}\right)\left[\sum_{i=1}^{n} I\left(X_{1 i} ; Y_{i} \mid X_{2 i}=x_{2 i}\right)\right] \\
& =\sum_{i=1}^{n} I\left(X_{1 i} ; Y_{i} \mid X_{2 i}\right)
\end{aligned}
$$

(MI is nonnegative, chain rule)
( $X_{1}^{n}$ is independent of $X_{2}^{n}$ )

$$
\left.\leqslant \sum_{x_{2}^{n} \in \mathbb{X}_{2}^{n}} p_{X_{2}^{n}}\left(x_{2}^{n}\right)\left[\sum_{i=1}^{n} I\left(X_{1 i} ; Y_{i} \mid X_{2}^{n}=x_{2}^{n}\right)\right] \quad \quad \quad \text { Lemma 2, for a fixed } x_{2}^{n}\right)
$$

Others follow analogously.

- An application of the above corollary to Eqn. (3) and Eqn. (4) yields

$$
\begin{aligned}
\left(R_{1}+R_{2}\right) & \leqslant \frac{1}{n} \sum_{i=1}^{n} I\left(X_{1 i} X_{2 i} ; Y_{i}\right)+\epsilon \\
R_{1} & \leqslant \frac{1}{n} \sum_{i=1}^{n} I\left(X_{1 i} ; Y_{i} \mid X_{2 i}\right)+\epsilon \\
R_{2} & \leqslant \frac{1}{n} \sum_{i=1}^{n} I\left(X_{2 i} ; Y_{i} \mid X_{1 i}\right)+\epsilon
\end{aligned}
$$

- We claim that

$$
\left.\begin{array}{ll}
\frac{1}{n} \sum_{i=1}^{n} I\left(X_{1 i} ; Y_{i} \mid X_{2 i}\right) & =I\left(\bar{X}_{1} ; \bar{Y} \mid \bar{X}_{2} Q\right) \\
\frac{1}{n} \sum_{i=1}^{n} I\left(X_{2 i} ; Y_{i} \mid X_{1 i}\right)= & I\left(\bar{X}_{2} ; \bar{Y} \mid \bar{X}_{1} Q\right) \\
\frac{1}{n} \sum_{i=1}^{n} I\left(X_{1 i} X_{2 i} ; Y_{i}\right)= & I\left(\bar{X}_{1}, \bar{X}_{2} ; \bar{Y} \mid Q\right)
\end{array}\right\}
$$

Eqn. (5)
for a $Z=Q \bar{X}_{1} \bar{X}_{2} \bar{Y} \in \mathscr{P}^{*}$, so that $\left(R_{1}-\epsilon, R_{2}-\epsilon\right) \in \mathscr{C}$. Since $\epsilon$ is arbitrary, $\mathscr{C}$ is closed, we have $\left(R_{1}, R_{2}\right) \in \mathscr{C}$.

- To verify the claim in Eqn. (5),
- Let $\mathbb{Q}=\{1,2, \cdots, n\}$ and define $Z=Q \bar{X}_{1} \bar{X}_{2} \bar{Y}$ via

$$
\operatorname{Pr}\left\{Q=i, \bar{X}_{1}=a_{1}, \bar{X}_{2}=a_{2}, \bar{Y}=b\right\}:=\frac{1}{n} \operatorname{Pr}\left\{X_{1 i}\left(W_{1}\right)=a_{1}, X_{2 i}\left(W_{2}\right)=a_{2}, Y_{i}=b\right\}
$$

Clearly, $\operatorname{Pr}\{Q=i\}=\frac{1}{n}$, so that Eqn. (5) holds. We need to show $Z \in \mathscr{P}^{*}$. Observe that

$$
p_{\bar{X}_{1}, \bar{X}_{2}, \bar{Y} \mid Q}\left(a_{1} a_{2} b \mid i\right)=\operatorname{Pr}\left\{X_{1 i}\left(W_{1}\right)=a_{1}, X_{2 i}\left(W_{2}\right)=a_{2}, Y_{i}=b\right\}
$$

Lecture 4 : Multiple Access Channels-4
so that

$$
\begin{aligned}
p_{\bar{X}_{1}, \bar{X}_{2} \mid Q}\left(a_{1} a_{2} \mid i\right) & =\operatorname{Pr}\left\{X_{1 i}\left(W_{1}\right)=a_{1}, X_{2 i}\left(W_{2}\right)=a_{2}\right\} \\
& =\operatorname{Pr}\left\{X_{1 i}\left(W_{1}\right)=a_{1}\right\} \operatorname{Pr}\left\{X_{2 i}\left(W_{2}\right)=a_{2}\right\} \quad \text { by independence of } W_{1} \text { and } W_{2} \\
& =p_{\bar{X}_{1} \mid Q}\left(a_{1} \mid i\right) p_{\bar{X}_{2} \mid Q}\left(a_{2} \mid i\right)
\end{aligned}
$$

