Lecture 10 : Fourier-Motzkin elimination, outer bounds of interference channels Instructor: Rajesh Sundaresan Scribe: Premkumar K.

1 Fourier Motzkin elimination:

Solve $x_{1}, x_{2}, \cdots, x_{n}$ such that

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leqslant \quad b_{i}, \quad i=1,2, \cdots, m
$$

Pick a variable, say x_{n}. Eliminate it as follows. Assume $a_{i n} \neq 0$.

$$
a_{i n} x_{n} \leqslant b_{i}-\sum_{j=1}^{n-1} a_{i j} x_{j}, \quad i=1,2, \cdots, m
$$

If $a_{i n}>0$, then upper bound $x_{n} \leqslant \frac{b_{i}}{a_{i n}}-\sum_{j=1}^{n-1} \frac{a_{i j}}{a_{i n}} x_{j}=\beta_{i}$, otherwise lower bound $x_{n} \geqslant \alpha_{i}$. Eliminate x_{n} from all equations; replace by $\alpha_{i^{\prime}} \leqslant \beta_{i}$ for every i^{\prime}, i such that i^{\prime} yields a lower bound, i yields an upper bound. Let $L B_{n}$ and $U B_{n}$ be the set of indices that yield lower and upper bounds respectively. If this system has a solution in $n-1$ variables, then that solution with any x_{n} in $\left[\max _{i \in L B_{n}} \alpha_{i} \min _{i \in U B_{n}} \beta_{i}\right]$ is a solution to the original set.

2 Gaussian interference channel:

For the Gaussian interference channel defined earlier, $\mathscr{P}, \mathscr{P}^{*}$ depend on the power constraints P_{1} and P_{2}. Note the following definitions.

- $\mathscr{P}^{*}\left(P_{1}, P_{2}\right)=\left\{Z \in \mathscr{P}^{*}, \operatorname{Var}\left(X_{k}\right) \leqslant P_{k}, k=1,2\right\}$
- $\mathscr{P}\left(P_{1}, P_{2}\right)=\left\{Z \in \mathscr{P}^{*}\left(P_{1}, P_{2}\right)\right.$, with $\left.|\mathbb{Q}|=1\right\}$
- $\mathscr{G}=$ closure conv $\underset{Z \in \mathscr{P}\left(P_{1}, P_{2}\right)}{ } \mathscr{R}(Z)$
- $\mathscr{G}^{*}=$ closure $\bigcup_{Z \in \mathscr{P}^{*}\left(P_{1}, P_{2}\right)} \mathscr{R}(Z)$
- $\mathscr{P}^{\prime}\left(P_{1}, P_{2}\right)=\left\{Z \in \mathscr{P}\left(P_{1}, P_{2}\right): U_{1}, U_{2}, U_{3}, U_{4}\right.$ are Gaussian $\left., U_{1}+U_{2}=X_{1}, U_{3}+U_{4}=X_{2}\right\}$
- $\mathscr{G}^{\prime}=$ closure conv $\bigcup_{Z \in \mathscr{P}^{\prime}\left(P_{1}, P_{2}\right)} \mathscr{R}(Z)$.
- Questions: Does correlation in $U_{1} U_{2} U_{3} U_{4}$ help? Is $\mathscr{G}^{\prime} \subsetneq \mathscr{G}^{*}$? Is $\mathscr{G}^{*} \subsetneq \mathscr{G}^{\prime}$?

3 Outer bounds:

(1) DMC.

Definition 1 (П).

$$
\Pi:=\left\{Z=Q X_{1} X_{2} Y_{1} Y_{2} \widetilde{Y}_{1} \widetilde{Y}_{2} \widehat{Y}_{1} \widehat{Y}_{2} \text { such that }(1)-(2) \text { below hold }\right\} .
$$

Figure 1: A statistical model for outer bound.
(1) $p_{Z}=p_{Q}\left(p_{X_{1} \mid Q} p_{X_{2} \mid Q}\right)\left(p_{Y_{1} Y_{2} \mid X_{1} X_{2}}\right)\left(p_{\widetilde{Y}_{1} \tilde{Y}_{2} \mid X_{1} X_{2} Y_{1} Y_{2}}\right)\left(p_{\widehat{Y}_{2} \mid X_{1} Y_{1} \tilde{Y}_{1}}\right)\left(p_{\widehat{Y}_{1} \mid X_{2} Y_{2} \widetilde{Y}_{2}}\right)$.
(2) $p_{\widehat{Y}_{2} \mid X_{1} X_{2}}=p_{Y_{2} \mid X_{1} X_{2}}, p_{\widehat{Y}_{1} \mid X_{1} X_{2}}=p_{Y_{1} \mid X_{1} X_{2}}$.

Definition 2.

$$
\mathscr{R}_{\Pi}(Z):=\left\{\begin{aligned}
R_{1} & \leqslant I\left(X_{1} ; Y_{1} \mid X_{2} Q\right) \\
R_{2} & \leqslant I\left(X_{2} ; Y_{2} \mid X_{1} Q\right) \\
R_{1}+R_{2} & \left.\leqslant \min \left\{I\left(X_{1}, X_{2} ; Y_{1}\right) \in \widetilde{R}_{1}^{2} \mid Q\right), I\left(X_{1} X_{2} ; Y_{2} \widetilde{Y}_{2} \mid Q\right)\right\}
\end{aligned}\right\}
$$

Definition 3.

$$
\mathscr{R}_{\Pi}:=\text { closure } \bigcup_{Z \in \Pi} \mathscr{R}_{\Pi}(Z)
$$

Theorem 1. $\mathscr{C}_{I} \subseteq \mathscr{R}_{\Pi}$
Proof. (1) Fix $n, p_{Q}(i)=\frac{1}{n}, p_{X_{1} X_{2} Y_{1} Y_{2} \mid Q}\left(x_{1} x_{2} y_{1} y_{2} \mid i\right)=p_{X_{1 i} X_{2 i} Y_{1 i} Y_{2 i}}$. As in the MAC's converse, $R_{1} \leqslant I\left(X_{1} ; Y_{1} \mid X_{2} Q\right)$ and $R_{2} \leqslant I\left(X_{2} ; Y_{2} \mid X_{1} Q\right)$.
(2) - Now suppose the same codes are used in the new DMC with outputs $Y_{1} \widetilde{Y}_{1}$ at decoder 1 and $Y_{2} \widetilde{Y}_{2}$ at decoder 2.

- Decoder 1 gets $X_{1}^{n}, \widetilde{Y}_{1}^{n}, Y_{1}^{n}$; sends \widetilde{Y}_{1}^{n} to DMC $p_{\widehat{Y}_{2} \mid X_{1} Y_{1} \widetilde{Y}_{1}}$ to get \widehat{Y}_{2}^{n}, applies decoder 2's decode function to get \widehat{W}_{2} as reliably as decoder 2.
- Analogously, decoder 2 gets $\widehat{\widehat{W}}_{2}$ reliably, and moreover $\widehat{\widehat{W}}_{1}$ as reliably as decoder 1 .
- Using the converse to Ahlswede-Ulrey-Han generalisation, since both can decode, we have a compound DMC that satisfies

$$
\begin{aligned}
& R_{1}+R_{2} \leqslant I\left(X_{1} X_{2} ; Y_{1} \widetilde{Y}_{1} \mid Q\right) \\
& R_{1}+R_{2} \leqslant I\left(X_{1} X_{2} ; Y_{2} \widetilde{Y}_{2} \mid Q\right)
\end{aligned}
$$

