

Lecture 12 : Broadcast channels

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

1 Broadcast Channels:

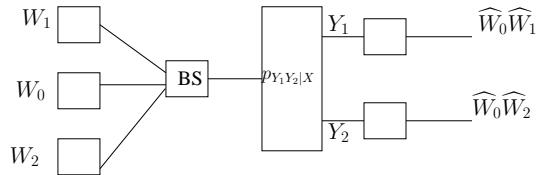


Figure 1: Broadcast Channel.

Example 1 [Television broadcast.] MAC($J, 1, L$). Every one needs to get everything.**Example 2** [Spanish and Dutch simultaneous newscast.]

- Transmitter can emit 1 word/second in either language.
- 2^{20} words \implies 20 bits/second to an user and 0 to the other.
- Timesharing gets all rate pairs in $R_1 + R_2 \leq 20$ bits/second.
- We can get more. Suppose $R_1 = R_2 = 10$ bits/second. By ordering Spanish and Dutch : $\binom{n}{n/2} \stackrel{\circ}{=} 2^{n^{h(1/2)}}$ \implies 1 bit/second extra (common, or can go to either user).

Example 3 [Blackwell Channel.] We anticipate $\mathcal{C}_{BC} \subseteq \mathcal{R}$, where

$$\begin{aligned} \mathcal{R} &= \text{clos.} \left\{ (R_1, R_2) \in \mathbb{R}_+^2 : R_1 \leq H(Y_1|Q), R_2 \leq H(Y_2|Q), R_1 + R_2 \leq H(Y_1Y_2|Q), \text{ for some } Z = QXY_1Y_2 \in \mathcal{P}^* \right\} \\ &= \text{clos. conv.} \left\{ (R_1, R_2) \in \mathbb{R}_+^2 : R_1 \leq H(Y_1), R_2 \leq H(Y_2), R_1 + R_2 \leq H(Y_1Y_2), \text{ for some } Z = XY_1Y_2 \in \mathcal{P} \right\} \end{aligned}$$

Example 4 [Scalar Gaussian Channel.]

$$\begin{aligned} Y_1 &= X + \xi_1 \\ Y_2 &= X + \xi_2 \end{aligned}$$

- $X, Y_k, \xi_k \in \mathbb{R}, k = 1, 2$
- $\mathbb{E}X^2 \leq P$
- $\xi_k \sim \mathcal{N}(0, \sigma^2), k = 1, 2$

Example 5 [Vector Gaussian Channel.]

$$\begin{aligned} Y_1 &= H_1X + \xi_1 \\ Y_2 &= H_2X + \xi_2 \end{aligned}$$

- $X, \xi_k \in \mathbb{R}^{n_t}, Y_k \in \mathbb{R}^{n_r}, k = 1, 2$

- $\mathbb{E}\|X\|^2 \leq P$
- $\xi_k \sim \mathcal{N}(\mathbf{0}, C_k), k = 1, 2$

Definition 1 (DM-BC). A (two user) discrete memoryless broadcast channel (DM-BC) denoted by $(\mathbb{X}, \mathbb{Y}_1, \mathbb{Y}_2, p_{Y_1 Y_2 | X}(y_1 y_2 | x))$, consists of three finite sets \mathbb{X}, \mathbb{Y}_1 and \mathbb{Y}_2 , and a collection of probability mass functions $p_{Y_1 Y_2 | X}(\cdot | x)$ on $\mathbb{Y}_1 \times \mathbb{Y}_2$, one for each $x \in \mathbb{X}$, with the interpretation that X is the input and Y_k is the output for user k . For $n \in \mathbb{N}$, with $X^n = (X_1, X_2, \dots, X_n)$ as inputs, the output sequence $Y_{[2]}^n$ has pmf

$$p_{Y_{[2]}^n | X^n}(y_{[2]}^n | x^n) = \prod_{i=1}^n p_{Y_{[2]} | X}(y_{[2]i} | x_i) \quad (1)$$

Definition 2 (Code). An (n, M_1, M_2) code for the channel $(\mathbb{X}, \mathbb{Y}_1, \mathbb{Y}_2, p_{Y_1 Y_2 | X}(y_1 y_2 | x))$ consists of the following:

1. An index set of messages for each user k , $\mathbb{W}_k = [M_k]$.
2. An encoder f , $f : [M_1] \times [M_2] \rightarrow \mathbb{X}^n$. The codebook can be represented by an ordered set

$$c = \left\{ f(\{1, 1\}), f(\{1, 2\}), \dots, f(\{1, M_2\}); f(\{2, 1\}), f(\{2, 2\}), \dots, f(\{M_1, M_2\}) \right\}.$$

3. A decoding rule, $g_k : \mathbb{Y}_k^n \rightarrow \phi \cup \mathbb{W}_k, k = 1, 2$, i.e., $y_k^n \mapsto g_k(y_k^n) = \hat{w}_k \in \phi \cup \mathbb{W}_k$.

Definition 3 (Probability of error). Let $W_1 W_2$ be the message transmitted and let $Y_{[2]}^n$ be the signal received. The conditional probability of error of user k when $(W_1 W_2) = (w_1 w_2)$ was transmitted is given by

$$P_{e, w_1 w_2}^{(n)}(c; k) = \Pr \left\{ g_k(Y_k^n) \neq W_k \mid W_1 W_2 = w_1 w_2 \right\}, k = 1, 2.$$

The average probability of error of user k for the code c is given by

$$P_e^{(n)}(c; k) = \frac{1}{M_1 M_2} \sum_{w_1 w_2} P_{e, w_1 w_2}^{(n)}(c; k), k = 1, 2$$

Note that the above equation assumes that all messages are equally likely and the users choose their messages independently.

Definition 4 (Achievability). The rate pair (R_1, R_2) is achievable, if for every $\eta > 0, \lambda \in (0, 1)$, there exists a sequence of (n, M_1, M_2) codes that satisfy

1. $P_e^{(n)}(k) \leq \lambda, k = 1, 2$, and
2. $\frac{\log_2 M_k}{n} \geq R_k - \eta, k = 1, 2$.

Definition 5 (Capacity region). The capacity region is the set of all achievable rate pairs, denoted by \mathcal{C}_{BC} .

Remark 1. • \mathcal{C}_{BC} is closed and convex. Moreover, $R \in \mathcal{C}_{BC}$, R dominates $r \implies r \in \mathcal{C}_{BC}$.

- \mathcal{C}_{BC} depends on $p_{Y_{[2]} | X}$ only through $p_{Y_1 | X}$ and $p_{Y_2 | X}$.
- Yet again, we are looking for a single letter characterisation (open).
- Solved:

1. Degraded BC, component-wise degradation (Bergmans, Gallager).

2. Vector MIMO GBC (degraded or not) (Weingarten, Steinberg, Shamai).
3. Deterministic BC, (Pinsker–Marton).
4. One user's channel is deterministic (Gelfand–Pinsker–Marton).
5. Less noisy, more capable (Körner–Marton, ElGamal).

Definition 6 (Degraded). $p_{Y_2|X}$ is a degraded form of $p_{Y_1|X}$ if $\exists p_{Y_2|Y_1}$ such that

$$p_{Y_2|X}(y_2|x) = \sum_{y_1} p_{Y_2|Y_1}(y_2|y_1) p_{Y_1|X}(y_1|x)$$

Definition 7 (Less noisy). $p_{Y_2|X}$ is less noisy than $p_{Y_1|X}$ if $U \rightarrow X \rightarrow Y_{[2]}$ implies $I(U; Y_1) \geq I(U; Y_2)$.

Definition 8 (More capable). $p_{Y_1|X}$ is more capable than $p_{Y_2|X}$ if $I(U; Y_1) \geq I(U; Y_2), \forall p_X$.

Remark 2. • Degraded \implies less noisy \implies more capable.

- Exercise: 1) Identify a less noisy channel that is not degraded. 2) Also, identify a more capable channel that is not less noisy.

