

Lecture 9 : Modified Interference Channel (I_m)

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

Figure 1: Modified Interference Channel.

Proposition 1. If there is an (n, M_1, M_2, M_3, M_4) code on I_m with $P_e^{(n)}(k; I_m) \leq \lambda$, $k = 1, 2$ then there is an $(n, M_1 M_2, M_3 M_4)$ code on I with corresponding $P_e^{(n)}(k; I) \leq \lambda$, $k = 1, 2$.

Proof. Consider the mappings

$$y_1^n \xrightarrow{g_1} \hat{w}_1 \hat{w}_2 \hat{w}_4 \xrightarrow{h_1} \hat{w}_1 \hat{w}_2,$$

Define $G_1 := h_1(g_1(\cdot))$. Similarly define G_2 . If G_k makes an error, so does g_k . So $P_e^{(n)}(k; I) \leq P_e^{(n)}(k; I_m) \leq \lambda$, $k = 1, 2$. \square

Corollary: If $(r_1, r_2, r_3, r_4) \in \mathcal{C}_{I_m}$, then $(r_1 + r_2, r_3 + r_4) \in \mathcal{C}_I$.

Definition 1 (\mathcal{P}^*).

$$\mathcal{P}^* := \{Z = QU_{[4]}X_{[2]}Y_{[2]} \text{ such that (1) - (3) below hold}\}.$$

$$(1) p_{U_{[4]}}|_Q = \prod_{j \in [4]} p_{U_j}|_Q.$$

$$(2) X_1 = f_1(U_1 U_2 | Q), X_2 = f_2(U_3 U_4 | Q), \text{ deterministic functions.}$$

$$(3) p_{QU_{[4]}X_{[2]}Y_{[2]}} = p_Q \cdot \left(\prod_{j \in [4]} p_{U_j}|_Q \right) \left(p_{X_{[2]}}|_{U_{[4]}Q} \right) \left(p_{Y_{[2]}}|_{X_{[2]}} \right).$$

Definition 2 ($\rho(S)$). Let $\sum_1 := \{1, 2, 4\}$, and $\sum_2 := \{2, 3, 4\}$. Define $\rho_\ell : 2^{[4]} \rightarrow \mathbb{R}_+ \cup \{+\infty\}$ as

$$\rho_\ell(S) := \begin{cases} 0 & \text{if } S = \emptyset \\ I(U_S; Y_\ell | U_{\sum_\ell \setminus S}, Q) & \text{if } S \subseteq \sum_\ell \\ \infty & \text{if } S \not\subseteq \sum_\ell. \end{cases}$$

Define $\rho(S) := \min\{\rho_\ell(S), \ell \in [L]\}$.

Definition 3.

$$\mathcal{S}(Z) := \{r \in \mathbb{R}_+^4 : r(S) \leq \rho(S), \forall S \subseteq [J]\}.$$

Definition 4.

$$\mathcal{S} := \text{closure} \left(\bigcup_{Z \in \mathcal{P}^*} \mathcal{S}(Z) \right).$$

Definition 5.

$$\mathcal{R}(Z) := \{(R_1, R_2) \in \mathbb{R}_+^2 : R_1 = r_1 + r_2, R_2 = r_3 + r_4 \text{ for some } r \in \mathcal{S}(Z)\}.$$

Definition 6.

$$\mathcal{R} := \text{closure} \left(\bigcup_{Z \in \mathcal{P}^*} \mathcal{R}(Z) \right).$$

Remark 1. Both \mathcal{R} and \mathcal{S} are convex.

Theorem 1. $\mathcal{S} \subseteq \mathcal{C}_{I_m}$ and consequently $\mathcal{R} \subseteq \mathcal{C}_I$.

Proof. Straight forward, via random coding, as in Ahlswede–Ulrey–Han generalisation, except that user 1 need not decode U_3 and user 2 U_1 . Consequently, these conditions disappear and $\rho_1(S) = +\infty$ when $3 \in S$ and $\rho_2(S) = +\infty$ when $1 \in S$. \square

1 A simplification:

Theorem 2. For any $Z \in \mathcal{P}^*$, $\mathcal{R}(Z)$ is the polyhedron, $R_1 \leq \rho_1$, $R_2 \leq \rho_2$, $R_1 + R_2 \leq \rho_{12}$, $2R_1 + R_2 \leq \rho_{10}$, $R_1 + 2R_2 \leq \rho_{20}$, for $\rho_1, \rho_2, \rho_{12}, \rho_{10}, \rho_{20}$ as in Eqns. (4.2) – (4.6) of HK 1981.

Proof. **Fourier–Motzkin elimination.** Straight forward, but tedious. It gives bounds only of the form $R_1 \leq \dots, R_2 \leq \dots, R_1 + R_2 \leq \dots, R_1 + 2R_2 \leq \dots, 2R_1 + R_2 \leq \dots$. \square

Remark 2. Suppose (r_1, r_2, r_3, r_4) is a maximal extreme point of $\mathcal{S}(Z)$ ($R_{1e} = r_1 + r_2$, and $R_{2e} = r_3 + r_4$). A decrease of Δ in $r_1 + r_2$ may increase R_2 by at most 2Δ (r_3 may increase at most Δ). Similarly r_4 . So $\Delta(r_3 + r_4) \leq 2\Delta$.) This implies $2R_1 + R_2 \leq 2R_{1e} + R_{2e} = \text{constant}$. Similarly $R_1 + 2R_2 \leq \text{constant}$.