Lecture 19 : Network–Cutset Bounds

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

1 Network preliminaries

Definition 1 (Directed Graph). (N, \mathbb{B}, c) is a directed graph consisting of a set of nodes N, the directed edge set $\mathbb{B} \subset N \times N$ (an edge is an ordered pair $ij, i, j \in N$) and the capacity function $c : \mathbb{B} \to \mathbb{R}_+$.

Definition 2 (Path). Path of length k from $i \in N$ to $j \in N$ is the sequence of nodes $P: i = i_0, i_1, i_2, \dots, i_{k-1}, i_k = j$ such that

- $-i_1, i_2, \cdots, i_{k-1}$ are distinct, different from i and j
- $-i_m i_{m+1} \in \mathbb{B}.$

Definition 3 (Cycle). A path with $i_0 = i_k$.

Definition 4 (Cut). $(\mathbb{M}, N \setminus \mathbb{M})$ where $\mathbb{M} \subseteq N$.

Definition 5 ($c(\mathbb{M}, \mathbb{L})$). Suppose $\mathbb{M}, \mathbb{L} \subseteq N$. Define

$$c(\mathbb{M},\mathbb{L}) \quad := \quad \sum_{ij\in\mathbb{M}\mathbb{L}\cap\mathbb{B}} c_{ij}$$

Definition 6 (net c(i)).

• $[J] \subseteq N$ represents supply nodes; the first J nodes. • $t_0 \in N \setminus [J]$ represents sink node. • $N \setminus ([J] \cup \{t_0\})$ intermediate nodes. Assumptions

- 1) For each $j \in [J]$, there is at least one path from j to t_0 .
- 2) No cycles.

Definition 7 (Feasible flow). $f : \mathbb{B} \to \mathbb{R}_+$ such that

1) $\forall ij \in \mathbb{B}, \ 0 \leq f_{ij} \leq c_{ij}$ 2)

$$\begin{array}{ll} net(f,k) & \geqslant 0, & if \ k \in [J] \\ net(f,k) & \leqslant 0, & if \ k = t_0 \\ net(f,k) & = 0, & otherwise \end{array}$$

Lemma 1. (Meggido, 1974) Let ρ be the min-cut capacity function defined on subsets of [J] as follows.

$$\rho(S) := \min \{ c(\mathbb{M}, N - \mathbb{M}) : S \subseteq \mathbb{M}, t_0 \in N - \mathbb{M}, M \subseteq N \}.$$

• Then ρ is a sub-modular rank function.

Lecture 19 : Network–Cutset Bounds-1

• If $R(S) \leq \rho(S), \forall S \subseteq \Sigma_0$, then there is a flow such that $R_s = net(f, S), \forall S \in [J]$. If there exists a flow such that $R_s = net(f, S), \forall S \in [J]$, then $R(S) \leq \rho(S), \forall S \subseteq [J]$.

Remark 1. Generalization of max flow min cut theorem for multiple source nodes, single destination.

Remark 2. Any flow is a sum of path flows. In a path P_{sk} , flow is R_{sk} on all edges.

Lemma 2. (Ford-Fulkerson) For any flow f, there exist paths P_{sk} ($s \in [J]$, $k \in [m_s]$), from s to t_0 and associated nonnegative real numbers R_{sk} ($s \in [J]$, $k \in [m_s]$) such that

- 1) net $(f,s) = \sum_{k=1}^{m_s} R_{sk}, \forall s \in [J]$
- 2) $\sum_{P_{sk}:ij\in P_{sk}} R_{sk} \leqslant c_{ij}, \forall ij \in \mathbb{B}$