Example 6 [Degraded and therefore less noisy and more capable channel]

$$\begin{aligned} Y_1 &= X + \xi_1, \quad \xi_1 \sim \mathcal{N}(0, \sigma_1^2) \\ Y_2 &= X + \xi_2, \quad \xi_2 \sim \mathcal{N}(0, \sigma_2^2), \sigma_2 \geq \sigma_1 \\ &= X + \tilde{\xi}_1 + \tilde{\xi}_2 \end{aligned}$$

Example 7 [BSC(p_1), BSC(p_2), $p_1 \leq p_2 < 1/2$]

Suppose we write $p_2 = (1 - p_1)\alpha + (1 - \alpha)p_1 = p_1 + \alpha(1 - 2p_1) > p_1$

2 Coding for the degraded BC

We expect user 1 should decode user 2's information. Let U be an auxiliary random variable representing user 2's message.

Theorem 1. If $X \rightarrow Y_1 \rightarrow Y_2$ (degraded BC) then

$$\mathcal{C} = \text{clo. conv.} \left\{ (R_1, R_2) \in \mathbb{R}_+^2 : \begin{array}{l} R_1 \leq I(X; Y_1|U) \\ R_2 \leq I(U; Y_2) \\ \text{for some } U \rightarrow X \rightarrow Y_1 \rightarrow Y_2 \text{ with } |U| < \infty. \end{array} \right\}$$

- Achievability can be proved by random-coding argument.
- Converse is an exercise.
- We will prove both as specialisations of a more general result.
- Converse is unnecessary. The set with union over all $U \rightarrow X \rightarrow Y_1 \rightarrow Y_2$ is already converse.

Example 8 [D-GBC]

Achievability:

$$\begin{aligned} U &\sim \mathcal{N}(0, (1-t)P) \\ X &= U + V, \quad V \sim \mathcal{N}(0, tP), V \perp\!\!\!\perp U. \\ I(U; Y_2) &= \frac{1}{2} \log \left(1 + \frac{(1-t)P}{tP + \sigma_2^2} \right) \\ I(X; Y_1|U) &= \frac{1}{2} \log \left(1 + \frac{tP}{\sigma_1^2} \right) \end{aligned}$$

$$\mathcal{C} = \text{clo. conv.} \left\{ (R_1, R_2) \in \mathbb{R}_+^2 : \begin{array}{l} R_1 \leq \frac{1}{2} \log \left(1 + \frac{tP}{\sigma_1^2} \right) \\ R_2 \leq \frac{1}{2} \log \left(1 + \frac{(1-t)P}{tP + \sigma_2^2} \right), \\ t \in [0, 1] \end{array} \right\}$$

Direct part is clear. Converse requires entropy power inequality (along with the more general GBC).

Example 9 [BSC(p_1), BSC(p_2), $p_1 \leq p_2 < 1/2$]

Let $U \in \{0, 1\}$, equiprobable; $U \xrightarrow{\text{BSC}(\beta)} X \xrightarrow{\text{BSC}(p_1)} Y_1 \xrightarrow{\text{BSC}(\alpha)} Y_2$

$$\begin{aligned} I(U; Y_2) &= 1 - H(\beta \star p_2), \quad \text{where } \beta \star p_2 = \beta(1 - p_2) + (1 - \beta)p_2 \\ I(X; Y_1|U) &= H(Y_1|U) - H(Y_1|X, U) \\ &= H(\beta \star p_1) - H(Y_1|X) \\ &= H(\beta \star p_1) - H(p_1). \end{aligned}$$

$$\mathcal{C} = \text{clo. conv.} \left\{ (R_1, R_2) \in \mathbb{R}_+^2 : \begin{array}{l} R_1 \leq H(\beta \star p_1) - H(p_1) \\ R_2 \leq 1 - H(\beta \star p_2), \\ \beta \in [0, 1/2] \end{array} \right\}$$

Direct part is clear. Converse requires showing that uniform U , symmetric BSC(β) are sufficient to get the largest region.

