Lecture 5 : Polymatroids

Instructor: Rajesh Sundaresan

Definition 1 Let $r \in \mathbb{R}_{+}^{K}, S \subseteq[K]$. Then $r(S):=\sum_{k \in S} r_{k}$.
Definition 2 (Set function)

$$
\begin{aligned}
f: 2^{[K]} & \longrightarrow \mathbb{R}_{+} \\
S & \longmapsto f(S)
\end{aligned}
$$

Remark: For a given $r \in \mathbb{R}_{+}^{K}$, the mapping $r(\cdot)$ is a set function.
Definition 3 (Polyhedron) $\mathcal{B}(f):=\left\{r \in \mathbb{R}_{+}^{K}: r(S) \leq f(S), \forall S \subseteq[K]\right\}$
Definition 4 (Rank function) A set function f is a rank function if it satisfies

- (Normalised) $f(\emptyset)=0$
- (Non-decreasing) $S \subseteq T \Longrightarrow f(S) \leq f(T)$
- (Submodular) $f(S \cup T)+f(S \cap T) \leq f(S)+f(T)$.

Remark: $r(\cdot)$ above is a rank function.
Definition 5 (Polymatroid) ([K],f) is a polymatroid if f is a rank function. Its associated polyhedron is $\mathcal{B}(f)$.

Definition 6 Consider the object $([K], f)$. For each permutation π on $[K]$, define $v(\pi) \in \mathbb{R}_{+}^{K}$ as follows:

- $(v(\pi))_{\pi(1)}=f(\{\pi(1)\})$
- $(v(\pi))_{\pi(k)}=f(\{\pi(1), \pi(2), \ldots, \pi(k)\})-f(\{\pi(1), \pi(2), \ldots, \pi(k-1)\}), k=2,3, \cdots, n$

Remark: It may be the case that $v(\pi) \notin \mathcal{B}(f)$.
Definition $7 r \in \mathcal{B}(f)$ is maximal if $r^{\prime} \geqslant r$ component-wise, $r^{\prime} \in \mathcal{B}(f) \Longrightarrow r^{\prime}=r$.
Definition $8 \quad r \in \mathcal{B}(f)$ is extreme if $r=r^{\prime} \lambda+r^{\prime \prime}(1-\lambda), \quad \lambda \in[0,1], \quad r^{\prime}, r^{\prime \prime} \in \mathcal{B}(f) \Longrightarrow \lambda=0$ or 1 .
Definition $9 a, b \in \mathbb{R}_{+}^{K}$. a dominates b if $a_{k} \geqslant b_{k}$ for $k=1,2, \cdots, K$.
Example $1(\pi=\sigma, \pi(i)=i$.)
$v(\sigma)=(f(\{1\}), f(\{1,2\})-f(\{1\}), \cdots, f(\{1,2, \cdots, K\})-f(\{1,2, \cdots, K-1\}))$
Facts ([Edmonds 1970]):

1. Let $([K], f)$ be a polymatroid. Then

- r is a maximal extremal point of $\mathcal{B}(f) \Longleftrightarrow r=v(\pi)$ for some π.
- $r \in \mathcal{B}(f) \Longrightarrow r$ is dominated by a convex combination of the maximal extremal points.

2. If $v(\pi) \in \mathcal{B}(f)$ for every π, then f is a rank function and $([K], f)$ is a polymatroid.
3. If $([K], f)$ is a polymatroid, $\lambda \in \mathbb{R}_{+}^{K}$, then $\max _{r \in \mathcal{B}(f)} \lambda^{t} r$ is attained at $r^{*}=v\left(\pi^{*}\right)$ where π^{*} is any permutation that satisfies $\lambda_{\pi^{*}(1)} \geqslant \lambda_{\pi^{*}(2)} \geqslant \cdots \geqslant \lambda_{\pi^{*}(K)}$.

Remarks:

- There are at most K ! maximal extreme points.
- (2) gives a way to check if $\mathcal{B}(f)$ is the polyhedron of a polymatroid.
- (3) solves a linear program with $2^{K}-1$ constraints in a greedy fashion. Assignment to $\pi(k)$ tightens constraints, $k=1,2,3, \cdots, n$.

Theorem 10 Let $\left(X_{1} X_{2} \cdots X_{K}\right)$ be independent random variables. For the random vector $\left(X_{1} X_{2} \cdots X_{K} Y\right)$ and any $S \subseteq[K]$, the function $\rho: 2^{[K]} \longrightarrow \mathbb{R}_{+}$defined by

$$
\rho(S):= \begin{cases}I\left(X_{S} ; Y \mid X_{S^{c}}\right) & \text { if } S \neq \emptyset \\ 0 & \text { if } S=\emptyset\end{cases}
$$

is a (submodular) rank function.

