1 Achievable Rate Region for Computation of Some Functions

Recall: SW problem. Suppose now we wish to compute a function of $X_{1} X_{2}$ instead of reproducing $X_{1} X_{2}$ at the output.

- $\left(X_{1}, X_{2}\right)$ discrete memoryless multi source
- $F\left(X_{1}, X_{2}\right)$ an arbirary function of $X_{[2]}$
- $f_{k}: \mathbb{X}_{k}^{n} \rightarrow\left[\mathbb{M}_{k}\right], k=1,2$ (Encoders)
- $g:\left[\mathbb{M}_{1}\right] \times\left[\mathbb{M}_{2}\right] \rightarrow \mathbb{Z}^{n}$ (Decoder)
- $R_{k}:=\frac{1}{n} \log \left|\mathbb{M}_{k}\right|, k=1,2$
- $P_{e}^{(n)}:=\operatorname{pr}\left\{F\left(X_{1}^{n}, X_{2}^{n}\right) \neq g\left(f_{1}\left(X_{1}^{n}\right), f_{2}\left(X_{2}^{n}\right)\right)\right\}$
- $\left(R_{1}, R_{2}\right)$ is achievable for F if $\forall \eta>0, \lambda \in(0,1), \exists f_{k}, g, M_{k}, k=1,2$ such that

$$
\begin{aligned}
& \frac{\log M_{k}}{n} \leqslant \\
& P_{e}^{(n)} R_{k}+\eta, \quad k=1,2 \\
& \stackrel{s}{n} \quad \lambda, \quad k=1,2
\end{aligned}
$$

- Achievable rate region is the set of all achievable rate pairs.

Example 1: $F\left(X_{1} X_{2}\right)=X_{1} X_{2}$ (Slepian-Wolf)
Achievable rate region is the SW region

$$
\left\{\begin{array}{r|r}
R_{1} & \geqslant H\left(X_{1} \mid X_{2}\right) \\
R_{2} & \geqslant H\left(X_{2} \mid X_{1}\right) \\
\left.R_{1}+R_{2}\right) \in \mathbb{R}_{+}^{2} & \geqslant H\left(X_{1} X_{2}\right)
\end{array}\right\}
$$

Remarks: (1) SW region depends on $p_{X_{1} X_{2}}$
(2) Since $H\left(X_{1} \mid X_{2}\right), H\left(X_{2} \mid X_{1}\right), H\left(X_{1} X_{2}\right)$ are continous functions of $p_{X_{1} X_{2}}$, the rate region is continuous in some sense.
Example 2: $F\left(X_{1} X_{2}\right)$ is given by

	0	1
0	0	0
1	1	2

SW region is given by $H\left(X_{1} \mid X_{2}\right)=H(2 \delta), H\left(X_{2} \mid X_{1}\right)=H(1 / 2), H\left(X_{1} X_{2}\right)=\log 2+H(2 \delta)$. As $\delta \downarrow 0$, $\left\{R_{1} \geqslant 0, R_{2} \geqslant 1\right\}$.
Claim: It turns out that when $\delta>0$, this is indeed the achievable rate region to compute F. However when $\delta=0$, achievable rate region is $\left\{R_{1} \geqslant 0, R-2 \geqslant 0\right\}$ which is different from the SW region.
Remark: Achievable rate region is not continous in $p_{X_{1} X_{2}}$. Notation : $\mathscr{R}(F)$.
Example 3: $\mathbb{K}_{1}=\mathbb{K}_{2}=\{0,1\} . F\left(X_{1} X_{2}\right)=X_{1} \oplus X_{2}$.
claim:

- Achievable rate region is $\left\{R_{1} \geqslant H(Z), R_{2} \geqslant H(Z)\right\}$ (Korner-Marton 1979).
- Can extend to $\mathbb{K}_{k}=\mathbb{F}_{q}, q$ prime, $F\left(X_{1} X_{2}\right)=X_{1}+X_{2}$, where " $+{ }^{\prime \prime}$ is the same operator as in \mathbb{F}_{q}.

