Lecture 15 : Connections between Superposition and Marton's Theorem

A Connections between superposition and Marton's Theorem

- We may consider, as did Han - Kobayashi in their interference channel paper, superposition. This was Cover's technique (1975), the basis for HK's result.
- Consider U_{0}, U_{1}, U_{2} independent. U_{0} decoded by both. U_{1} and U_{2} by users 1 and 2 respectively.

$$
\begin{aligned}
\mathscr{P}_{1} & :=\left\{Z=U_{[|3|]} X Y_{[2]}\right\} \\
\text { and } \mathscr{P}_{1}^{*} & :=\left\{Z=Q U_{[|3|]} X Y_{[2]}, \quad \text { with } U_{0} U_{1} U_{2} \text { consitionally independent given } Q\right\}
\end{aligned}
$$

- Define

$$
\mathscr{S}(Z)=\left\{\left(r_{1}, r_{2}, r_{0}\right) \left\lvert\, \begin{array}{rc}
r_{0} & \leqslant I\left(U_{0} ; Y_{1} \mid U_{1} Q\right) \\
r_{1} & \leqslant I\left(U_{1} ; Y_{1} \mid U_{0} Q\right) \\
r_{0}+r_{1} & \leqslant I\left(U_{0} U_{1} ; Y_{1} \mid Q\right) \\
r_{0} & \leqslant I\left(U_{0} ; Y_{2} \mid U_{2} Q\right) \\
r_{2} & \leqslant I\left(U_{2} ; Y_{2} \mid U_{0} Q\right) \\
r_{0}+r_{2} & \leqslant I\left(U_{0} U_{2} ; Y_{2} \mid Q\right)
\end{array}\right.\right\}
$$

- Intersection of two polymatroids in 2 dimensions, extended to three dimensions in different directions. $\mathscr{S}^{*}:=\mathrm{cl} \bigcup_{Z \in \mathscr{P}_{1}^{*}} \mathscr{S}(Z)$ is achievable with common information.
- (Cover, 1975) Define $\mathscr{S}:=$ cl. conv $\bigcup_{Z \in \mathscr{P}_{1}} \mathscr{S}(Z)=$ cl. conv. \mathscr{S}_{0}.

Moreover

$$
\begin{aligned}
\mathscr{D} & :=\text { closure }\left\{\left(r_{1}+s_{1}, r_{2}+s_{2}\right):\left(r_{1}, r_{2}, s_{1}+s_{2}\right) \in \mathscr{S}\right\} \\
\mathscr{D}_{0} & :=\text { closure conv }\left\{\left(r_{1}+s_{1}, r_{2}+s_{2}\right):\left(r_{1}, r_{2}, s_{1}+s_{2}\right) \in \mathscr{S}_{0}\right\} \\
\mathscr{D}^{*} & :=\text { closure }\left\{\left(r_{1}+s_{1}, r_{2}+s_{2}\right):\left(r_{1}, r_{2}, s_{1}+s_{2}\right) \in \mathscr{S}^{*}\right\} \\
\mathscr{D}_{0}^{*} & :=\text { closure }\left\{\left(r_{1}+s_{1}, r_{2}+s_{2}\right):\left(r_{1}, r_{2}, s_{1}+s_{2}\right) \in \mathscr{S}_{0}^{*}\right\}
\end{aligned}
$$

- Hajek-Pursley (1979) consider \mathscr{D}_{0} and show that

$$
\mathscr{D}_{0}=\text { closure conv }\left\{\left(R_{1}, R_{2}\right) \left\lvert\, \begin{array}{c}
R_{1} \leqslant I\left(U_{0} U_{1} ; Y_{1}\right) \\
R_{2} \leqslant I\left(U_{0} U_{2} ; Y_{2}\right) \\
R_{1}+R_{2} \leqslant \min \left\{I\left(U_{0} ; Y_{k}\right), k=1,2\right\}+I\left(U_{1} ; Y_{1} \mid U_{0}\right)+I\left(U_{2} ; Y_{2} \mid U_{0}\right) \\
\\
\\
\text { such that } 1) U_{[|3|]} \rightarrow X \rightarrow Y_{[2]}, \\
2) U_{[|3|]} \text { are independent. }
\end{array}\right.\right\}
$$

- Can easily extend equivalence of \mathscr{D}^{*} with

$$
\text { closure }\left\{\begin{aligned}
R_{1} & \leqslant I\left(U_{0} U_{1} ; Y_{1} \mid Q\right) \\
R_{2} & \leqslant I\left(U_{0} U_{2} ; Y_{2} \mid Q\right) \\
\left(R_{1}, R_{2}\right) \in \mathbb{R}_{+}^{2}: & \left.\begin{array}{rl}
\\
R_{1}+R_{2} & \leqslant \min \left\{I\left(U_{0} ; Y_{k} \mid Q\right), k=1,2\right\}+I\left(U_{1} ; Y_{1} \mid U_{0} Q\right)+I\left(U_{2} ; Y_{2} \mid U_{0} Q\right) \\
& \text { for some } Q U_{[|3|]} X Y_{[2]} \text { that satisfies } \\
& 1) \text { Given } Q, U_{0} U_{1} U_{2} \text { are mutually independent, } \\
& 2) Q U_{0} U_{1} U_{2} \rightarrow X \rightarrow Y_{[2]}
\end{array}\right\}
\end{aligned}\right\}
$$

