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Lecture 6 : Equivalence of C and D , and Caratheodory’s theorem

Instructor: Rajesh Sundaresan Scribe: Premkumar K.

1 C = D

Theorem 1. C = D

Proof. (D ⊆ C )

It is sufficient to show D1 := conv

(

⋃

Z∈P

C (Z)

)

⊆ C1 :=

(

⋃

Z∈P∗

C (Z)

)

Let R ∈ D1. This implies ∃L ∈
�
, ∃Z(`) ∈ P , ` ∈ [L], ∃R(`) ∈ C (Z(l)), ` ∈ [L], and ∃λ` > 0, ` ∈ [L],

such that
∑

`∈[L] λ` = 1 and

R =
∑

`∈[L]

λ`R
(`).

Since,

R(`) ∈ C (Z(`)), ` ∈ [L], we have
∑

l∈S

R(`)
6 I(X

(`)
S ; Y (`)

∣

∣

∣
X`

Sc), ` ∈ [L]

and therefore,
∑

`∈[L]

λ`R
(`)

6
∑

`∈[L]

λ`I(X(`)
s ; Y (`)

∣

∣

∣
X`

Sc), ` ∈ [L] = I(XS ; Y
∣

∣

∣
XScQ),

for a suitably defined Z = QX1X2Y ∈ P∗. Thus R ∈ C (Z) for some Z ∈ P∗ and therefore R ∈ C1.

We now prove the other part: C ⊆ D . Once again, it is sufficient to show that C1 ⊆ D1.

Let R ∈ C1, i.e., R ∈ C (Z) for some Z ∈ P∗.

C (Z) is a polyhedron associated with a polymatroid.

By Edmonds’ result, R is dominated by a convex combination of the maximal extreme points of
C (Z).

We show that every maximal extreme point of C (Z) is in D1 to complete the proof that R ∈ D .
Let r ∈ C (Z) be a maximal extreme point. By Edmonds’ result, refer to fact in Lec. 5, r is a v(π)
for some permutation π, i.e.,

rki
= ρ ({k1, k2, · · · , ki}) − ρ ({k1, k2, · · · , ki−1}) , i = 1, 2, · · · , K

where k1, k2, · · · , kK is some permutation of [K]. Expanding rki
, we get

rki
= I(Xk1

, Xk2
, · · · , Xki

; Y |Xki+1
, · · · , XkK

, Q) − I(Xk1
, Xk2

, · · · , Xki−1
; Y |Xki

, Xki+1
, · · · , XkK

, Q)

=

| � |
∑

`=1

pQ(`)
[

ρ`

({

k1, k2, · · · , ki

})

− ρ`

({

k1, k2, · · · , ki−1

})]

where ρ`(S) = I(XS ; Y
∣

∣

∣
XSc , Q = `). This implies that r is a convex combination of maximal

extreme points of the polymatroidal polyhedra C (Z(`)), where Z(`) ∈ P and therefore r ∈ D1.
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2 Bounds on |
�
|

Recall that C = closure

(

⋃

Z∈P∗

C (Z)

)

, where Z = QX1X2Y .

Theorem 2. (Caratheodory) If A ⊆ � d and a∗ ∈ conv A, then a∗ =
d
∑

`=0

λ`a
(`), where a(`) ∈ A and

d
∑

`=0

λ` = 1, λ` > 0, ∀` ∈ [d].

Proof. Exercise. See Grunbaum for an elegant proof.

Theorem 3. C does not reduce if we restrict Z = QX1X2Y ∈ P∗ to those vectors such that | � | = 4.

Proof. Consider Z = QX1X2Y ∈ P∗ with Q taking values in � = {1, 2, · · · , | � |}.

• Observe that X
(`)
1 X

(`)
2 Y (`) ∼ pX1X2Y |Q(·|Q = `) ∈ P .

• Also, if � ⊆ � , Q any random variable taking values in � , then Z = QX1X2Y defined by pZ =
pQX1X2Y (`x1x2y) = pQ(`)pX1X2Y |Q(·|Q = `) ∈ P∗.

• C (Z) is completely defined by

a =





I(X1; Y |X2Q)
I(X2; Y |X1Q)
I(X1X2; Y |Q)



 ∈ conv A,

where

A =







a(`) =





I(X1; Y |X2, Q = `)
I(X2; Y |X1, Q = `)
I(X1X2; Y |Q = `)



 , ` = 1, 2, · · · , | � |







⊆ � 3.

• By Caratheodory’s theorem, ∃Q = {`0, `1, `2, `3} ⊆ � such that a =
3
∑

m=0
λ`m

a(`m)

• Define Q as follows: pQ(`m) = λ`m
, m = 0, 1, 2, 3, to get Z = QX1X2Y ∈ P∗.

• Easy to extend the above argument to K users, in which case we need | � | = 2K .
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