Lecture 22 : Distributed Function Computation-1

- If Z is a DMS on \mathbb{F}_{q}, then $\forall \epsilon>0, \lambda \in(0,1)$, sufficiently large $n, \exists A \in \mathbb{F}_{q}^{m \times n}, g: \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q}^{n}$ such that

1. $m \log q \leqslant n H(Z)+\epsilon$
2. $\operatorname{Pr}\left\{\left(\begin{array}{c}Z_{1} \\ \cdots \\ Z_{n}\end{array}\right) \neq g\left(A\left(\begin{array}{c}Z_{1} \\ \cdots \\ Z_{n}\end{array}\right)\right)\right\} \leqslant \lambda$

- Each terminal sends $A\left(\begin{array}{c}Z_{1} \\ \cdots \\ Z_{n}\end{array}\right)$ using $m \log q$ bits. Decoder sums $\sum_{k=1}^{2} A X_{k}^{n}$, then applies g.
- Motivated by Example 2, since we would like to avoid discontinuous regions (as a function of $\left.p_{X_{1} X_{2}}\right)$, we focus on $\left|\mathbb{K}_{k}\right| \geqslant 2$, and

Definition 1 (Definition). $\mathscr{P}:=\left\{p_{X_{1} X_{2}}: p_{X_{1} X_{2}}\left(x_{1} x_{2}\right)>0, \forall x_{[2]} \in \mathbb{X}_{[2]}\right\}$

- If a function F requires rates corresponding to the SW region regardless of $p_{X_{[2]}} \in \mathscr{P}$, does not admit distributed computation.

Definition 2 (Definition). $\mathscr{C}_{1}:=\left\{F: \forall p_{X_{[2]}} \in \mathscr{P}\right.$, the achievable rate region equals the $S W$ region $\}$
Theorem 1. $X_{[2]} \in \mathscr{P}$. Arrange F as a matrix of size $\left|\mathbb{K}_{1}\right| \times\left|\mathbb{K}_{2}\right|$.
(1) If any two rows of the F matrix are different, then every achievable rate pair for F satisfies $R_{1} \geqslant$ $H\left(X_{1} \mid X_{2}\right)$. (a)
(2) If any two columns of the F matrix are different, then every achievable rate pair for F satisfies $R_{2} \geqslant H\left(X_{2} \mid X_{1}\right)-(b)$
(3) If (a) and (b) hold, and $k_{1} \neq k_{2}, h_{1} \neq h_{2} \Longrightarrow F\left(k_{1} h_{1}\right) \neq F\left({ }_{2} h_{2}\right)$, (c) then every achievable rate pair for F satisfies $R_{1}+R_{2} \geqslant H\left(X_{1} X_{2}\right)$.

Remark:

- Revisit Example 2. F matrix satisfies all conditions $(a),(b),(c)$. So the achievable rate region coincides with the SW region when $\delta>0$.
- Proof makes an ingenious use of Fano's inequality.

Theorem 2. The achievable rate region for F equals the $S W$ region for every $p_{X_{[2]}} \in \mathscr{P}$ if and only if the F matrix satisfies $(a),(b)$, and (c) above.

Remark:

- The functions that do not admit distributed computation, i.e., the class \mathscr{C}_{1}, are completely charaterised by readily checkable conditions $(a),(b),(c)$ of the F matrix. This is so regardless of the statistics of the source, so long as $p_{X_{[2]}} \in \mathscr{P}$.
- It is insightful to see the necessity of (a).

Suppose (a) does not hold. $F\left(k_{1}, h\right)=F\left(k_{2}, h\right), \forall h \in \mathbb{X}_{2},\left(k_{1} \neq k_{2}\right)$. Define $\mathbb{X}_{1}^{\prime}=\mathbb{X}_{1}-\left\{k_{2}\right\}$ as
(1) $p_{X_{1}^{\prime} X_{2}}\left(k_{1} h\right)=p_{X_{1} X_{2}}\left(k_{1}, h\right)+p_{X_{1} X_{2}}\left(k_{2}, h\right)$
(2) $p_{X_{1}^{\prime} X_{2}}(k h)=p_{X_{1} X_{2}}(k, h), k \neq k_{1}$

Clearly $p_{X_{1}^{\prime} X_{2}} \in \mathscr{P}$ on $\mathbb{X}_{1}^{\prime} \mathbb{X}_{2}$.
Now, $\mathscr{R}(F) \supseteq \mathscr{R}\left(\left(X_{1}^{\prime}, X_{2}\right)\right) \cup \mathscr{R}\left(\left(X_{1}, X_{2}\right)\right) \supsetneq \mathscr{R}\left(\left(X_{1}, X_{2}\right)\right)$ since $H\left(X_{1} \mid X_{2}\right)>H\left(X_{1}^{\prime} \mid X_{2}\right)$.