Lecture 15 : Connections between Superposition and Marton's Theorem-1

- With $Q \bar{U}_{0}$, it is easy to see that this region belongs to Marton's region.
- Inclusion in the other direction, or otherwise is not known, i.e., given $Q, U_{0} U_{1} U_{2}$ may lead to a larger region. Marton shows $\mathscr{R} \supsetneq \mathscr{D}_{0}$
- Is $\mathscr{D}_{0}=\mathscr{D}$?
$\mathscr{S}_{0}=\bigcup_{Z \in \mathscr{P}_{1}} \mathscr{S}(Z), \mathscr{S}=$ closure conv \mathscr{S}_{0}.
- Clearly, since $\mathscr{S}_{0} \subseteq \mathscr{S}$, we have $\mathscr{D}_{0} \subseteq \mathscr{D}$.
- Let $\left(R_{1}, R_{2}\right) \in\left\{\left(r_{1}+s_{1}, r_{2}+s_{2}\right):\left(r_{1}, r_{2}, s_{1}+s_{2}\right) \in \mathscr{S}\right\}$.
$\Longrightarrow \exists s_{1} \geqslant 0, s_{2} \geqslant 0$ with $\left(r_{1}, r_{2}, s_{1}+s_{2}\right) \in \mathscr{S}$. If $\left(r_{1}, r_{2}, s_{1}+s_{2}\right) \in \mathscr{S}_{0}$, then $\left(R_{1}, R_{2}\right) \in \mathscr{D}_{0}$ and we are done. If $\left(r_{1}, r_{2}, s_{1}+s_{2}\right)$ is a limit point of conv \mathscr{S}_{0}, then an ϵ ball around this contains an $\left(r_{1}^{\prime}, r_{2}^{\prime}, s_{1}^{\prime}+s_{2}^{\prime}\right) \in \operatorname{conv} \mathscr{S}_{0},\left(r_{1}^{\prime}, r_{2}^{\prime}, s_{1}^{\prime}+s_{2}^{\prime}\right) \neq\left(r_{1}, r_{2}, s_{1}+s_{2}\right)$, i.e.,

$$
\left(r_{1}^{\prime}, r_{2}^{\prime}, s_{1}^{\prime}+s_{2}^{\prime}\right)=\sum_{\ell=1}^{L} \lambda_{\ell} \underbrace{\left(r_{1}^{\prime}(\ell), r_{2}^{\prime}(\ell), s_{1}^{\prime}(\ell)+s_{2}^{\prime}(\ell)\right)}_{\in \mathscr{S}_{0}} .
$$

- If we split $s_{1}^{\prime}+s_{2}^{\prime}$ into $s_{1}^{\prime}, s_{2}^{\prime}$ close enough to s_{1}, s_{2}, yet positive, and furthermore split $s_{1}^{\prime}, s_{2}^{\prime}$ into $s_{1}^{\prime}(\ell), s_{2}^{\prime}(\ell)$, positive, we get

$$
\left(r_{1}^{\prime}+s_{1}^{\prime}, r_{2}^{\prime}+s_{2}^{\prime}\right)=\underbrace{\sum_{\ell=1}^{L} \lambda_{\ell} \underbrace{\left(r_{1}^{\prime}(\ell)+s_{1}^{\prime}(\ell), r_{2}^{\prime}(\ell)+s_{2}^{\prime}(\ell)\right)}_{\in\left\{\left(r_{1}+s_{1}, r_{2}+s_{2}\right):\left(r_{1}, r_{2}, s_{1}+s_{2}\right) \in \mathscr{S}_{0}\right\}}}_{\in \operatorname{conv}\left\{\left(r_{1}+s_{1}, r_{2}+s_{2}\right):\left(r_{1}, r_{2}, s_{1}+s_{2}\right) \in \mathscr{S}_{0}\right\}} .
$$

If $\left(r_{1}^{\prime}+s_{1}^{\prime}, r_{2}^{\prime}+s_{2}^{\prime}\right) \neq\left(r_{1}+s_{1}, r_{2}+s_{2}\right)$, we will have shown $\left(r_{1}+s_{1}, r_{2}+s_{2}\right)$ is a limit point of the conv. $\left\{\left(r_{1}+s_{1}, r_{2}+s_{2}\right):\left(r_{1}, r_{2}, s_{1}+s_{2}\right) \in \mathscr{S}_{0}\right\}$, and hence in \mathscr{D}_{0}.

