

Lecture 7 : Han's generalisations

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

1 Slepian–Wolf–Han Generalisation – Correlated Sources

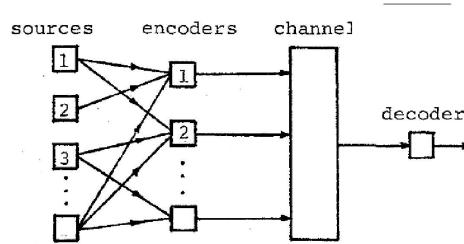


Figure 1: Generalised Multiple Access Channel with Correlated Sources.

- Define $\partial_k^- := \{j \in [J] : \exists \text{ a connection between user } k \text{ and message source } j\}$.
- Connections are specified via $\partial_k^- \subseteq [J], k \in [K]$. Alternatively, they are via $\partial_j^+ \subseteq [K], j \in [J]$. Let us call this system $\text{MAC}(J, K, 1)$ with dependence on ∂^- and $p_{Y|X_{[K]}}$ suppressed.
- $\mathcal{P} := \left\{ Z = U_{[J]} X_{[K]} Y \text{ that satisfy (1)–(5) below} \right\} :$
 - (1) U_j takes values in an arbitrary finite set $\mathbb{U}_j, j \in [J]$;
 - (2) X_k takes values in the given finite set $\mathbb{X}_k, k \in [K]$;
 - (3) Y takes values in the given finite set \mathbb{Y} ;
 - (4) $\exists f_k$ such that $f_k : \underbrace{\prod_{j \in \partial_k^-} \mathbb{U}_j}_{\mathbb{U}_k} \rightarrow \mathbb{X}_k, k \in [K]$,

satisfying $p_{X_k|U_{[J]}}(x_k|u_{[J]}) = p_{X_k|U_{\partial_k^-}}(x_k|u_{\partial_k^-}) = 1\{x_k = f_k(u_{\partial_k^-})\}$

(5)
$$p_{U_{[J]} X_{[K]} Y} = \left(\prod_{j \in [J]} p_{U_j} \right) \left(\prod_{k \in [K]} p_{X_k|U_{\partial_k^-}} \right) (p_{Y|X_{[K]}}).$$

Remark 1. $U_{[J]} \rightarrow X_{[K]} \rightarrow Y$.

- $\mathcal{P}^* := \left\{ Z = Q U_{[J]} X_{[K]} Y \text{ that satisfy (0)–(5) below} \right\} :$
 - (0) Q takes values in an arbitrary finite set \mathbb{Q} ;
 - (1) – (4) as above, with f_k replaced by $f_k(U_{\partial_k^-}|Q)$;
 - (5)
$$p_{Q U_{[J]} X_{[K]} Y} = p_Q \left(\prod_{j \in [J]} p_{U_j|Q} \right) \left(\prod_{k \in [K]} p_{X_k|U_{\partial_k^-} Q} \right) (p_{Y|X_{[K]}}).$$

- For $S \subseteq J$, define

$$\rho(S) := \begin{cases} 0, & \text{if } S = \emptyset \\ I(X_S; Y | QX_{S^c}) & \text{otherwise} \end{cases}$$

Note that $\rho(\cdot)$ is a submodular rank function.

- For $Z \in \mathcal{P}^*$, $\mathcal{C}(Z)$ is the polyhedron associated with the polymatroid $([J], \rho)$.
- Define \mathcal{C} and \mathcal{D} as before.

Theorem 1. $\mathcal{C}_{MAC}(J, K, 1) = \mathcal{C} = \mathcal{D}$.

Proof. Read Han.

No new elements except for a careful application of Fano's inequality, for each subset $S \subseteq [J]$. \square

Remark 2. *Cardinality bounds for \mathbb{Q} , and $\mathbb{U}_j, j \in [J]$ require a generalization of Caratheodory's theorem. Read Han's paper for cardinality bounds on \mathbb{U}_j when $|\mathbb{Q}| = 1$.*

2 Ahlswede–Ulrey–Han Generalisation – Multiple Output Terminals

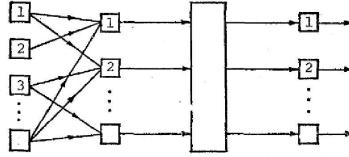


Figure 2: Multiple Access Channel with Correlated Sources and Multiple Output Terminals.

