

Lecture 6 : Equivalence of \mathcal{C} and \mathcal{D} , and Caratheodory's theorem

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

1 $\mathcal{C} = \mathcal{D}$ **Theorem 1.** $\mathcal{C} = \mathcal{D}$ *Proof.* ($\mathcal{D} \subseteq \mathcal{C}$)It is sufficient to show $\mathcal{D}_1 := \text{conv} \left(\bigcup_{Z \in \mathcal{P}} \mathcal{C}(Z) \right) \subseteq \mathcal{C}_1 := \left(\bigcup_{Z \in \mathcal{P}^*} \mathcal{C}(Z) \right)$ Let $R \in \mathcal{D}_1$. This implies $\exists L \in \mathbb{N}$, $\exists Z^{(\ell)} \in \mathcal{P}$, $\ell \in [L]$, $\exists R^{(\ell)} \in \mathcal{C}(Z^{(\ell)})$, $\ell \in [L]$, and $\exists \lambda_\ell \geq 0$, $\ell \in [L]$, such that $\sum_{\ell \in [L]} \lambda_\ell = 1$ and

$$R = \sum_{\ell \in [L]} \lambda_\ell R^{(\ell)}.$$

Since,

$$\begin{aligned} R^{(\ell)} &\in \mathcal{C}(Z^{(\ell)}), \quad \ell \in [L], \text{ we have} \\ \sum_{\ell \in S} R^{(\ell)} &\leq I(X_S^{(\ell)}; Y^{(\ell)} \mid X_{S^c}^\ell), \quad \ell \in [L] \\ \text{and therefore, } \sum_{\ell \in [L]} \lambda_\ell R^{(\ell)} &\leq \sum_{\ell \in [L]} \lambda_\ell I(X_s^{(\ell)}; Y^{(\ell)} \mid X_{S^c}^\ell), \ell \in [L] = I(X_S; Y \mid X_{S^c} Q), \end{aligned}$$

for a suitably defined $Z = QX_1X_2Y \in \mathcal{P}^*$. Thus $R \in \mathcal{C}(Z)$ for some $Z \in \mathcal{P}^*$ and therefore $R \in \mathcal{C}_1$.**We now prove the other part:** $\mathcal{C} \subseteq \mathcal{D}$. Once again, it is sufficient to show that $\mathcal{C}_1 \subseteq \mathcal{D}_1$.Let $R \in \mathcal{C}_1$, i.e., $R \in \mathcal{C}(Z)$ for some $Z \in \mathcal{P}^*$. $\mathcal{C}(Z)$ is a polyhedron associated with a polymatroid.By Edmonds' result, R is dominated by a convex combination of the maximal extreme points of $\mathcal{C}(Z)$.We show that every maximal extreme point of $\mathcal{C}(Z)$ is in \mathcal{D}_1 to complete the proof that $R \in \mathcal{D}$. Let $r \in \mathcal{C}(Z)$ be a maximal extreme point. By Edmonds' result, refer to fact in Lec. 5, r is a $v(\pi)$ for some permutation π , i.e.,

$$r_{k_i} = \rho(\{k_1, k_2, \dots, k_i\}) - \rho(\{k_1, k_2, \dots, k_{i-1}\}), \quad i = 1, 2, \dots, K$$

where k_1, k_2, \dots, k_K is some permutation of $[K]$. Expanding r_{k_i} , we get

$$\begin{aligned} r_{k_i} &= I(X_{k_1}, X_{k_2}, \dots, X_{k_i}; Y \mid X_{k_{i+1}}, \dots, X_{k_K}, Q) - I(X_{k_1}, X_{k_2}, \dots, X_{k_{i-1}}; Y \mid X_{k_i}, X_{k_{i+1}}, \dots, X_{k_K}, Q) \\ &= \sum_{\ell=1}^{|Q|} p_Q(\ell) \left[\rho_\ell \left(\{k_1, k_2, \dots, k_i\} \right) - \rho_\ell \left(\{k_1, k_2, \dots, k_{i-1}\} \right) \right] \end{aligned}$$

where $\rho_\ell(S) = I(X_S; Y \mid X_{S^c}, Q = \ell)$. This implies that r is a convex combination of maximal extreme points of the polymatroidal polyhedra $\mathcal{C}(Z^{(\ell)})$, where $Z^{(\ell)} \in \mathcal{P}$ and therefore $r \in \mathcal{D}_1$.

□

2 Bounds on $|\mathbb{Q}|$

Recall that $\mathcal{C} = \text{closure} \left(\bigcup_{Z \in \mathcal{P}^*} \mathcal{C}(Z) \right)$, where $Z = QX_1X_2Y$.

Theorem 2. (Caratheodory) If $A \subseteq \mathbb{R}^d$ and $a^* \in \text{conv } A$, then $a^* = \sum_{\ell=0}^d \lambda_\ell a^{(\ell)}$, where $a^{(\ell)} \in A$ and $\sum_{\ell=0}^d \lambda_\ell = 1, \lambda_\ell \geq 0, \forall \ell \in [d]$.

Proof. Exercise. See Grunbaum for an elegant proof. \square

Theorem 3. \mathcal{C} does not reduce if we restrict $Z = QX_1X_2Y \in \mathcal{P}^*$ to those vectors such that $|\mathbb{Q}| = 4$.

Proof. Consider $Z = QX_1X_2Y \in \mathcal{P}^*$ with Q taking values in $\mathbb{Q} = \{1, 2, \dots, |\mathbb{Q}|\}$.

- Observe that $X_1^{(\ell)} X_2^{(\ell)} Y^{(\ell)} \sim p_{X_1 X_2 Y | Q}(\cdot | Q = \ell) \in \mathcal{P}$.
- Also, if $\bar{\mathbb{Q}} \subseteq \mathbb{Q}$, \bar{Q} any random variable taking values in $\bar{\mathbb{Q}}$, then $Z = \bar{Q}X_1X_2Y$ defined by $p_{\bar{Z}} = p_{\bar{Q}X_1X_2Y}(\ell x_1 x_2 y) = p_{\bar{Q}}(\ell) p_{X_1 X_2 Y | Q}(\cdot | Q = \ell) \in \mathcal{P}^*$.
- $\mathcal{C}(Z)$ is completely defined by

$$a = \begin{bmatrix} I(X_1; Y | X_2 Q) \\ I(X_2; Y | X_1 Q) \\ I(X_1 X_2; Y | Q) \end{bmatrix} \in \text{conv } A,$$

where

$$A = \left\{ a^{(\ell)} = \begin{bmatrix} I(X_1; Y | X_2, Q = \ell) \\ I(X_2; Y | X_1, Q = \ell) \\ I(X_1 X_2; Y | Q = \ell) \end{bmatrix}, \ell = 1, 2, \dots, |\mathbb{Q}| \right\} \subseteq \mathbb{R}^3.$$

- By Caratheodory's theorem, $\exists \bar{\mathbb{Q}} = \{\ell_0, \ell_1, \ell_2, \ell_3\} \subseteq \mathbb{Q}$ such that $a = \sum_{m=0}^3 \lambda_{\ell_m} a^{(\ell_m)}$
- Define \bar{Q} as follows: $p_{\bar{Q}}(\ell_m) = \lambda_{\ell_m}, m = 0, 1, 2, 3$, to get $\bar{Z} = \bar{Q}X_1X_2Y \in \mathcal{P}^*$.
- Easy to extend the above argument to K users, in which case we need $|\mathbb{Q}| = 2^K$.

\square