Lecture 20 : Multi-terminal Source Coding over a Network to a Single Destination

1 Definitions

- $X_{1} \cdots X_{J}=X_{[J]} \in \mathbb{X}_{[J]}$, finite alphabet source.
$X_{[J]}^{n}$ iid J-tuple with distribution $p_{X_{[J]}}$.
[J], first J nodes in N.
- Sources : $f_{s j}: \mathbb{X}_{s}^{n} \rightarrow \mathbb{A}_{s j}^{n}, s \in[J]$
- Decoder : $\underset{j: j t_{0} \in \mathbb{B}}{\times} \mathbb{B}_{j t_{0}}^{n} \rightarrow\left\{\mathbb{X}_{1}^{n} \cdots \mathbb{X}_{J}^{n}\right\} \cup \phi$

Remark 1.

- A somewhat unreasonable set up because each node waits for all n inputs before sending information forward.
- An acyclic digraph needed.
- A network (N, \mathbb{B}, c) is achievable for the source $X_{[J]}$ if $\forall \eta>0, \lambda \in(0,1)$ there exist $\mathbb{M}_{i}, i \in$ $N-[J] \cup\left\{t_{0}\right\}$, encoding functions $f_{i j}, i \in N-t_{0}$, decoding function $g_{i}, i \in N-[J]$ for the network $(N, \mathbb{B}, c+\eta)$ such that $\operatorname{Pr}\left\{\widehat{X}_{[J]}^{n} \neq X_{[J]}^{n}\right\} \leqslant \lambda$.

Lemma 1. Let ρ and σ be submodular and super modular rank functions on $[J]$, respectively. There is an $R \in \mathbb{R}_{+}^{J}$ such that $\sigma(S) \leqslant R(S) \leqslant \rho(S), \forall S \subseteq[J]$ if and only if $\sigma(S) \leqslant \rho(S), \forall S \subseteq[J]$.

Proof. $\gamma(S):=\rho(S)-\sigma(S) \forall S \subseteq[J]$ defines a submodular rank function. Let $R \in \mathscr{B}(\gamma)$. Then R is dominated by $\sum_{\pi} \lambda_{\pi} R^{(\pi)}$, for some $\left\{\lambda_{\pi}\right\}$ satisfying $\sum_{\pi} \lambda_{\pi}=1, \lambda_{\pi} \geqslant 0 . R^{(\pi)}$ are the extreme points of $\mathscr{B}(\gamma)$. Since $\gamma=\rho-\sigma$, we have $R^{(\pi)}=U^{(\pi)}-V^{(\pi)}$ where $U^{(\pi)} \in \mathscr{B}(\rho)$ are the extreme points of $\mathscr{B}(\rho)$ and $V^{(\pi)}$, the extreme points of $\mathscr{C}(\sigma)$.
Let $T=\sum_{\pi} \lambda_{\pi} R^{(\pi)}=\sum_{\pi} \lambda_{\pi} U^{(\pi)}-\sum_{\pi} \lambda_{\pi} V^{(\pi)}-R \geqslant(0,0, \cdots, 0)$. Then $R=\left(\sum_{\pi} \lambda_{\pi} U^{(\pi)}\right)-\left(\sum_{\pi} \lambda_{\pi} V^{(\pi)}+T\right)=$ $U-V$ where $U \in \mathscr{B}(\rho)$ and $V \in \mathscr{C}(\sigma)$. Observe that $\mathbf{0} \in \mathscr{B}(\gamma)$, since $\rho \geqslant \sigma$. So $\mathscr{B}(\rho) \cap \mathscr{C}(\sigma) \neq \phi$

Remark 2.

Theorem 2. A network of channels (N, \mathbb{B}, c) is achievable for a source $X_{[J]}$ is and only if $\sigma(S) \leqslant$ $\rho(S), \forall S \subseteq[J]$, where ρ is the min cut capacity function.
Proof. Necessity (only if): Suppose achievability holds with probability $\operatorname{Pr}\left\{\widehat{X}_{[J]}^{n} \neq X_{[J]}^{n}\right\}=\lambda$. The encoding functions $f_{i j}, f_{s j}, g_{i}, g_{t_{0}}$ and $X_{[J]}^{n}$ induce random variables on the input and output of branches $i j \in \mathbb{B}$.
Defining $\lambda\left(x_{S^{c}}\right):=\operatorname{pr}\left\{\widehat{X}_{[J]}^{n} \neq X_{[J]}^{n} \mid X_{S^{c}}^{n}=x_{S^{c}}^{n}\right\}$, Fano's inequality says $H\left(X_{[J]}^{n} \mid \widehat{X}_{[J]}^{n}, x_{S^{c}}^{n}\right) \leqslant 1+$ $n \lambda\left(x_{S^{c}}\right) \cdot \sum_{k \in S} \log \left|\mathbb{X}_{k}\right| \leqslant 1+n \lambda\left(x_{S^{c}}\right) \sum_{j \in[J]} \log \left|\mathbb{X}_{j}\right|=: r\left(n, S, x_{S^{c}}^{n}\right)$

