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Abstract

The ezponential distribution and the Gaussian dis-
tribution play a prominent role in queueing theory
and communication theory, respectively. The ezponen-
tial distribution leads to certain information theoretic
quantities that are similar to their Gaussian counter-
parts. In this paper we look at one such similarity.

The sojourn times of ¢ Markov process are expo-
nentially distributed, given the knowledge of the state
of the process. The problem of encoding the sojourn
times is considered for two scenarios.

In the first case, the encoder is assumed to have
full knowledge of the state of the process. The rate-
distortion function according to a fidelity criterion is
found and its similarity to its Gaussian counterpart -
the water-flooding solution for simultaneous descrip-
tion of independent Gaussian random variables - is
discussed.

In the second case, the encoder does not have access
to the state information, while the decoder has. This
is a generalization of the Wyner-Ziv problem ([11]) for
stationary and ergodic sources taking values on a con-
tinuous alphabet source. We give an upper bound and
a lower bound on the rate-distortion function according

to a fidelity criterion.
1 Introduction

The exponential distribution leads to certain ex-
pressions and properties which are very similar to
those in the Gaussian case. To name some: among all
mean-constrained positive random variables, the expo-
nentially distributed random variable maximizes the
differential entropy; it satisfies a mutual-information
saddle-point property analogous to the Gaussian case
[9]; the rate-distortion function for encoding the in-

terarrival times of a Poisson process according to a fi-

delity criterion is very similar to that of encoding i.i.d.

Gaussian random variables [9].

Consider a homogeneous Poisson process of rate
A. The interarrival times constitute an independent
and identically exponentially distributed process with
mean 1/). Suppose we wish to encode these interar-
rival times with a finite number of bits per second.
Encoding the interarrival times is equivalent to en-
coding a memoryless source with exponential interar-
rival times. For a chosen fidelity criterion, the rate-
distortion function reflects the optimal tradeoff be-

tween the encoding rate and the achievable fidelity.

This problem was considered in [8] with a distortion
measure equal to the normalized absolute error be-
tween the true and the reproduced interarrival times.
This fidelity criterion however does not lead to a closed

form expression for the rate-distortion function.

An alternative fidelity criterion was given in [9]
which indeed led to a closed form expression similar
to that of the Gaussian source. The fidelity criterion
was that the reproduced interarrival times do not ex-
ceed the true value by more than a prescribed amount
d, and that the last arrival be declared only after it
occurs. As we will see later, this fidelity criterion is
very similar to the absolute-error criterion of [8], ex-
cept that the reproduced values are constrained to lie

on one side of the actual value.

In this paper we consider the problem of encod-
ing a continuous-time Markov process. To encode the
Markov process, we encode the sequence of states and
the sequence of sojourn times separately. If the jump
chain (sequence of states) is encoded at its entropy
rate, it can be recovered noiselessly at the decoder.
In this paper, we will extend the result of [9] to the
problem of encoding the sojourn times of a Markov
process, with a fidelity criterion similar to that in [9].

We consider two scenarios, one in which the encoder



for the sojourn time process has access to the state
information and the other in which the encoder has no
knowledge of the state. The decoder in both cases is
assumed to have full knowledge of the state process.

In the next section we present some preliminaries re-
quired to state the results. Following this we present
the rate-distortion function for encoding the sojourn
times when state information is known at the encoder.
We compare this solution with the water flooding solu-
tion for simultaneous description of independent Gaus-
sian random variables.

In the last section, we look at the rate-distortion
function when the encoder does not have access to the
state information. This problem is a generalization of
the Wyner-Ziv problem for a specific type of a station-
ary and ergodic sources, taking values on continuous
alphabet space. For this case we have not been able
to get a closed form expression for the rate-distortion
function. We give an upper bound and a lower bound

on the rate-distortion function.
2 Preliminaries

Let I ={1,2, -} be an index set and R be the set
of positive real numbers [0, 00). Let {V(¢) : t € Ry}
denote a continuous-time, irreducible, Markov process
on a finite state space S, |S| < oo. Let {A;; : 4,5 €
S,i # j} denote the set of transition rates of this
Markov process, and {g; : i € S}, where } ;s ¢; = 1,
the unique stationary distribution of the states.

