E2-301 Topics in Multiuser Communication	October 24, 2007
Lecture $19:$ Network-Cutset Bounds	
Instructor: Rajesh Sundaresan	Scribe: Premkumar K.

1 Network preliminaries

Definition 1 (Directed Graph). (N, \mathbb{B}, c) is a directed graph consisting of a set of nodes N, the directed edge set $\mathbb{B} \subset N \times N$ (an edge is an ordered pair $i j, i, j \in N$) and the capacity function $c: \mathbb{B} \rightarrow \mathbb{R}_{+}$.

Definition 2 (Path). Path of length k from $i \in N$ to $j \in N$ is the sequence of nodes $P: i=i_{0}, i_{1}, i_{2}, \cdots, i_{k-1}, i_{k}=j$ such that
$-i_{1}, i_{2}, \cdots, i_{k-1}$ are distinct, different from i and j
$-i_{m} i_{m+1} \in \mathbb{B}$.
Definition 3 (Cycle). A path with $i_{0}=i_{k}$.
Definition 4 (Cut). (M, $N \backslash M)$ where $\mathbb{M} \subseteq N$.
Definition $5(c(\mathbb{M}, \mathbb{L}))$. Suppose $\mathbb{M}, \mathbb{L} \subseteq N$. Define

$$
c(\mathbb{M}, \mathbb{L}):=\sum_{i j \in \mathbb{M} \mathbb{L} \cap \mathbb{B}} c_{i j}
$$

Definition 6 (net $c(i)$).

$$
\begin{aligned}
\text { net } c(i) & :=c(\{i\}, N)-c(N,\{i\}) \\
& =\text { outflow including self loop }(i, i)-\text { inflow including self loop }(i, i) \\
& =\text { net outflow from } i
\end{aligned}
$$

$\bullet[J] \subseteq N$ represents supply nodes; the first J nodes.
$\bullet t_{0} \in N \backslash[J]$ represents sink node.

- $N \backslash\left([J] \cup\left\{t_{0}\right\}\right)$ intermediate nodes.

Assumptions

1) For each $j \in[J]$, there is atleast one path from j to t_{0}.
2) No cycles.

Definition 7 (Feasible flow). $f: \mathbb{B} \rightarrow \mathbb{R}_{+}$such that

1) $\forall i j \in \mathbb{B}, 0 \leqslant f_{i j} \leqslant c_{i j}$
2)

$$
\begin{aligned}
& \operatorname{net}(f, k) \geqslant 0, \quad \text { if } k \in[J] \\
& \operatorname{net}(f, k) \leqslant 0, \quad \text { if } k=t_{0} \\
& \operatorname{net}(f, k)=0, \quad \text { otherwise }
\end{aligned}
$$

Lemma 1. (Meggido, 1974) Let ρ be the min-cut capacity function defined on subsets of $[J]$ as follows.

$$
\rho(S):=\min \left\{c(\mathbb{M}, N-\mathbb{M}): S \subseteq \mathbb{M}, t_{0} \in N-\mathbb{M}, M \subseteq N\right\}
$$

- Then ρ is a sub-modular rank function.
- If $R(S) \leqslant \rho(S), \forall S \subseteq \Sigma_{0}$, then there is a flow such that $R_{s}=\operatorname{net}(f, S), \forall S \in[J]$. If there exists a flow such that $R_{s}=\operatorname{net}(f, S), \forall S \in[J]$, then $R(S) \leqslant \rho(S), \forall S \subseteq[J]$.

Remark 1. Generalization of max flow min cut theorem for multiple source nodes, single destination.
Remark 2. Any flow is a sum of path flows. In a path $P_{s k}$, flow is $R_{s k}$ on all edges.
Lemma 2. (Ford-Fulkerson) For any flow f, there exist paths $P_{s k}\left(s \in[J], k \in\left[m_{s}\right]\right)$, from s to t_{0} and associated nonnegative real numbers $R_{s k}\left(s \in[J], k \in\left[m_{s}\right]\right)$ such that

1) $n e t(f, s)=\sum_{k=1}^{m_{s}} R_{s k}, \forall s \in[J]$
2) $\sum_{P_{s k}: i j \in P_{s k}} R_{s k} \leqslant c_{i j}, \forall i j \in \mathbb{B}$
