
E2–301 Topics in Multiuser Communication September 20, 2007

Lecture 10 : Fourier-Motzkin elimination, outer bounds of interference channels

Instructor: Rajesh Sundaresan Scribe: Premkumar K.

1 Fourier Motzkin elimination:

Solve x1, x2, · · · , xn such that

n∑

j=1

aijxj 6 bi, i = 1, 2, · · · ,m.

Pick a variable, say xn. Eliminate it as follows. Assume ain 6= 0.

ainxn 6 bi −
n−1∑

j=1

aijxj , i = 1, 2, · · · ,m.

If ain > 0, then upper bound xn 6
bi

ain
−
∑n−1

j=1
aij

ain
xj = βi, otherwise lower bound xn > αi. Eliminate

xn from all equations; replace by αi′ 6 βi for every i′, i such that i′ yields a lower bound, i yields an
upper bound. Let LBn and UBn be the set of indices that yield lower and upper bounds respectively.
If this system has a solution in n − 1 variables, then that solution with any xn in [ max

i∈LBn

αi min
i∈UBn

βi] is a

solution to the original set.

2 Gaussian interference channel:

For the Gaussian interference channel defined earlier, P,P∗ depend on the power constraints P1 and
P2. Note the following definitions.

• P∗(P1, P2) =
{
Z ∈ P∗,Var(Xk) 6 Pk, k = 1, 2

}

• P(P1, P2) =
{
Z ∈ P∗(P1, P2),with

∣∣ � ∣∣ = 1
}

• G = closure conv
⋃

Z∈P(P1,P2)

R(Z)

• G ∗ = closure
⋃

Z∈P∗(P1,P2)

R(Z)

• P ′(P1, P2) =
{
Z ∈ P(P1, P2) : U1, U2, U3, U4 are Gaussian , U1 + U2 = X1, U3 + U4 = X2

}

• G ′ = closure conv
⋃

Z∈P′(P1,P2)

R(Z).

• Questions: Does correlation in U1U2U3U4 help? Is G ′ ( G ∗? Is G ∗ ( G ′?

3 Outer bounds:

(1) DMC.

Definition 1 (Π).

Π :=
{
Z = QX1X2Y1Y2Ỹ1Ỹ2Ŷ1Ŷ2 such that (1) − (2) below hold

}
.
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Figure 1: A statistical model for outer bound.

(1) pZ = pQ

(
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∣∣Qp
X2

∣∣Q
)(

p
Y1Y2

∣∣X1X2

)(
p

eY1
eY2

∣∣X1X2Y1Y2

)(
p

bY2

∣∣X1Y1
eY1

)(
p

bY1

∣∣X2Y2
eY2

)
.

(2) p
bY2

∣∣X1X2

= p
Y2

∣∣X1X2

, p
bY1

∣∣X1X2

= p
Y1

∣∣X1X2

.

Definition 2.

RΠ(Z) :=





(R1, R2) ∈ � 2
+ :

R1 6 I(X1;Y1|X2Q)
R2 6 I(X2;Y2|X1Q)

R1 + R2 6 min
{

I
(
X1X2;Y1Ỹ1|Q

)
, I
(
X1X2;Y2Ỹ2|Q

)}





.

Definition 3.

RΠ := closure
⋃

Z∈Π

RΠ(Z)

Theorem 1. CI ⊆ RΠ

Proof. (1) Fix n, pQ(i) = 1
n
, pX1X2Y1Y2|Q(x1x2y1y2|i) = pX1iX2iY1iY2i

. As in the MAC’s converse,
R1 6 I(X1;Y1|X2Q) and R2 6 I(X2;Y2|X1Q).

(2) • Now suppose the same codes are used in the new DMC with outputs Y1Ỹ1 at decoder 1 and

Y2Ỹ2 at decoder 2.

• Decoder 1 gets Xn
1 , Ỹ n

1 , Y n
1 ; sends Ỹ n

1 to DMC pbY2|X1Y1
eY1

to get Ŷ n
2 , applies decoder 2’s

decode function to get Ŵ2 as reliably as decoder 2.

• Analogously, decoder 2 gets
̂̂
W 2 reliably, and moreover

̂̂
W 1 as reliably as decoder 1.

• Using the converse to Ahlswede–Ulrey–Han generalisation, since both can decode, we have a
compound DMC that satisfies

R1 + R2 6 I(X1X2;Y1Ỹ1|Q)

R1 + R2 6 I(X1X2;Y2Ỹ2|Q)
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