Lecture 20 : Multi-terminal Source Coding over a Network to a Single Destination-1

Let M_{0} be the min cut for S, i.e., $S \subseteq M_{0} \subseteq N$ such that $\rho(S)=\min \{c(M, N-M) \mid S \subseteq M \subseteq$ $\left.N, t_{0} \in N-M\right\}=c\left(M_{0}, N-M_{0}\right)$. Let $i_{1} j_{1}, \cdots, i_{q} j_{q}$ be edges along the cut. Let $Y^{n}\left(M_{0}\right)$ be the inputs to the branches in cut and $Z^{n}\left(M_{0}\right)$ be the outputs. Given $x_{S^{c}}^{n}$, we have the Markov chain, $X_{[J]}^{n} \longrightarrow Y^{n}\left(M_{0}\right) \longrightarrow Z^{n}\left(M_{0}\right) \longrightarrow \widehat{X}_{[J]}^{n}$
Thus,

$$
I\left(X_{[J]}^{n} ; \widehat{X}_{[J]}^{n} \mid x_{S^{c}}^{n}\right) \leqslant I\left(Y^{n}\left(M_{0}\right) ; Z^{n}\left(M_{0}\right) \mid x_{S^{c}}^{n}\right) \leqslant n \sum_{k=1}^{q} c_{i_{k} i_{k}}=n \rho(S)
$$

Putting these together, we get

$$
\begin{aligned}
H\left(X_{[J]}^{n} \mid x_{S^{c}}^{n}\right) & =I\left(X_{[J]}^{n} ; \widehat{X}_{[J]}^{n} \mid x_{S^{c}}^{n}\right)+H\left(X_{[J]}^{n} \mid \widehat{X}_{[J]}^{n}, x_{S^{c}}^{n}\right) \\
& \leqslant n \rho(S)+r\left(n, S, x_{S^{c}}^{n}\right)
\end{aligned}
$$

Averaging using time independence, we get

$$
\sigma(S) \leqslant \rho(S)+\frac{1}{n}\left(1+n \lambda \sum_{j=1}^{J} \log \left|\mathbb{Z}_{j}\right|\right)
$$

Since λ is arbitrary, $\sigma(S) \leqslant \rho(S)$.

Proof. Sufficiency (if) : By a previous lemma, we can find an $R: \sigma(S) \leqslant R(S) \leqslant \rho(S)$, for every $S \subseteq[J]$. Here is the rest of the argument in an informal fashion.

- First convert to bits. Since $R(S) \geqslant \sigma(S)$, we can find a distributed souce code sequence of rates $\bar{R}_{j} \leqslant R_{j}+\delta, j \in[J]$. (Cover's extension to multiple sources). Probability of error $\leqslant \lambda / 2$.
- By Ford-Fulkerson, $\exists P_{s k}, R_{s k}, s \in[J] ; k \in\left[m_{s}\right]$, with $R_{s}=\sum_{k=1}^{m_{s}} R_{s k}, s \in[J]$ and $\sum_{P_{s k}: i j \in P_{s k}} R_{s k} \leqslant$ $c_{i j}$. Let $\bar{R}_{s k}=R_{s k}+\frac{\delta}{m_{s}}$. By choosing δ small enough, we have $\sum_{P_{s k}: i j \in P_{s k}} \bar{R}_{s k} \leqslant c_{i j}+\eta$.
- $c_{i j}$ is achievable on each link.
- Achievability is under an average probability of error criterion. But can show on a single link that capacity does not change for maximal probability of error.
- Chop the SWC bits and route them through paths $P_{s k}$, for $s \in[J]$. For sufficiently large n, maximal probability of error (across all links) $\leqslant \lambda / 2$.
- Overall probability of error $\leqslant \lambda / 2+\lambda / 2=\lambda$.

