Lecture 17 : Multi-terminal Distributed Source Coding

 $Instructor:\ Rajesh\ Sundaresan$

Scribe: Premkumar K.

1 Example:

- Temperatures measured at Palace road meteorological centre and at IISc. Call them X, Y.
- Temperatures X and Y to be sent to New Delhi.
- IISc and Palace road centre, being geographically separated, have to do separate encoding.
- The simplest method is $R_1 = H(X)$ and $R_2 = H(Y)$.
- When X and Y are independent, one can not do any better than the above, since even if they cooperate, to obtain $\widehat{X}\widehat{Y}$ with high reliability $R_1 + R_2 \ge H(XY) = H(X) + H(Y)$.
- $R_1 = H(X), R_2 = H(Y)$ achieves it with no need for cooperation.
- Suppose

$$Y \hspace{.1in} = \hspace{.1in} \left\{ \begin{array}{cc} X \hspace{.1in} w.p.1/2 \\ X-1 \hspace{.1in} w.p.1/2 \end{array} \right.$$

IISc can send just one bit; odd or even. 1 bit = H(Y|X), achievable even if X is unknown.

• Key: universal source compression.

2 Definitions

Definition 1 (DMS). A (two user) discrete memoryless source (DMS) denoted by (X_1, X_2) , consists of two finite sets X_1 and X_2 , with the interpretation that X_k is the input to encoder k, k = 1, 2 and for $n \in \mathbb{N}$, with $X_k^n = (X_{k1}, X_{k2}, \dots, X_{kn})$, k = 1, 2 has a pmf

$$p_{X_{[2]}^n}(x_{[2]}^n) = \prod_{i=1}^n p_{X_{[2]}}(x_{[2]i})$$
(1)

Note: The successive output symbols of the source are independently drawn from $\mathbb{X}_{[2]}$ where as there could be a correlation between the components of $X_{[2],i}$.

Definition 2 (Code). An (n, M_1, M_2) <u>distributed source code</u> for the DMS (X_1, X_2) consists of the following:

Lecture 17 : Multi-terminal Distributed Source Coding-1

- 1. An index set of messages for each user k, $\mathbb{W}_k = [M_k]$.
- 2. An encoder f_k for each user k, $f_k : \mathbb{X}_k^n \to \mathbb{W}_k, k = 1, 2$. Note that $\mathbb{X}_k^n \ni X_k^n \mapsto f_k(X_k^n) \in \mathbb{W}_k$.
- 3. A decoding rule, $g: \mathbb{W}_1 \times \mathbb{W}_2 \to \phi \cup (\mathbb{X}_1^n \times \mathbb{X}_2^n)$, i.e., $W_{[2]} \mapsto g(W_{[2]}) = \widehat{X}_{[2]}^n \in \phi \cup (\mathbb{X}_1^n \times \mathbb{X}_2^n)$.

Definition 3 (Probability of error). Let $W_{[2]}^n$ be the message transmitted. The probability of error for the distributed source code c (when the symbols $X_{[2]}^n$ come from a DMS) is given by

$$P_e^{(n)}(c) = Pr\left\{g\left(f_1(X_1^n), f_2(X_2^n)\right) \neq X_1^n X_2^n\right\}.$$

Definition 4 (Achievability). The rate pair (R_1, R_2) is <u>achievable</u>, if for every $\eta > 0, \lambda \in (0, 1)$, there exists a sequence of (n, M_1, M_2) distributed source codes that satisfy

1. $P_e^{(n)} \leq \lambda$, and 2. $\frac{\log_2 M_k}{n} \leq R_k + \eta$.

Definition 5 (Achievable rate region). The achievable rate region is the set of all achievable rate pairs.

Lemma 1. The achievable rate region is a closed convex set.

Proof. Exercise.

Theorem 2. (Slepian-Wolf) The achievable rate region is

$$\left\{ (R_1, R_2) \in \mathbb{R}^2_+ \; \left| \begin{array}{ccc} R_1 & \geqslant & H(X_1 | X_2) \\ R_2 & \geqslant & H(X_2 | X_1) \\ R_1 + R_2 & \geqslant & H(X_1 X_2) \end{array} \right\} \right.$$

Remark 1. • Joint decoding with X_1^n supplied to encoder 2 and vice versa will also yield this rate region.

- SW theorem says we can do this without the knowledge of encoder 2's observation (and similarly encoder 1's observation is not known at encoder 2).
- Consider Example 1. Palace road compresses H(X) bits. IISc compresses to H(Y|X) = 1 bit. Code: IISc indicates odd/even.
- Since $H(X_2|X_1)$ is known, we have a non-stationary but independent (over time) source $\prod_{i=1}^{n} p(y_i|x_{1i})$, given x_1^n . Of course x_1^n is not observed. We have a universal code to compress this independent non-stationary source at its average entropy $H(X_2|X_1)$. Someone who knows X_1^n now reconstructs X_2^n .
- Not too surprising, since we know of the existence of universal codes for stationary and ergodic sources (Lempel-Ziv, fixed rate universal code, refer ITC-2 course notes).
- Universal compression at rate R = H(X). Consider $\lfloor 2^{n(R+\eta)} \rfloor = M$ bins.
- For each $x^n \in \mathbb{X}^n$, assign a bin among [M] uniformly. $f(x^n) = bin \#$. Reveal f to both encoder and decoder.
- Encoding is transmission of index $f(x^n)$ with $\frac{\log M}{n} < R + \eta$ bits/sample. Decoding: Look for a unique typical \hat{x}^n in bin $f(x^n)$. If none or more than 1, map to ϕ .

