

Lecture 18 : Slepian-Wolf Theorem – Converse, Generalisation

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

1 SW Theorem – Converse

Converse: By providing X_2^n to encoder 1 (and decoder), we have $R_1 \geq H(X_1|X_2)$. Similarly, $R_2 \geq H(X_2|X_1)$. Joint encoding converse indicates $R_1 + R_2 \geq H(X_1X_2)$. \square

2 Generalisation to Many Sources

Theorem 1. (Cover) : Suppose $X_{[J]}^n$ is iid with generic distribution $p_{X_{[J]}}(x_{[J]})$. The achievable rate region is

$$\left\{ R_{[J]} \in \mathbb{R}_+^J : R(S) \geq H(X_S|X_{S^c}), \forall S \subseteq [J] \right\}$$

- Can extend to jointly ergodic sources. Only AEP is needed with notion of typical set modified to entropy typicality.

Theorem 2. (Han 1979): With $\sigma(S) := H(X_S|X_{S^c}), \forall S \subseteq [J]$, σ is a supermodular rank function, i.e.,

- (1) $\sigma(\emptyset) = 0$
- (2) $\sigma(S) \leq \sigma(T)$ if $S \subseteq T \subseteq [J]$
- (3) $\sigma(S \cup T) + \sigma(S \cap T) \geq \sigma(S) + \sigma(T)$

Proof. Exercise. \square

Remark 1. • Let $\mathcal{C}(\sigma) := \left\{ R \in \mathbb{R}_+^J : R(S) \geq \sigma(S), \forall S \subseteq [J] \right\}$, a polyhedron.

- $([J], \sigma)$: contrapolymatroid. $\mathcal{C}(\sigma)$ associated polyhedron.
- $R \in \mathcal{C}(\sigma)$ is a minimal extreme point iff $R_{\pi_1} = \sigma(\{\pi_1\}), R_{\pi_k} = \sigma(\{\pi_1, \dots, \pi_k\}) - \sigma(\{\pi_1, \dots, \pi_{k-1}\})$.
- Any R dominates some convex combination of these $J!$ extreme points.