
E2–301 Topics in Multiuser Communication October 18, 2007

Lecture 17 : Multi–terminal Distributed Source Coding

Instructor: Rajesh Sundaresan Scribe: Premkumar K.

1 Example:

• Temperatures measured at Palace road meteorological centre and at IISc. Call them X, Y .

• Temperatures X and Y to be sent to New Delhi.

• IISc and Palace road centre, being geographically separated, have to do separate encoding.

• The simplest method is R1 = H(X) and R2 = H(Y ).

• When X and Y are independent, one can not do any better than the above, since even if they
cooperate, to obtain X̂Ŷ with high reliability R1 + R2 > H(XY ) = H(X) + H(Y ).

• R1 = H(X), R2 = H(Y ) achieves it with no need for cooperation.

• Suppose

Y =

{
X w.p.1/2
X − 1 w.p.1/2

IISc can send just one bit; odd or even. 1 bit = H(Y |X), achievable even if X is unknown.

• Key: universal source compression.

2 Definitions

Definition 1 (DMS). A (two user) discrete memoryless source (DMS) denoted by
( �

1,
�

2

)
, consists

of two finite sets
�

1 and
�

2, with the interpretation that Xk is the input to encoder k, k = 1, 2 and for
n ∈ � , with Xn

k = (Xk1, Xk2, · · · , Xkn), k = 1, 2 has a pmf

pXn

[2]
(xn

[2]) =
n∏

i=1

pX[2]
(x[2]i) (1)

Note: The successive output symbols of the source are independently drawn from
�

[2] where as there
could be a correlation between the components of X[2],i.

Definition 2 (Code). An (n, M1, M2) distributed source code for the DMS (
�

1,
�

2) consists of the
following:
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1. An index set of messages for each user k, � k = [Mk].

2. An encoder fk for each user k, fk :
� n

k → � k, k = 1, 2. Note that
� n

k 3 Xn
k 7→ fk(Xn

k ) ∈ � k.

3. A decoding rule, g : � 1 × � 2 → φ ∪
( � n

1 ×
� n

2

)
, i.e., W[2] 7→ g(W[2]) = X̂n

[2] ∈ φ ∪
( � n

1 ×
� n

2

)
.

Definition 3 (Probability of error). Let W n
[2] be the message transmitted. The probability of error

for the distributed source code c (when the symbols Xn
[2] come from a DMS) is given by

P (n)
e (c) = Pr

{
g

(
f1(X

n
1 ), f2(X

n
2 )

)
6= Xn

1 Xn
2

}
.

Definition 4 (Achievability). The rate pair (R1, R2) is achievable, if for every η > 0, λ ∈ (0, 1),
there exists a sequence of (n, M1, M2) distributed source codes that satisfy

1. P
(n)
e

6
n λ, and

2. log2 Mk

n
6
n Rk + η.

Definition 5 (Achievable rate region). The achievable rate region is the set of all achievable rate
pairs.

Lemma 1. The achievable rate region is a closed convex set.

Proof. Exercise.

Theorem 2. (Slepian–Wolf) The achievable rate region is



(R1, R2) ∈ � 2

+

R1 > H(X1|X2)
R2 > H(X2|X1)

R1 + R2 > H(X1X2)





Remark 1. • Joint decoding with Xn
1 supplied to encoder 2 and vice versa will also yield this rate

region.

• SW theorem says we can do this without the knowledge of encoder 2’s observation (and similarly
encoder 1’s observation is not known at encoder 2).

• Consider Example 1. Palace road compresses H(X) bits. IISc compresses to H(Y |X) = 1 bit.
Code: IISc indicates odd/even.

• Since H(X2|X1) is known, we have a non–stationary but independent (over time) source
n∏

i=1

p(yi|x1i),

given xn
1 . Of course xn

1 is not observed. We have a universal code to compress this independent
non-stationary source at its average entropy H(X2|X1). Someone who knows Xn

1 now reconstructs
Xn

2 .

• Not too surprising, since we know of the existence of universal codes for stationary and ergodic
sources (Lempel-Ziv, fixed rate universal code, refer ITC-2 course notes).

• Universal compression at rate R = H(X). Consider b2n(R+η)c = M bins.

• For each xn ∈
� n, assign a bin among [M ] uniformly. f(xn) = bin#. Reveal f to both encoder

and decoder.

• Encoding is transmission of index f(xn) with log M
n < R + η bits/sample. Decoding: Look for a

unique typical x̂n in bin f(xn). If none or more than 1, map to φ.
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• Error analysis: � cPr
{
g
(
f(Xn) 6= Xn

)}
6 Pr

{
Xn /∈ T n

δ (X)
}
+Pr

{
E21

}
, where E21 is the event

that another of the T n
δ (X) − 1 elements in T n

δ (X) falls in the bin f(xn).

Pr
{
E21

}
6

(
T n

δ (X) − 1
) 1

M
6
n2nH(X)+2nδ · 2−nR−nη · 2nη/2

= 2−n(η/2−2δ) ↓ 0 if η > 4δ.

• Any source with H(X) 6 R can b compressed to rate R without knowledge of source. Of course,
this i.i.d. property is lost in SW problem.

We now extend this to multi–terminal systems.

Proof. (Achievability.)

Mk = b2n(Rk+η)c, k = 1, 2

(R1, R2) ∈ region in the SW theorem.
Random code: Assign xn

k to one of bins 1, 2, · · · , Mk, independent of the sequence chosen and uniformly
in the bins.

• fk(xn
k ) = bin#.

• Reveal f1, f2 to both encoders and decoder.

• Encoding is clear. Send fk(xn
k ) using log Mk

n < Rk + η bits/sample.

Decoding: Given bins fk(xn
k ), k = 1, 2, look for a jointly typical x̂n

1 x̂n
2 in the joint bin. Moreover, they

should satisfy x̂n
k ∈ T

(n)
δ

2

(Xk).

• � cP
(n)
e :

Error ⇔ E0 Xn
[2] /∈ T

(n)
δ (X[2]) or Xn

k /∈ T
(n)
δ

2

(Xk)

∪ E1 ∃x̂n
1 6= xn

1 s.t.(x̂n
1 , xn

2 ) ∈ T
(n)
δ (X[2])

∪ E2 ∃x̂n
2 6= xn

2 s.t.(xn
1 , x̂n

2 ) ∈ T
(n)
δ (X[2])

∪ E12 ∃x̂n
1 6= xn

1 , x̂n
2 6= xn

2 , s.t.(x̂n
1 , x̂n

2 ) ∈ T
(n)
δ (X[2])

� P (n)
e 6 Pr

{
E0

}
+ Pr

{
E1|E

c
0

}
+ Pr

{
E2|E

c
0

}
+ Pr

{
E12|E

c
0

}

Pr
{
E0

}
6
n 3δ

Pr
{
E1|E

c
0

}
6

∣∣T (n)
δ (X1|x

n
2 )

∣∣ 1

M1

6 2nH(X1|X2)+nδ · 2−nR1−nη · 2nη/2

6 2−n(η/2−δ) ↓ 0, ifη > 2δ.

similarly,Pr
{
E2|E

c
0

}
6 2−n(η/2−δ) ↓ 0.

P r
{
E12|E

c
0

}
= Pr

{
E12

}
6

∣∣T (n)
δ (X1X2)

∣∣ 1

M1M2
6 2nH(X1X2)+nδ · 2−n(R1+R2+η+η) · 2nη/2

6 2−n(3η/2−δ) ↓ 0 if η > 2δ/3.
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