E2-301 Topics in Multiuser Communication August 29, 2007

Lecture 4 : Multiple Access Channels

Instructor: Rajesh Sundaresan Scribe: Premkumar K.

We need the following from the previous lecture: For any § > 0, the following hold for all sufficiently
large n.

1. Pr{Z”

[m]

e 7y} > 15 and therefore Pr {24 € T/"(Z1)} > 1~ 6.

2. Zim] ~ P2aP 25 24P70|74» AUBUC =[m],ANB=BNC=CNA=0, Z[ﬁn] i.id. copies with
generic distribution that of Z[m]. Then, Pr {Z” € TS(”)} = 9—nl(Zp;Zc|Za)£Tns

[m]

1 Continuing with the proof on page 2 of lecture 2

In Lecture 2, we indicated the frequency typical set Té("). In the last lecture, we studied some properties
of these sets. We now complete the proof of Proposition 3 (of Lecture 2).

e Since Fy; = {q”x?(l)mg(l)y" € Tén)}, we have by Lemma 1.1, Pr{E¢; } < 4.

Since Pr{E1,} is the same for all b > 1, we have

Pr { U Elb} < ZPr{Elb}

b>1 b>1
= (MQ — 1)PI’ {Elg}
- (M2—1)Pr{§" eT§">} A=QXi, B=Xs, C=Y inLemma 1.5
< (My — 1)27 MY IXQ4™8 o Lemma 1.5
< on(F2—n—I(X2;Y]X1,Q)+76) refer Eqn. 1 of Lecture 2
<9 if76 <n
Similarily
Pr { U Eal} < 2n(R17777](X1;Y\X2,Q)+75) < 5
a>1 n
and

Pr UEab < (Rt Re—n—I(X1,X2;Y|Q)+76)

a>1
b>1

BN/
>,

if 76 < n. Therefore,

Pr{E} <46 <\ if 6 < \/4.

Setting § = min{\/4, n/7}, completes the proof.
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Theorem 1 Cyac =%

Proof Proposition 3 of Lecture 2 shows that 4 C ¥mac. It is sufficient to show the converse, i.e,
Gmac €.

e Suppose (Rq, R2) is achievable, i.e., (R1, R2) € mac. For ann > 0, A € (0,1), consider a sequence
of (n, My, M) codes with
(1) PM< A
log M, Eqn. (0)
(2) M >

Ry —n, k=12
n

where the inequalities hold for all sufficiently large n.

e Fix n. Consider the random vector sequence W1 Wy XT7' X3Y™ induced by the code.

WiWo X7 X3Y™  ~  pw, (w1)pw, (w2)pxpw, (27 [w1)pxp w, (25 [w2)pyn xnxp (Y |27 5)

pw, (w1) ~ uniformon {1,2,---,M;}
pw,(w2) ~ uniform on {1,2,---,Ms}

n 1 if:z:’f:fl(wl,
P ) = 4

)
)
w2)7
)

pxpw, (T3 we) = .
Flwa 0 if zf # fa(wa),
n
pYn|X1nX;(yn|iE7ffC§) = HpY|X1X2(yi|1'1i7$2i)
i=1

o Let Pe(n)(k:) denote the average probability of error of user k. Clearly, Pe(n)(k:) < Pe(") < A
Therefore, by Fano’s inequality,
(log MlMQ))\ + 1

H(W1,Wa|Y"™) < (log MiMy)P™ +1 <
+1 < (log Mi)A + 1

H(Wi[Y™) < (log My)P{™ (k) } Eqn (1).

e Moreover,

H(W17W2|Yn) = H(W1W2) — I(WlWQ,Y”) = IOngMQ — I(WlWQ,Y”)

H(Wi|Y™) = HWy) — I(Wi; Y™) = log My, — I(Wj,; Y™) } Eqn. (2)

e Substitution of Eqn. (2) in Eqn. (1) yields,

(1 — )\) IOngMQ < I(WlWQ,Y”) +1
(1 - Nlog My < I(Wi;Y™) + 1
(1—X\)log My < I(Wy; Y™) + 1.
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e Using Eqn. (0), we get

(i + Bo) € s IOV Y™) 4+ 20+ s
~ Ly 4 — 2w vy o4 — 1
n ’ n(l —\) ’ n(l—\)
< lI(VVlVVQ' Y™ + X log Y| + 21 + _
S n ’ n(l —\) n(l—\)
< %I(Wle;Y”) e Eqn. (3)

where Eqn. (3) holds for an arbitrary e by choosing 1 and A small enough.

e Similarly,

1
R, < —I(WiWyuY™)+ log Y| + 7 + k=1,2 Eqn. (4)
n n

A 1
n(l —\) (1-X)’
Before we proceed further, we need the following two lemmas.

Lemma 2 Consider (A", B™). Given A;, the random variable B; is independent of all other variables,
for each i =1,2,--- ,n. Then,

I(A";B") <> I(Ai; By)
=1

with equality if and only if Y1, Yo, --- Y, are independent.
Proof See solution to Homework 1. |

Corollary: Let Wi Wo XT'X3Y™ ~ pw, pw,xn|w, Pxp|w,Py»|xn xp such that pyn| xn xp satisfies Eqn. (2)
of Lecture 1.

