Lecture 9 : Modified Interference Channel (I_{m})

Figure 1: Modified Interference Channel.

Proposition 1. If there is an $\left(n, M_{1}, M_{2}, M_{3}, M_{4}\right)$ code on I_{m} with $P_{e}^{(n)}\left(k ; I_{m}\right) \leqslant \lambda, k=1,2$ then there is an $\left(n, M_{1} M_{2}, M_{3} M_{4}\right)$ code on I with corresponding $P_{e}^{(n)}(k ; I) \leqslant \lambda, k=1,2$.

Proof. Consider the mappings

$$
y_{1}^{n} \xrightarrow{g_{1}} \widehat{w}_{1} \widehat{w}_{2} \widehat{w}_{4} \xrightarrow[{\xrightarrow{h_{1}}}]{\longleftrightarrow} \widehat{w}_{1} \widehat{w}_{2},
$$

Define $G_{1}:=h_{1}\left(g_{1}(\cdot)\right)$. Similarly define G_{2}. If G_{k} makes an error, so does g_{k}. So $P_{e}^{(n)}(k ; I) \leqslant$ $P_{e}^{(n)}\left(k ; I_{m}\right) \leqslant \lambda, k=1,2$.

Corollary: If $\left(r_{1}, r_{2}, r_{3}, r_{4}\right) \in \mathscr{C}_{I_{m}}$, then $\left(r_{1}+r_{2}, r_{3}+r_{4}\right) \in \mathscr{C}_{I}$.
Definition $1\left(\mathscr{P}^{*}\right)$.

$$
\mathscr{P}^{*}:=\left\{Z=Q U_{[4]} X_{[2]} Y_{[2]} \text { such that }(1)-(3) \text { below hold }\right\} .
$$

(1) $p_{U_{[4]} \mid Q}=\left.\prod_{j \in[4]} p_{U_{j}}\right|_{Q}$.
(2) $X_{1}=f_{1}\left(U_{1} U_{2} \mid Q\right), X_{2}=f_{2}\left(U_{3} U_{4} \mid Q\right)$, deterministic functions.
(3) $p_{Q U_{[4]} X_{[2]} Y_{[2]}}=p_{Q} \cdot\left(\prod_{j \in[4]} p_{U_{j} \mid Q}\right)\left(p_{X_{[2]} \mid U_{[4]} Q}\right)\left(p_{Y_{[2]} \mid X_{[2]}}\right)$.

Definition $2(\rho(S))$. Let $\sum_{1}:=\{1,2,4\}$, and $\sum_{2}:=\{2,3,4\}$. Define $\rho_{\ell}: 2^{[4]} \rightarrow \mathbb{R}_{+} \cup\{+\infty\}$ as

$$
\rho_{\ell}(S):= \begin{cases}0 & \text { if } S=\emptyset \\ I\left(U_{S} ; Y_{\ell} \mid U_{\sum_{\ell} \backslash S}, Q\right) & \text { if } S \subseteq \sum_{\ell} \\ \infty & \text { if } S \nsubseteq \sum_{\ell}\end{cases}
$$

Define $\rho(S):=\min \left\{\rho_{\ell}(S), \ell \in[L]\right\}$.

Definition 3.

$$
\mathscr{S}(Z):=\left\{r \in \mathbb{R}_{+}^{4}: r(S) \leqslant \rho(S), \forall S \subseteq[J]\right\}
$$

Lecture 9 : Modified Interference Channel (I_{m})-1

Definition 4.

$$
\mathscr{S}:=\text { closure }\left(\bigcup_{Z \in \mathscr{P}^{*}} \mathscr{S}(Z)\right)
$$

Definition 5.

$$
\mathscr{R}(Z):=\left\{\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}: R_{1}=r_{1}+r_{2}, R_{2}=r_{3}+r_{4} \text { for some } r \in \mathscr{S}(Z)\right\}
$$

Definition 6.

$$
\mathscr{R}:=\text { closure }\left(\bigcup_{Z \in \mathscr{P}^{*}} \mathscr{R}(Z)\right)
$$

Remark 1. Both \mathscr{R} and \mathscr{S} are convex.
Theorem 1. $\mathscr{S} \subseteq \mathscr{C}_{I_{m}}$ and consequently $\mathscr{R} \subseteq \mathscr{C}_{I}$.
Proof. Straight forward, via random coding, as in Ahlswede-Ulrey-Han generalisation, except that user 1 need not decode U_{3} and user $2 U_{1}$. Consequently, these conditions disappear and $\rho_{1}(S)=+\infty$ when $3 \in S$ and $\rho_{2}(S)=+\infty$ when $1 \in S$.

1 A simplification:

Theorem 2. For any $Z \in \mathscr{P}^{*}, \mathscr{R}(Z)$ is the polyhedron, $R_{1} \leqslant \rho_{1}, R_{2} \leqslant \rho_{2}, R_{1}+R_{2} \leqslant \rho_{12}, 2 R_{1}+R_{2} \leqslant$ $\rho_{10}, R_{1}+2 R_{2} \leqslant \rho_{20}$, for $\rho_{1}, \rho_{2}, \rho_{12}, \rho_{10}, \rho_{20}$ as in Eqns. (4.2) - (4.6) of HK 1981.

Proof. Fourier-Motzkin elimination. Straight forward, but tedious. It gives bounds only of the form $R_{1} \leqslant \cdots, R_{2} \leqslant \cdots, R_{1}+R_{2} \leqslant \cdots, R_{1}+2 R_{2} \leqslant \cdots, 2 R_{1}+R_{2} \leqslant \cdots$.

Remark 2. Suppose $\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ is a maximal extreme point of $\mathscr{S}(Z)\left(R_{1 e}=r_{1}+r_{2}\right.$, and $R_{2 e}=$ $r_{3}+r_{4}$). A decrease of Δ in $r_{1}+r_{2}$ may increase R_{2} by at most 2Δ (r_{3} may increase at most Δ. Similarly r_{4}. So $\Delta\left(r_{3}+r_{4}\right) \leqslant 2 \Delta$.) This implies $2 R_{1}+R_{2} \leqslant 2 R_{1 e}+R_{2 e}=$ constant. Similarly $R_{1}+2 R_{2} \leqslant$ constant.