3 DBC

- $\mathcal{P} := \left\{ Z = U_{[3]}XY_{[2]} \text{ such that satisfy (0)–(3) hold} \right\} :$
 - (0) $U_{[3]} \in \mathbb{U}_{[3]}$ an arbitrary finite set;
 - (1) $X \in \mathbb{X}, Y_k \in \mathbb{Y}_k, k = 1, 2$ where \mathbb{X}, \mathbb{Y}_k are arbitrary finite sets;
 - (2) $p_Z = p_{U_{[3]}} p_{X|U_{[3]}} p_{Y_{[2]}|X}$, i.e., $U_{[3]} \rightarrow X \rightarrow Y_{[2]}$;
 - (3) $p_{Y_{[2]}|X}$ is the given channel.
- $\mathcal{R}(Z) := \left\{ (R_1, R_2) \in \mathbb{R}_+^2 : \begin{array}{l} R_1 \leq I(U_0U_1; Y_1) \\ R_2 \leq I(U_0U_2; Y_2) \\ R_1 + R_2 \leq \min \{I(U_0; Y_1), I(U_0; Y_2)\} \\ \quad + I(U_1; Y_1|U_0) + I(U_2; Y_2|U_0) - I(U_1; U_2|U_0) \end{array} \right\}$
- $\mathcal{R} := \text{clo. } \bigcup_{Z \in \mathcal{P}} \mathcal{R}(Z)$

Remark 3. • $U_0U_1U_2$ independent (appear to decrease the capacity region, but other components may be large to compensate for $I(U_1; U_2|U_0)$).

- U_0 is decoded by both, U_k by user k .

Lemma 2. \mathcal{R} is convex.

Proof. We will prove $\bigcup_{Z \in \mathcal{P}} \mathcal{R}(Z)$ is convex. Let $R^{(\ell)} \in \bigcup_{Z \in \mathcal{P}} \mathcal{R}(Z)$, $\ell = 1, 2$. Then $\exists Z^{(\ell)}, \ell = 1, 2$ such that $R^{(\ell)} \in \mathcal{R}(Z^{(\ell)})$. Fix $\lambda \in (0, 1)$, arbitrary.

- Define $Z = \overline{U}_0 U_1 U_2 X Y_1 Y_2$ as follows:

$\overline{U}_0 U_1 U_2 X Y_1 Y_2 = ((Q U_0^{(Q)}), U_1^{(Q)}, U_2^{(Q)})$, $Q \in \{1, 2\}$, $p_Q(1) = \lambda$. Therefore, $p_{\overline{U}_0 U_1 U_2} = p_Q(\ell) p_{U_0^{(\ell)}} p_{U_1^{(\ell)}} p_{U_2^{(\ell)}}$. Since $Z^{(\ell)} \in \mathcal{P}$, so does Z since 1) given $U_0^{(\ell)} U_1^{(\ell)} U_2^{(\ell)}$, X does not depend on ℓ , and 2) given $X, Y_{[2]}$ does not depend on $\overline{U}_0 U_1 U_2$.

- Consider terms with $I(\cdot^{(\ell)}; \cdot^{(\ell)} | U_0^{(\ell)})$. Averaging, we get $I(\cdot, \cdot; \overline{U}_0)$.

- $I(U_0^{(\ell)}; Y_k^{(\ell)})$: Averaging, we get $I(U_0; Y_k | Q) \leq I(Q U_0; Y_k) = I(\overline{U}_0; Y_k)$.

-

$$\begin{aligned}
& \lambda \min \left\{ I(U_0^{(1)}; Y_1^{(1)}), I(U_0^{(1)}; Y_2^{(1)}) \right\} + (1 - \lambda) \min \left\{ I(U_0^{(2)}; Y_1^{(2)}), I(U_0^{(2)}; Y_2^{(2)}) \right\} \\
& \leq \min \left\{ I(U_0; Y_1 | Q), I(U_0; Y_2 | Q) \right\} \\
& \leq \min \left\{ I(U_0 Q; Y_1), I(U_0 Q; Y_2) \right\} \\
& = \min \left\{ I(\overline{U}_0; Y_1), I(\overline{U}_0; Y_2) \right\}
\end{aligned}$$

- So $\lambda R^{(1)} + (1 - \lambda) R^{(2)} \in \mathcal{R}(Z)$.

- Closure of a convex set is convex.

□

Remark 4. Convexification is not necessary.