E2–301 Topics in Multiuser Communication

Lecture 20 : Multi-terminal Source Coding over a Network to a Single Destination

Instructor: Rajesh Sundaresan

Scribe: Premkumar K.

1 Definitions

- $X_1 \cdots X_J = X_{[J]} \in \mathbb{X}_{[J]}$, finite alphabet source. $X_{[J]}^n$ iid *J*-tuple with distribution $p_{X_{[J]}}$. [*J*], first *J* nodes in *N*.
- Sources : $f_{sj} : \mathbb{X}_s^n \to \mathbb{A}_{sj}^n, s \in [J]$
- Decoder : $\underset{j:jt_0 \in \mathbb{B}}{\times} \mathbb{B}_{jt_0}^n \rightarrow \left\{ \mathbb{X}_1^n \cdots \mathbb{X}_J^n \right\} \cup \phi$

Remark 1.

- A somewhat unreasonable set up because each node waits for all n inputs before sending information forward.
- An acyclic digraph needed.
- A network (N, \mathbb{B}, c) is achievable for the source $X_{[J]}$ if $\forall \eta > 0, \lambda \in (0, 1)$ there exist $\mathbb{M}_i, i \in N [J] \cup \{t_0\}$, encoding functions $f_{ij}, i \in N t_0$, decoding function $g_i, i \in N [J]$ for the network $(N, \mathbb{B}, c + \eta)$ such that $\Pr\{\widehat{X}_{[J]}^n \neq X_{[J]}^n\}_n^{\leq \lambda}$.

Lemma 1. Let ρ and σ be submodular and super modular rank functions on [J], respectively. There is an $R \in \mathbb{R}^J_+$ such that $\sigma(S) \leq R(S) \leq \rho(S), \forall S \subseteq [J]$ if and only if $\sigma(S) \leq \rho(S), \forall S \subseteq [J]$.

Proof. $\gamma(S) := \rho(S) - \sigma(S) \forall S \subseteq [J]$ defines a submodular rank function. Let $R \in \mathscr{B}(\gamma)$. Then R is dominated by $\sum_{\pi} \lambda_{\pi} R^{(\pi)}$, for some $\{\lambda_{\pi}\}$ satisfying $\sum_{\pi} \lambda_{\pi} = 1, \lambda_{\pi} \ge 0$. $R^{(\pi)}$ are the extreme points of $\mathscr{B}(\gamma)$. Since $\gamma = \rho - \sigma$, we have $R^{(\pi)} = U^{(\pi)} - V^{(\pi)}$ where $U^{(\pi)} \in \mathscr{B}(\rho)$ are the extreme points of $\mathscr{B}(\rho)$ and $V^{(\pi)}$, the extreme points of $\mathscr{C}(\sigma)$.

Let
$$T = \sum_{\pi} \lambda_{\pi} R^{(\pi)} = \sum_{\pi} \lambda_{\pi} U^{(\pi)} - \sum_{\pi} \lambda_{\pi} V^{(\pi)} - R \ge (0, 0, \cdots, 0)$$
. Then $R = \left(\sum_{\pi} \lambda_{\pi} U^{(\pi)}\right) - \left(\sum_{\pi} \lambda_{\pi} V^{(\pi)} + T\right) = U - V$ where $U \in \mathscr{B}(\rho)$ and $V \in \mathscr{C}(\sigma)$. Observe that $\mathbf{0} \in \mathscr{B}(\gamma)$, since $\rho \ge \sigma$. So $\mathscr{B}(\rho) \cap \mathscr{C}(\sigma) \ne \phi$

Remark 2.

Theorem 2. A network of channels (N, \mathbb{B}, c) is achievable for a source $X_{[J]}$ is and only if $\sigma(S) \leq \rho(S), \forall S \subseteq [J]$, where ρ is the min cut capacity function.

