

Lecture 19 : Network–Cutset Bounds

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

1 Network preliminaries

Definition 1 (Directed Graph). (N, \mathbb{B}, c) is a directed graph consisting of a set of nodes N , the directed edge set $\mathbb{B} \subset N \times N$ (an edge is an ordered pair $ij, i, j \in N$) and the capacity function $c : \mathbb{B} \rightarrow \mathbb{R}_+$.

Definition 2 (Path). Path of length k from $i \in N$ to $j \in N$ is the sequence of nodes $P : i = i_0, i_1, i_2, \dots, i_{k-1}, i_k = j$ such that

- i_1, i_2, \dots, i_{k-1} are distinct, different from i and j
- $i_m i_{m+1} \in \mathbb{B}$.

Definition 3 (Cycle). A path with $i_0 = i_k$.

Definition 4 (Cut). $(\mathbb{M}, N \setminus \mathbb{M})$ where $\mathbb{M} \subseteq N$.

Definition 5 ($c(\mathbb{M}, \mathbb{L})$). Suppose $\mathbb{M}, \mathbb{L} \subseteq N$. Define

$$c(\mathbb{M}, \mathbb{L}) := \sum_{ij \in \mathbb{M} \setminus \mathbb{L} \cap \mathbb{B}} c_{ij}$$

Definition 6 (net $c(i)$).

$$\begin{aligned} \text{net } c(i) &:= c(\{i\}, N) - c(N, \{i\}) \\ &= \text{outflow including self loop } (i, i) - \text{inflow including self loop } (i, i) \\ &= \text{net outflow from } i. \end{aligned}$$

• $[J] \subseteq N$ represents supply nodes; the first J nodes.

• $t_0 \in N \setminus [J]$ represents sink node.

• $N \setminus ([J] \cup \{t_0\})$ intermediate nodes.

Assumptions

- 1) For each $j \in [J]$, there is atleast one path from j to t_0 .
- 2) No cycles.

Definition 7 (Feasible flow). $f : \mathbb{B} \rightarrow \mathbb{R}_+$ such that

$$1) \forall ij \in \mathbb{B}, 0 \leq f_{ij} \leq c_{ij}$$

2)

$$\begin{aligned} \text{net}(f, k) &\geq 0, \quad \text{if } k \in [J] \\ \text{net}(f, k) &\leq 0, \quad \text{if } k = t_0 \\ \text{net}(f, k) &= 0, \quad \text{otherwise} \end{aligned}$$

Lemma 1. (Megiddo, 1974) Let ρ be the min-cut capacity function defined on subsets of $[J]$ as follows.

$$\rho(S) := \min \{c(\mathbb{M}, N - \mathbb{M}) : S \subseteq \mathbb{M}, t_0 \in N - \mathbb{M}, M \subseteq N\}.$$

- Then ρ is a sub-modular rank function.

- If $R(S) \leq \rho(S), \forall S \subseteq \Sigma_0$, then there is a flow such that $R_s = \text{net}(f, S), \forall S \in [J]$. If there exists a flow such that $R_s = \text{net}(f, S), \forall S \in [J]$, then $R(S) \leq \rho(S), \forall S \subseteq [J]$.

Remark 1. Generalization of max flow min cut theorem for multiple source nodes, single destination.

Remark 2. Any flow is a sum of path flows. In a path P_{sk} , flow is R_{sk} on all edges.

Lemma 2. (Ford–Fulkerson) For any flow f , there exist paths P_{sk} ($s \in [J], k \in [m_s]$), from s to t_0 and associated nonnegative real numbers R_{sk} ($s \in [J], k \in [m_s]$) such that

$$1) \text{ net } (f, s) = \sum_{k=1}^{m_s} R_{sk}, \forall s \in [J]$$

$$2) \sum_{P_{sk}: i \in P_{sk}} R_{sk} \leq c_{ij}, \forall ij \in \mathbb{B}$$