Lecture 22 : Distributed Function Computation-2

- It is also insightful to look at the necessity of (c). If (c) fails, then \exists submatrix such that

	h_{1}	h_{2}		h_{1}	h_{2}		h_{1}	h_{2}
k_{1}	0	0	k_{1}	0	0	k_{1}	0	Δ
k_{2}	0	0	k_{2}	X	0	k_{2}	X	0

- Focus on (3): If (3) is easy (i.e., requires lesser rate than SW) (1) and (2) are easier.
- Further consider (3^{\prime}) which is all different elements except $\left(k_{1} h_{1}\right)$ and $\left(k_{2} h_{2}\right)$. If $\left(3^{\prime}\right)$ is easy so is (3).
- Now consider a $1-1$ mapping of the range of F with that of another F^{\prime}. Then we can compute F^{\prime} easily and reliably, and then map to F.
- $F^{\prime} . a=\left|\mathbb{X}_{1}\right|=\left|\mathbb{X}_{1}^{\prime}\right|, b=\left|\mathbb{K}_{2}\right|=\left|\mathbb{K}_{2}^{\prime}\right|, \mathbb{X}_{1}^{\prime}=\{0,1,2, \cdots, a-1\}, \mathbb{K}_{2}^{\prime}=\{0, a-1,2 a-1, \cdots,(b-1) a-1\}$, $F^{\prime}=\left(x_{1}^{\prime}+x_{2}^{\prime}\right)$
In \mathbb{X}_{2}^{\prime}, there is only one gap of $a-1$. Others are a. So $F^{\prime}(0, a-1)=F^{\prime}(a-1,0)$. All other evaluations are distinct. Every value between 0 and $a b-2$ is taken. ($a-1$) taken twice. Choose $q>a b-2$.
- $\operatorname{Pr}\left\{x_{1}^{\prime} x_{2}^{\prime}\right\}:= \begin{cases}\frac{1-\delta}{2}, & \left(x_{1}^{\prime} x_{2}^{\prime}\right)=(0, a-1) \text { or }(a-1,0) \\ \frac{\delta}{a b-2}, & \text { otherwise }\end{cases}$
- $(H(Z), H(Z))$ is achievable. $H(Z)=H(\delta)+\delta \log (a b-2) \rightarrow 0$.
- On the other hand, SW region has $R_{1}+R_{2} \geqslant(1-\delta) \log 2+H(\delta)+\delta \log (a b-2) \rightarrow \log 2$.
- By choosing δ sufficiently small, yet >0, we can make
$2 H(\delta)+2 \delta \log (a b-2)<(1-\delta) \log 2+H(\delta)+\delta \log (a b-2)$.
So $(H(\delta)+\delta \log (a b-2), H(\delta)+\delta \log (a b-2)) \notin \mathrm{SW}$, yet is achievable for F^{\prime} (and therefore F).

2 Generalisations

- $\mathscr{R}(F)=\mathrm{SW}$ region $\forall p_{X_{[J]}} \in \mathscr{P}, F \in \mathscr{C}_{1}$ implies the following condition.
(0) $\forall S, \forall x_{S}^{\prime}, x_{S}^{\prime \prime} \in \mathbb{K}_{S}$ such that $x_{j}^{\prime} \neq x_{j}^{\prime \prime}, j \in S$, there exists some $x_{S^{c}} \in \mathbb{K}_{S^{c}}$ such that $F\left(x_{S}^{\prime} x_{S^{c}}\right) \neq$ $F\left(x_{S}^{\prime \prime} x_{S^{c}}\right)$ (necessity).
- Suppose
(1) $\forall i, \forall x_{[J]\}\{i\}}^{\prime}, x_{[J]\}\{i\}}^{\prime \prime}, x_{[J]\}\{i\}}^{\prime} \neq x_{[J]\}\{i\}}^{\prime \prime}, \exists x_{i} \in \mathbb{X}_{i}$ such that
$F\left(x_{[J]\}\{i\}}^{\prime}, x_{i}\right) \neq F\left(x_{[J]\}\{i\}}^{\prime \prime}, x_{i}\right)$
(2) $\forall z$, all the elements of $F^{-1}(\{z\})$ agree on some component $j \in[J]$. Then $F \in \mathscr{C}_{1}$ (sufficiency). Remarks:
- condition (1) implies the necessity condition (0) for all S with $|S|<J$ (use contrapositive).
- $(0) \Longrightarrow(a),(b),(c)$ when $J=2$.
- (1) and $(2) \Longrightarrow(a),(b),(c)$ when $J=2$.
- What is the condition to identify elements of \mathscr{C}_{1} ? Open.

Lecture 22 : Distributed Function Computation-3