Lecture 17 : Multi-terminal Distributed Source Coding-2

• Error analysis: $\mathbb{E}_c Pr\{g(f(X^n) \neq X^n)\} \leq Pr\{X^n \notin T^n_{\delta}(X)\} + Pr\{E_{21}\}, where E_{21} is the event that another of the <math>T^n_{\delta}(X) - 1$ elements in $T^n_{\delta}(X)$ falls in the bin $f(x^n)$.

$$Pr\{E_{21}\} \leqslant (T^{n}_{\delta}(X) - 1) \frac{1}{M} \overset{\leq}{n} 2^{nH(X) + 2n\delta} \cdot 2^{-nR - n\eta} \cdot 2^{n\eta/2}$$

= $2^{-n(\eta/2 - 2\delta)} \downarrow 0 \quad \text{if } \eta > 4\delta.$

• Any source with $H(X) \leq R$ can b compressed to rate R without knowledge of source. Of course, this i.i.d. property is lost in SW problem.

We now extend this to multi-terminal systems.

Proof. (Achievability.)

$$M_k = \lfloor 2^{n(R_k+\eta)} \rfloor, \ k = 1, 2$$

 $(R_1, R_2) \in$ region in the SW theorem.

Random code: Assign x_k^n to one of bins $1, 2, \dots, M_k$, independent of the sequence chosen and uniformly in the bins.

- $f_k(x_k^n) = \operatorname{bin}\#.$
- Reveal f_1, f_2 to both encoders and decoder.
- Encoding is clear. Send $f_k(x_k^n)$ using $\frac{\log M_k}{n} < R_k + \eta$ bits/sample.

Decoding: Given bins $f_k(x_k^n), k = 1, 2$, look for a jointly typical $\hat{x}_1^n \hat{x}_2^n$ in the joint bin. Moreover, they should satisfy $\hat{x}_k^n \in T_{\frac{\delta}{2}}^{(n)}(X_k)$.

• $\mathbb{E}_c P_e^{(n)}$:

Error
$$\Leftrightarrow E_0$$
 $X_{[2]}^n \notin T_{\delta}^{(n)}(X_{[2]}) \text{ or } X_k^n \notin T_{\frac{\delta}{2}}^{(n)}(X_k)$
 $\cup E_1$ $\exists \hat{x}_1^n \neq x_1^n \text{s.t.}(\hat{x}_1^n, x_2^n) \in T_{\delta}^{(n)}(X_{[2]})$
 $\cup E_2$ $\exists \hat{x}_2^n \neq x_2^n \text{s.t.}(x_1^n, \hat{x}_2^n) \in T_{\delta}^{(n)}(X_{[2]})$
 $\cup E_{12}$ $\exists \hat{x}_1^n \neq x_1^n, \hat{x}_2^n \neq x_2^n, \text{s.t.}(\hat{x}_1^n, \hat{x}_2^n) \in T_{\delta}^{(n)}(X_{[2]})$

$$\begin{split} \mathbb{E}P_{e}^{(n)} &\leqslant Pr\{E_{0}\} + Pr\{E_{1}|E_{0}^{c}\} + Pr\{E_{2}|E_{0}^{c}\} + Pr\{E_{12}|E_{0}^{c}\} \\ Pr\{E_{0}\} &\leqslant 3\delta \\ Pr\{E_{1}|E_{0}^{c}\} &\leqslant |T_{\delta}^{(n)}(X_{1}|x_{2}^{n})|\frac{1}{M_{1}} \\ &\leqslant 2^{nH(X_{1}|X_{2})+n\delta} \cdot 2^{-nR_{1}-n\eta} \cdot 2^{n\eta/2} \\ &\leqslant 2^{-n(\eta/2-\delta)} \downarrow 0, \text{ if } \eta > 2\delta. \\ \text{similarly}, Pr\{E_{2}|E_{0}^{c}\} &\leqslant 2^{-n(\eta/2-\delta)} \downarrow 0. \\ Pr\{E_{12}|E_{0}^{c}\} = Pr\{E_{12}\} &\leqslant |T_{\delta}^{(n)}(X_{1}X_{2})|\frac{1}{M_{1}M_{2}} \leqslant 2^{nH(X_{1}X_{2})+n\delta} \cdot 2^{-n(R_{1}+R_{2}+\eta+\eta)} \cdot 2^{n\eta/2} \\ &\leqslant 2^{-n(3\eta/2-\delta)} \downarrow 0 \quad \text{if } \eta > 2\delta/3. \end{split}$$

Lecture 17 : Multi-terminal Distributed Source Coding-3