- Every output terminal is interested in all source symbols.
- One may view this as a compound channel. Two formulations possible: (1) $P_e^{(n)}(\ell) \leq \lambda, \forall \ell \in [L]$;
- (2) $P_e^{(n)} := \Pr\{g_\ell(Y_\ell^n) \neq W_{[J]}, \text{ for some } \ell \in [L]\} \leq \lambda$.
-

Remark 3. *(A simplification) The capacity of $MAC(J, K, L)$ with a general $p_{Y_{[L]}|X_{[K]}}$ is the same as the capacity of a $MAC(J, K, L)$ with*

$$\bar{p}_{Y_{[L]}|X_{[K]}} = \prod_{\ell \in [L]} p_{Y_\ell|X_{[K]}}.$$

This is because, given Y_ℓ , $P_e^{(n)}(\ell)$ does not depend on $Y_{[L] \setminus \{\ell\}}$.

-

Remark 4. *The channel capacity remains the same under the two formulations (because $\max_{\ell \in [L]} P_e^{(n)}(\ell) \leq P_e^{(n)} \leq \sum_{\ell \in [L]} P_e^{(n)}(\ell)$). So, we may restrict our attention to conditionally independent outputs.*

- We can therefore set $\mathcal{P}^* := \left\{ Z = QU_{[J]}X_{[K]}Y \text{ such that (0)–(5) below hold} \right\} :$

- (0) Q takes values in an arbitrary finite set \mathbb{Q} ;
- (0) – (4) holds as above, where in (4) f_k is replaced by $f_k(U_{\partial_k^-} | Q)$;
- (5)

$$p_{QU_{[J]}X_{[K]}Y} = p_Q \left(\prod_{j \in [J]} p_{U_j | Q} \right) \left(\prod_{k \in [K]} p_{X_k | U_{\partial_k^-} Q} \right) \left(\prod_{\ell \in [L]} p_{Y_\ell | X_{[K]}} \right).$$

- $\mathcal{C}(Z)$ is the polygon associated with $([K], \rho)$ where

$$\rho(S) := \min_{\ell \in [L]} \rho_\ell(S)$$

and

$$\rho_\ell(S) := I(U_S; Y_\ell | U_{S^c} Q)$$

Remark 5. ρ is not necessarily a rank function. See Fig. 3 below.

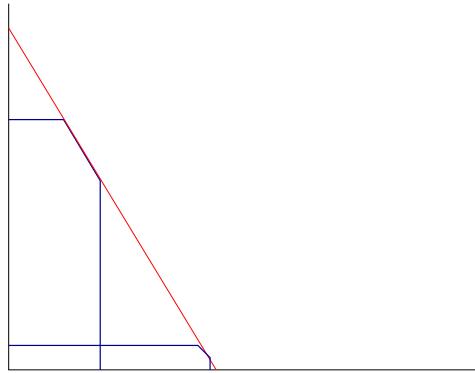


Figure 3: An example where $([2], \rho)$ is not a polymatroid.

Theorem 2. (Han, 79) $\mathcal{C}_{MAC}(J, K, L) = \text{closure} \left(\bigcup_{Z \in \mathcal{P}^*} \mathcal{C}(Z) \right) = \mathcal{C}$.

Proof. Typicality at each terminal is with respect to $T_\delta^{(n)}(QU_{[J]}X_{[K]}Y_{[L]})$. □

Remark 6. Cardinality bounds apply.

Note 1. $\mathcal{D} \subsetneq \mathcal{C}$. There is an error in Thm. 5.1 of Han. See Remark 2.2 of Han-Kobayashi p.53.

Example 1 (Gaussian). $Y = \sum_{k \in [K]} X_k + W_k$.

- $\bigcup_{Z \in \mathcal{P}^*} \mathcal{C}(Z) = \mathcal{C}(Z_G)$, where $Z_G = X_{[K],G}Y$, $X_{[K],G} \sim N(0, \text{diag}(P_1, P_2, \dots, P_K))$, so that
-

$$\mathcal{C}_{MAC}(K, K, 1) = \left\{ R \in \mathbb{R}_+^K : R(S) \leq \frac{1}{2} \log \left(1 + \frac{P(S)}{\sigma^2} \right), \forall S \subseteq [K] \right\}.$$

Example 2 (Gaussian vector MAC with noise covariance Σ).

$$\mathcal{C}_{MAC}(K, K, 1) = \left\{ R \in \mathbb{R}_+^K : R(S) \leq \frac{1}{2} \log \left| I_N + \sum_{k \in [K]} s_k P(S) s_k^T \right|, \forall S \subseteq [K] \right\}$$

where $s = [s_1, s_2, \dots, s_K]$, $s_k \in \mathbb{R}_+^N$, signature of user k .