- Note that once a suitable $s_{1}^{\prime}, s_{2}^{\prime}$ is picked, since $s_{1}^{\prime}+s_{2}^{\prime}$ is fixed and equals $\sum_{\ell=1}^{L} \lambda_{\ell}\left(s_{1}^{\prime}(\ell)+s_{2}^{\prime}(\ell)\right)$, the individual $s_{1}^{\prime}(\ell), s_{2}^{\prime}(\ell)$ may be picked arbitrarily $\left(s_{1}^{\prime}(\ell) \geqslant 0, s_{2}^{\prime}(\ell) \geqslant 0, s_{1}^{\prime}(\ell)+s_{2}^{\prime}(\ell)=\right.$ a given value).
- If $s_{1}=s_{2}=0$.
- Suppose $s_{1}^{\prime}+s_{2}^{\prime}=0$. Then $s_{1}^{\prime}=s_{2}^{\prime}=0$ and since $\left(r_{1}^{\prime}, r_{2}^{\prime}, 0\right) \neq\left(r_{1}, r_{2}, 0\right)$, we must have $\left(r_{1}+s_{1}, r_{2}+s_{2}\right) \neq\left(r_{1}^{\prime}+s_{1}^{\prime}, r_{2}^{\prime}+s_{2}^{\prime}\right)$.
- Suppose $s_{1}^{\prime}+s_{2}^{\prime}>0$. If $r_{1} \neq r_{1}^{\prime}$ choose $s_{1}^{\prime}=0$; else choose $s_{2}^{\prime}=0$. Then $\left(r_{1}+s_{1}, r_{2}+s_{2}\right) \neq$ $\left(r_{1}^{\prime}+s_{1}^{\prime}, r_{2}^{\prime}+s_{2}^{\prime}\right)$.
- If $s_{1}>0, s_{2}>0$. Take ϵ sufficiently small so that $s_{1}-\epsilon>0, s_{2}-\epsilon>0$.
- If $r_{1} \neq r_{1}^{\prime}$, choose $s_{1}^{\prime}=s_{1}$; else choose $s_{2}^{\prime}=s_{2}$. (In this case $r_{1}=r_{1}^{\prime}$. If $s_{1}^{\prime}=s_{2}$, then we must have $\left.r_{2}^{\prime}=r_{2}\right)$. This ensures $\left(r_{1}^{\prime}+s_{1}^{\prime}, r_{2}^{\prime}+s_{2}^{\prime}\right) \neq\left(r_{1}+s_{1}, r_{2}+s_{2}\right)$.
- If $s_{1}=0, s_{2}>0$.
- If $r_{1}^{\prime} \neq r_{1}$, choose $s_{1}^{\prime}=0$.
- If $r_{1}^{\prime}=r_{1}$.

Suppose $r_{2}^{\prime}-r_{2} \neq s_{1}+s_{2}-s_{1}^{\prime}-s_{2}^{\prime}$. Then set $s_{1}^{\prime}=0$. Then too $r_{2}^{\prime}+s_{2}^{\prime} \neq r_{2}+s_{2}$.

- If $r_{1}^{\prime}=r_{1}$ and $r_{2}^{\prime}-r_{2}=s_{2}-s_{1}^{\prime}-s_{2}^{\prime}$ (under $s_{1}=0, s_{2}>0$). Choose $s_{1}^{\prime}=\frac{\left|s_{1}+s_{2}-\left(s_{1}^{\prime}+s_{2}^{\prime}\right)\right|}{2}(\leqslant \epsilon)$. ϵ small enough so that $\epsilon<2 s_{2} / 3$.
Then set $s_{2}^{\prime}+\frac{\left|s_{1}+s_{2}-\left(s_{1}^{\prime}+s_{2}^{\prime}\right)\right|}{2}=s_{2}^{\prime}+s_{1}^{\prime} \geqslant s_{2}+s_{1}^{\prime}-\epsilon$
$\Longrightarrow s_{2}^{\prime} \geqslant 0,\left|s_{2}-s_{2}^{\prime}\right| \leqslant 3 \epsilon / 2$.
Thus $d\left(\left(r_{1}+s_{1}, r_{2}+s_{2}\right),\left(r_{1}^{\prime}+s_{1}^{\prime}, r_{2}^{\prime}+s_{2}^{\prime}\right)\right) \leqslant \sqrt{\frac{9 \epsilon^{2}}{4} \times 2}=\frac{3}{\sqrt{2}} \epsilon\left(\right.$ and $\left(r_{1}+s_{1}, r_{2}+s_{2}\right) \neq$ $\left.\left(r_{1}^{\prime}+s_{1}^{\prime}, r_{2}^{\prime}+s_{2}^{\prime}\right)\right)$. Thus $\mathscr{D}=\mathscr{D}_{0}$.