Assume that a transition occurs at time ¢ = 0™.
Let {Y% : k € I'} denote the jump chain formed by this
Markov process. That is, Y7 = V(0), Y3 is the next
state the process {V(¢) : t € R;} moves to after time
t = 0, Y3 is the next state after that, and so on. Y3
also takes values on S. This jump chain is a discrete-
time Markov chain whose transition probabilities are

given by

>

Dji = L'Z, 3HTES, J#Z,

J
pi; = 0, jES

where A; = Zies-{j} Aji, j € 8. We also have that

B 1= qu)\j < o0 (1)
jes
and that T = B g 2)

is an equilibrium distribution for the jump chain ([7],

Exercise 1.1.5). We note here that the jump chain in

general might not be an aperiodic Markov chain. But
the above distribution is indeed the unique stationary
distribution.

For convenience, we will restrict ourselves to only
those processes that lead to jump chains which are
irreducible and aperiodic Markov chains. This con-
dition precludes, for example, two-state Markov pro-
cesses, and Markov processes whose associated undi-
rected graphs are trees. This is because in the jump
chain jumps to the same state are not allowed, and
hence to return to a state, an even number of jumps
are required. This will ensure that the distribution of
the states will eventually converge to the equilibrium
distribution regardless of its initial distribution. Fur-
ther, we need this condition in the proof of the result
in Section 4.

Let {Xj : k € I} denote the sequence of sojourn
times, where Xj is the sojourn time in state Yz at
(discrete) time k. X takes values in R . The process
{X5 : k € I} has memory. But given the state Y3 = j,
X} is independent of all other random variables and is
exponentially distributed with parameter A; ([6]). We
can think of the process {Xj : k € I'} as obtained by
a memoryless random transformation (a memoryless
channel) characterized by Px|y(z|j) = A; e~ 3% from
the input process {Yj : k € I'}. Our results of Section
4 can be shown to hold for some special semi-Markov
processes. These processes have to satisfy condition G

defined below.

Definition 1 The joint process {(Yx,Xz) : k € I}
is said to satisfy condition G if {Yr : k € I} 1s an
irreducible, aperiodic, finite-state Markov chain, and
if {Xi : k € I} ts a conditionally independent real-
valued process obtained from {Yy : k € I}.

In particular, these processes are hidden Markov
processes whose embedded Markov chain {Y; : k € I}
is ergodic.

Let T denote the (left) shift transformation on the
{Yr : k € I} process. T is said to be ergodic with
respect to the probability law of the {Y; : k& € I}
process if every shift invariant event has probability 0
or 1. With a slight abuse of notation we will let T
denote the left shift transformation on the {Xj : k €
I} process and the joint process {(Yx, Xz): k € I'} as
well.

For the finite state Markov chain {Y; : k € I}, T

is ergodic since the chain is irreducible ([3]). Using



this, the stationarity of the Markov chain and ([2],
Theorem 7.2.1), it can easily be shown that the joint
process {(Yz, Xi) : k € I} is a stationary and ergodic

process, if it satisfies the condition G.

3 Encoding the Sojourn times of a
Markov Process

Consider a Poisson process with rate A arrivals per
second. To encode this process, we encode the inter-
arrival times of this process. Equivalently, we encode
the outputs of a memoryless source, each of which is
exponentially distributed with mean 1/ seconds.

By an (n, M, e)-code, we mean a set {(ﬁ”)m}ﬂmlzl
and a mapping f : R} — {(ﬁ”)m}ﬂmlzl such that the
following criteria are met.

1. For every possible realization of the sequence of

interarrival times, 2",

2; <z, fori=1,---,n, (3)

n

2. P (% D (X Xi) > d> —e. (4)

i=1
This fidelity criterion is similar to that of [8], except
that the reproduced values are constrained not to ex-
ceed the actual value.

Let W,, = Z?:l X; be the time of the last arrival. A
reasonable definition of the rate of the code in (nats per
second) is (log M)/W,, which behaves as A(log M)/n
as n — o0o. Therefore we define the rate of the code as

follows.

Definition 2 R is an achievable rate (in nats/sec) for
distortion parametrized by d if for every § > 0, there

ezists a sequence of (n, M, e, )-codes with

log M

R
< 3 + 8, for all sufficiently large n,  (5)

and lim e, = 0. (6)

n—oo

Definition 3 The rate-distortion function R(d) is the
smallest achievable encoding rate (in nats/sec) for dis-

tortion d.

An (n, M,)-code with respect to the criteria (3)
and (4) is equivalent to an (n, M, €)-code with respect
to the following two criteria:

1. For every possible realization of the sequence of

interarrival times,

2, <z;+d, fori=1,---,n, )

2. P (zn: Xi < zn:Xz> = €. (8)

That is, we require that the reproduced interarrival
times not exceed the true value by more than d, and
that the last arrival be declared only after it occurs
with high probability.