Proof. Necessity (only if): Suppose achievability holds with probability $\Pr\left\{\widehat{X}_{[J]}^n \neq X_{[J]}^n\right\} = \lambda$. The encoding functions $f_{ij}, f_{sj}, g_i, g_{i_0}$ and $X_{[J]}^n$ induce random variables on the input and output of branches $ij \in \mathbb{B}$. Defining $\lambda(x_{S^c}) := pr\left\{\widehat{X}_{[J]}^n \neq X_{[J]}^n | X_{S^c}^n = x_{S^c}^n\right\}$, Fano's inequality says $H\left(X_{[J]}^n | \widehat{X}_{[J]}^n, x_{S^c}^n\right) \leq 1 + 1$

$$\sum_{k \in S} \log |\mathbb{X}_k| \leq 1 + n\lambda(x_{S^c}) \sum_{j \in [J]} \log |\mathbb{X}_j| =: r(n, S, x_{S^c}^n)$$

Lecture 20 : Multi-terminal Source Coding over a Network to a Single Destination-1

Let M_0 be the min cut for S, i.e., $S \subseteq M_0 \subseteq N$ such that $\rho(S) = \min \left\{ c(M, N - M) \middle| S \subseteq M \subseteq N, t_0 \in N - M \right\} = c(M_0, N - M_0)$. Let $i_1 j_1, \dots, i_q j_q$ be edges along the cut. Let $Y^n(M_0)$ be the inputs to the branches in cut and $Z^n(M_0)$ be the outputs. Given $x_{S^c}^n$, we have the Markov chain, $X_{[J]}^n \longrightarrow Y^n(M_0) \longrightarrow Z^n(M_0) \longrightarrow \widehat{X}_{[J]}^n$ Thus,

$$I\left(X_{[J]}^{n}; \widehat{X}_{[J]}^{n} \middle| x_{S^{c}}^{n}\right) \leqslant I\left(Y^{n}(M_{0}); Z^{n}(M_{0}) \middle| x_{S^{c}}^{n}\right) \leqslant n \sum_{k=1}^{q} c_{i_{k}i_{k}} = n\rho(S)$$

Putting these together, we get

$$\begin{aligned} H\left(X_{[J]}^{n} \middle| x_{S^{c}}^{n}\right) &= I\left(X_{[J]}^{n}; \widehat{X}_{[J]}^{n} \middle| x_{S^{c}}^{n}\right) + H\left(X_{[J]}^{n} \middle| \widehat{X}_{[J]}^{n}, x_{S^{c}}^{n}\right) \\ &\leqslant n\rho(S) + r(n, S, x_{S^{c}}^{n}) \end{aligned}$$

Averaging using time independence, we get

$$\sigma(S) \leqslant \rho(S) + \frac{1}{n} \left(1 + n\lambda \sum_{j=1}^{J} \log \left| \mathbb{X}_j \right| \right)$$

Since λ is arbitrary, $\sigma(S) \leq \rho(S)$.

Proof. Sufficiency (if) : By a previous lemma, we can find an $R : \sigma(S) \leq R(S) \leq \rho(S)$, for every $S \subseteq [J]$. Here is the rest of the argument in an informal fashion.

- First convert to bits. Since $R(S) \ge \sigma(S)$, we can find a distributed souce code sequence of rates $\overline{R}_j \le R_j + \delta, j \in [J]$. (Cover's extension to multiple sources). Probability of error $\le \lambda/2$.
- By Ford–Fulkerson, $\exists P_{sk}, R_{sk}, s \in [J]; k \in [m_s]$, with $R_s = \sum_{k=1}^{m_s} R_{sk}, s \in [J]$ and $\sum_{P_{sk}:ij \in P_{sk}} R_{sk} \leq c_{ij}$. Let $\overline{R}_{sk} = R_{sk} + \frac{\delta}{m_s}$. By choosing δ small enough, we have $\sum_{P_{sk}:ij \in P_{sk}} \overline{R}_{sk} \leq c_{ij} + \eta$.
- c_{ij} is achievable on each link.
- Achievability is under an average probability of error criterion. But can show on a single link that capacity does not change for maximal probability of error.
- Chop the SWC bits and route them through paths P_{sk} , for $s \in [J]$. For sufficiently large n, maximal probability of error (across all links) $\leq \lambda/2$.
- Overall probability of error $\leq \lambda/2 + \lambda/2 = \lambda$.

Lecture 20 : Multi-terminal Source Coding over a Network to a Single Destination-2