IWiY™) <> T(X1i; Vil Xa)

=1

I(WyY"™) < Z I(X2i; Y| X14)

i=1

IWAWa;Y™) < Y I(X1iXa:3Y)
i=1

Proof Observe that

W, — XP Y™
WQ —>X£l —Y"
(Wi, Wa) — XT'X5 — Y™
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Thus I(Wy;Y") < I(XTH;Y™) (data processing)
< (X Y"XD) (MI is nonnegative, chain rule)
= I(X7; Y™ X3) (X7 is independent of X7')
= > I(X};Y"|X3 = a3)pxy (25)
zh eXY

< Z pxp(7y) [Z I(X1; Y| Xy = zg)] (Lemma 2, for a fixed z7)
ap EXY i=1

= Z pxy(T3) [Z I(X1;Yi| Xo; = Izz)]
T EXY i=1

= ZI(Xli;Yi|X2i)
i=1

Others follow analogously. ]

e An application of the above corollary to Eqn. (3) and Eqn. (4) yields

n

1
R+ R < = I(X1: X023 Y
(R1+ Ra) n;(l 2i; Yi) + €

1 n

R < — ) I(X145Y| X2
1 n; (X1 | X2:) + €
1 n
Ry < =) I(X2;Yi| X1
2 n; (X2 | X14) + €
e We claim that
1 — - ==
= IXYilXy) = I(X;Y[X5Q)
=1
1 — - —=
EZI(XQZ-;YAXM) = I(X;Y|X1Q) Eqn. (5)
1=1
1 & S —
=~ I(XniXaiYi) = I(X1,X5Y1Q)
=1

fora Z = QX1 XY € 2%, so that (R, — ¢, Ry — €) € €. Since e is arbitrary, € is closed, we have
(fh,}%Q)EE%?

e To verify the claim in Eqn. (5),
— Let Q= {1,2,--- ,n} and define Z = QX X,Y via
_ — — 1
Pr{Q=14X1=a1,Xs=0asY =b} := EPY {X1i(W1) = a1, Xos(Wa) = a»,Y; = b}
Clearly, Pr{Q =i} = 1, so that Eqn. (5) holds. We need to show Z € 2*. Observe that

Px, %, viglarazbli) = Pr{Xy(W1)= a1, X2i(W2) = az,Y; = b}
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so that

PX, Xy q(a102li) = Pr{Xii(W1) = a1, Xai(W2) = az}

Pr{X1;(W1) = a1} Pr{X2;(W5) = a2} by independence of Wy and W5
= PYI\Q(GIH)PYQ\Q(@V)

Next,
p?|QY17§2 (b|ia1a2) = Pr {Y; == b|X11(W1) = a,l,XQZ'(WQ) = (ZQ}
= Dy|x,,x,(blaraz) (does not depend on 7).
So Z € &7*. This completes the proof. |

We now take a closer look at the time—sharing variable and time-sharing.
Definition 3 2

o P = {Z = QX1 XoY : Z e & but|Q = 1}. Note that we may then write I(X1;Y|X2Q) =
I1(X1;Y|X5), and so on.

o 9 := closure conv( U %(Z)) , where €(Z) is as in Lecture 2.
A4

Remark

o We first identify the polyhedrons % (Z), take union, then take convex hull, and finally its closure
to get 2.

o Recall that ¥ does not have the conv operation, and that for Z € 2%,

(Rl,R2> . 0<R1 gI(Xl;Y|X2Q),
Rl + R2 < I(XlXQ,Y|Q)

i.e., we first identify the upper bounds

I(X1;Y[X2Q = q),
I(X2;Y[X1Q = q),
I(X1X0;Y|Q = q).

for each ¢, and then take their convex combination of the upper bounds via the distribution pg to
obtain the upper bounds

I(X1;Y[|X2Q),
I(X2; Y[ X1Q),
I(X1X2;Y|Q)

that define the polyhedron %'(Z).

o ¥ and Z may possibly differ as illustrated by the following example.
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Example 1 (Cover and Thomas, pp. 53/-535)

(ri,7m2) : 0 <rp <10,
o= 0 <rp <10,
0<rs+ry <100

(ri,m2) : 0<rp <20,
P o= 0 < rgp <20,
0<ri+ry <20

So any point in the closure conv (Fy U Fy) satisfies r1 +r2 < 20. On the other hand (%, %) combination
of constraints gives
(ri,m2) : 0<rp <15,
F = 0 <79 < 15,
0<ry+ry <60
Clearly (15,15) € F, but does not belong to closure conv (Fy U Fy).
Remark
e In general, we anticipate ¥ is larger than 2.

e The property I(X1X2;Y) < I(X1;Y|X2) + I(X2;Y|X1) enables us to say ¢ = 2.
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