Theorem 1 :/9]. For the Poisson process with rate
A, the rate-distortion function according to the fidelity
criterion described by (3) and (4) (or equivalently (7)
and (8)) is given by

1

ALR(d) = { log (a), #d < 3, (9)

0, otherwise.

This result was used to find the rate-distortion
function of a continuous-time, irreducible, finite-state
Markov process {V(t) : t € R4 }. Let this Markov pro-
cess give rise to the joint state and sojourn time pro-
cess given by {(Ys, Xz) : k € I} that satisfies condition
G. Then this joint process is both stationary and er-
godic. In order to encode the continuous-time Markov
process, we first encode the sequence of states so that it
can be recovered at the decoder noiselessly. This takes
a number of nats per second which equals A times the
entropy rate of the jump chain {Y; : & € I}. The
problem now is to encode the sojourn times, assuming
that the decoder knows the true state sequence.

Now, by an (n, M, ¢)-code, we again mean a set of
M codewords {(ﬁ”)m}ﬂmlzl and a mapping f : 8™ X
RY — {(ﬁ”)m}ﬂmlzl such that the following criteria
are met.

1. For every possible realization of the sequence of

n interarrival times ™, and state sequence 3",
2; <z, fori=1,---,n, (10)

2.

1 < . _
P (F Z(Xi — Xi) l4y,=;3 > d;, for some j € S)

J =1

=g, (11)

where N; = Z?:l Lyi=} is the number of occurrences
of the state j within the first n jumps. The criterion
in (11) indicates a tolerance of d; to encode the sojourn
times when in state j.

Analogous to Definitions 2 and 3, we define
the achievable rate (in nats/sec) for distortion

parametrized by (di,---,d|s|) and the rate-distortion



function quy(dl, --+,d)s|). Now B~!in (1), the av-
erage number of transitions per second, plays the role
of A in the definitions. Since both the encoder and
decoder know the true sequence of states, the prob-
lem can be viewed as the decoupled encoding of |S|
different sources, each of which is a random process
of independent exponentially distributed random vari-

ables with mean )\]-_1 seconds.

Theorem 2 :/9]. If {(Yy,Xr) : k € I} satisfies the

condition G, then
. 1 +
B - Ryy(di, -, djs)) = ZM [108 (ﬁ)] , (12)
ics 1 Qg

where [-] stands for the positive funciion of the argu-

ment.

Using (2) we can rewrite (12) as

) 1 +
By (o) = ook [ (537 )|

€S

The criterion in (11) defines a tolerance level for
the sojourn times from each of the states. Instead of
this criterion, suppose that the fidelity criterion does
not distinguish between sojourn times from the various

states. In particular, we require instead of (11) that

P (% i(xi %) > d> —e. (13)

Note that the above criterion in conjunction
with (10) is the same as criteria (3) and (4), and is
thus equivalent to criteria (7) and (8).

We define codes, achievable rates for distortion
parametrized by d, and the rate-distortion function
Rx|y(d) analogously to Definitions 2 and 3. Again,
B~1in (1), the average number of transitions per sec-
ond, plays the role of A in the definitions.

Loosely speaking, we need to allocate our resources
appropriately and arrive at allowable distortions for
encoding the sojourn times in each state so that crite-
rion (13) can be met in an efficient way. The following
theorem gives Ry |y (d) according to this fidelity crite-

rion and also the efficient allocation of resources.

Theorem 3 If {(Yx, Xx) : k € I} satisfies the condi-
tion G, then

B-Rxy(d)=) m [log (,\ild)r’

€S

Figure 1: Water-flooding solution.

where d _{ A%_, if > A%_,
=

6, otherwise,

and 0 is the water-level given by the solution of

Zﬂ'idi =d. (14)

€S

Remarks: 1. Using (2) we can rewrite Rx|y(d) as

Rxjy(d) =) aiks [log (ﬁ>]+ '

€S

2. Rx|y(d) in Theorem 3 is a convex function of
d for d > 0. Further, for 0 < d < dmaz = Y ;s T/,
the derivative of Rx|y(d) with respect to d is contin-
uous. These two properties are easy to verify.

3. The pair (0, ;cs
distortion pair. That is, when we are allowed a distor-

m;/A;) is an achievable rate-

tion of d = } ;s m:/Ai, we can achieve reliable com-
pression with rates as close to 0 as we wish.