Proof

(i) ρ is normalised (by definition).
(ii) Monotonicity : $S \subseteq T, R=T-S$.

$$
\begin{aligned}
\rho(T) & =I\left(X_{T} ; Y \mid X_{T^{c}}\right) \\
& =I\left(X_{S} X_{R} ; Y \mid X_{T^{c}}\right) \\
& =I\left(X_{R} ; Y \mid X_{T^{c}}\right)+I\left(X_{S} ; Y \mid X_{T^{c}} X_{R}\right) \\
& \geqslant I\left(X_{S} ; Y \mid X_{S^{c}}\right) \\
& =\rho(S)
\end{aligned}
$$

(iii) To show submodularity, we need to show,
$I\left(X_{S \cup T} ; Y \mid X_{S^{c} \cap T^{c}}\right)+I\left(X_{S \cap T} ; Y \mid X_{S^{c} \cup T^{c}}\right) \leqslant I\left(X_{S} ; Y \mid X_{S^{c}}\right) I\left(X_{T} ; Y \mid X_{T^{c}}\right)$.
By independence of $X_{k} \mathrm{~s}$, it is sufficient to show

$$
\begin{align*}
& H\left(X_{S \cup T}\right)+H\left(X_{S \cap T}\right)-H\left(X_{S \cup T} \mid Y X_{S^{c} \cap T^{c}}\right)-H\left(X_{S \cap T} \mid Y X_{S^{c} \cup T^{c}}\right) \\
\leqslant & H\left(X_{S}\right)+H\left(X_{T}\right)-H\left(X_{S} \mid Y X_{S^{c}}\right)-H\left(X_{T} \mid Y X_{T^{c}}\right) . \tag{1}
\end{align*}
$$

Observe that

$$
\begin{equation*}
H\left(X_{S \cup T}\right)+H\left(X_{S \cap T}\right)=H\left(X_{S}\right)+H\left(X_{T}\right) \tag{2}
\end{equation*}
$$

by independence and because elements in $S \cap T$ occur twice on each side. Furthermore:

$$
\begin{align*}
H\left(X_{T} \mid Y X_{T^{c}}\right) & =H\left(X_{T-S} \mid Y X_{T^{c}}\right)+H\left(X_{S \cap T} \mid Y X_{T^{c} \cup(T-S)}\right) \\
& =H\left(X_{T-S} \mid Y X_{T^{c}}\right)+H\left(X_{S \cap T} \mid Y X_{(S \cap T)^{c}}\right) \tag{3}\\
\text { and } H\left(X_{S \cup T} \mid Y X_{S^{c} \cap T^{c}}\right) & =H\left(X_{T-S} \mid Y X_{S^{c} \cap T^{c}}\right)+\underbrace{H\left(X_{S} \mid Y X_{S^{c} \cap T^{c} \cup(T-S)}\right)}_{H\left(X_{S} \mid Y X_{S^{c}}\right)} \tag{4}
\end{align*}
$$

Lecture 5 : Polymatroids-2

Substitution of the above in Eqn. 1 yields that it is sufficient to show

$$
\begin{align*}
-H\left(X_{T-S} \mid Y X_{S^{c} \cap T^{c}}\right) & \leqslant-H\left(X_{T-S} \mid Y X_{T^{c}}\right) \\
\text { or } \quad H\left(X_{T-S} \mid Y X_{T^{c}}\right) & \leqslant H\left(X_{T-S} \mid Y X_{S^{c} \cap T^{c}}\right) \tag{5}
\end{align*}
$$

But Eqn. 5 holds because conditioning reduces entropy.
Corollary: Consider $Q X_{1} \cdots X_{K} Y$, where Q takes values in an arbitrary set \mathbb{Q}, and $X_{1} X_{2} \cdots X_{K}$ are independent given Q. Then,

$$
\rho(S):= \begin{cases}I\left(X_{S} ; Y \mid X_{S^{c}} Q\right) & \text { if } S \neq \emptyset \\ 0 & \text { if } S=\emptyset\end{cases}
$$

is a (submodular) rank function.
Remark: Specifically for two users:
(0) $\mathscr{C}(Z)$ is a polyhedron associated with a polymatroid.
(1) $I\left(X_{1} ; Y \mid X_{2}\right)+I\left(X_{2} ; Y \mid X_{1}\right) \geqslant I\left(X_{1} X_{2} ; Y\right)+0$ (submodularity).
(2) Has two maximal extreme points:

$$
\begin{array}{r}
(I\left(X_{1} ; Y \mid X_{2}\right), \underbrace{I\left(X_{1} X_{2} ; Y\right)-I\left(X_{1} ; Y \mid X_{2}\right)}_{I\left(X_{2} ; Y\right)}) \\
\text { and }(\underbrace{I\left(X_{1} X_{2} ; Y\right)-I\left(X_{2} ; Y \mid X_{1}\right)}_{I\left(X_{1} ; Y\right)}, I\left(X_{2} ; Y \mid X_{1}\right))
\end{array}
$$

There are no other maximal extreme points (Fact 1).
(3) Any point in the polyhedron $\mathscr{C}(Z)$ is dominated by a convex combination of the maximal extreme points (Fact 1).

Lecture 5 : Polymatroids-3