Next,

$$
\begin{aligned}
p_{\bar{Y} \mid Q \bar{X}_{1}, \bar{X}_{2}}\left(b \mid i a_{1} a_{2}\right) & =\operatorname{Pr}\left\{Y_{i}=b \mid X_{1 i}\left(W_{1}\right)=a_{1}, X_{2 i}\left(W_{2}\right)=a_{2}\right\} \\
& \left.=p_{Y \mid X_{1}, X_{2}}\left(b \mid a_{1} a_{2}\right) \quad \text { (does not depend on } i\right) .
\end{aligned}
$$

So $Z \in \mathscr{P}^{*}$. This completes the proof.
We now take a closer look at the time-sharing variable and time-sharing.

## Definition $3 \mathscr{D}$

- $\mathscr{P}:=\left\{Z=Q X_{1} X_{2} Y: Z \in \mathscr{P}^{*}\right.$, but $\left.|\mathbb{Q}|=1\right\}$. Note that we may then write $I\left(X_{1} ; Y \mid X_{2} Q\right)=$ $I\left(X_{1} ; Y \mid X_{2}\right)$, and so on.
- $\mathscr{D}:=$ closure conv $\left(\bigcup_{Z \in \mathscr{P}} \mathscr{C}(Z)\right)$, where $\mathscr{C}(Z)$ is as in Lecture 2.


## Remark

- We first identify the polyhedrons $\mathscr{C}(Z)$, take union, then take convex hull, and finally its closure to get $\mathscr{D}$.
- Recall that $\mathscr{C}$ does not have the conv operation, and that for $Z \in \mathscr{P}^{*}$,

$$
\mathscr{C}(Z)=\left\{\begin{aligned}
\left(R_{1}, R_{2}\right): & 0 \leqslant R_{1} \leqslant I\left(X_{1} ; Y \mid X_{2} Q\right) \\
& 0 \leqslant R_{2} \leqslant I\left(X_{2} ; Y \mid X_{1} Q\right) \\
& R_{1}+R_{2} \leqslant I\left(X_{1} X_{2} ; Y \mid Q\right)
\end{aligned}\right\}
$$

i.e., we first identify the upper bounds

$$
\begin{aligned}
& I\left(X_{1} ; Y \mid X_{2} Q=q\right) \\
& I\left(X_{2} ; Y \mid X_{1} Q=q\right) \\
& I\left(X_{1} X_{2} ; Y \mid Q=q\right) .
\end{aligned}
$$

for each $q$, and then take their convex combination of the upper bounds via the distribution $p_{Q}$ to obtain the upper bounds

$$
\begin{array}{r}
I\left(X_{1} ; Y \mid X_{2} Q\right) \\
I\left(X_{2} ; Y \mid X_{1} Q\right) \\
I\left(X_{1} X_{2} ; Y \mid Q\right)
\end{array}
$$

that define the polyhedron $\mathscr{C}(Z)$.

- $\mathscr{C}$ and $\mathscr{D}$ may possibly differ as illustrated by the following example.

Lecture 4 : Multiple Access Channels-5

Example 1 (Cover and Thomas, pp. 534-535)

$$
\begin{aligned}
& F_{1}=\left\{\begin{array}{ll}
\left(r_{1}, r_{2}\right): & 0 \leqslant r_{1} \leqslant 10 \\
0 \leqslant r_{2} \leqslant 10 \\
0 \leqslant r_{1}+r_{2} \leqslant 100
\end{array}\right\}, \\
& F_{2}=\left\{\begin{array}{ll}
\left(r_{1}, r_{2}\right): & 0 \leqslant r_{1} \leqslant 20 \\
0 \leqslant r_{2} \leqslant 20 \\
0 \leqslant r_{1}+r_{2} \leqslant 20
\end{array}\right\},
\end{aligned}
$$

So any point in the closure conv $\left(F_{1} \cup F_{2}\right)$ satisfies $r_{1}+r_{2} \leqslant 20$. On the other hand $\left(\frac{1}{2}, \frac{1}{2}\right)$ combination of constraints gives

$$
F=\left\{\begin{array}{ll}
\left(r_{1}, r_{2}\right): & 0 \leqslant r_{1} \leqslant 15 \\
& 0 \leqslant r_{2} \leqslant 15 \\
& 0 \leqslant r_{1}+r_{2} \leqslant 60
\end{array}\right\}
$$

Clearly $(15,15) \in F$, but does not belong to closure conv $\left(F_{1} \cup F_{2}\right)$.

## Remark

- In general, we anticipate $\mathscr{C}$ is larger than $\mathscr{D}$.
- The property $I\left(X_{1} X_{2} ; Y\right) \leqslant I\left(X_{1} ; Y \mid X_{2}\right)+I\left(X_{2} ; Y \mid X_{1}\right)$ enables us to say $\mathscr{C}=\mathscr{D}$.