4. Theorem 3 says that the solution is one where
we do not encode the fast states at all (states 7 with
0 > 1/X;). All slow states (states ¢ with § < 1/};) are
assigned the same distortion level §. The solution is
reminiscent of the rate-distortion function for simul-
taneous description of independent Gaussian random
variables ([5], Theorem 13.3.3). The main difference
here is that only one state is active at a time. So the
distortions for each state are weighted appropriately
by their probability so as to find their contribution to
the total distortion.



4 The Wyner-Ziv Problem

In this section we study the case when the encoder
does not have access to the state information, while
the decoder has full access to this information. The
Slepian-Wolf problem deals with noiseless separate en-
coding of a correlated, finite alphabet source (each vec-
tor (Y, Xx) is drawn in an i.i.d. fashion). Wyner and
Ziv [11] dealt with the problem of encoding one of
the sources noiselessly, and studied the corresponding
rate-distortion problem of encoding the other process.
Wyner [10] extended the result to sources taking values
on arbitrary alphabet spaces with a slight restriction
on the choice of the distortion function. His result is
that if {Y% : k € I} is the side-information process and
if {Xy : k € I} is to be encoded according to a single
letter, additive, expected distortion criterion, then the
rate-distortion function is given by (if I(X;Y) < oo

and for certain smooth distortion functions) :
R(d)= inf (I(X;2)-I1(Y;Z2))

where the infimum is taken over all joint distributions
Py x,z such that the following two conditions hold:
1. Y - X — Z constitutes a Markov chain,

2. There exists a measurable function f: S x A —

R, such that E{p(X, f(Y,2))} <d,

where Z takes values in an alphabet space A (stan-
dard measurable space). It is remarked in [10] that this
rate-distortion function is in most cases strictly greater
than Rx|y(d), the rate-distortion function when the
encoder has full knowledge of the side-information pro-
cess. Equality is known to be achieved in some special
cases, for example, when {(Yx, Xz) : k& € I} is jointly
Gaussian. In other words, side information does not
pay off in terms of rate for the Gaussian case, but we
might require a more complex encoder. Our aim is to
see if we can bound this Wyner-Ziv loss for the prob-
lem we are dealing with, namely, encoding the sojourn
times of a Markov process.

We remark that {(Yz, Xz) : k € I'} in our problem is
a process with memory, and hence our results are not
implied by those of [11] or [10]. In Section 3 we dealt
with a fidelity criterion which required that the proba-
bility that the distortion criteria are not met vanish as
n — oco. Using the same fidelity criterion for this prob-
lem we have only been able to show that there exists
an infinite set of n for which we can find codes which
have the desired rate and vanishing probabilities for n

belonging to this set.

In what follows, we deal with the single-letter ex-
pected distortion criterion. We first make precise the
problem statement. We follow the notation and defi-
nitions of [10].

Let {(Y%x,X%) : & € I} be a process that satisfies
condition G described in Definition 1. Let the distor-

tion function be defined as
P2, ) = |z — 2], (15)
where Z is a reproduction of z. Also define
Al
pu(a”, @) 2 — Z p(@i, 25). (16)
=1
An (n, M, A)-code is a pair of measurable mappings

fE and fp, called the encoder and the decoder given
by

.fE : R:L_HJM:{L2,,M},
fo : S"xJIu—RY, and
Xm = fo(Y™ fa(X™)
1« N
and E - X, X)) = A, 17
nkz_l p(Xp, X) (17)

In this section, we take the unit of rate to be nats per
transition. A pair (R,d), R > 0,d > 0 is said to be
achievable if for an arbitrary € > 0, there exists an
(n, M, A)-code with

log M

< R +e¢, and A<d+te. (18)

Define H to be the set of all achievable (R, d) pairs.
Also define
R(d)= min R, ford>0. (19)
(R,d)EH

It follows directly from the definition of H that if
limg_,c0 R = R and if (R, d) € H, then (R,d) € K.
This justifies the use of minimum instead of infimum
in (19). Further it is shown in [10] that R(0) =
limg o R*(d).

Let Z take values in the standard measurable space
(A, B4). Let M, be the class of all random variables
Z such that Y™ — X™ — Z form a Markov chain. Let
M, (d) be the class of all random variables in M, such
that there exists a measurable function g, : " x A —
R% with Ep, (X", g,(Y™, Z)) < d.

Finally we define the following:

Ri(d) £ inf (I(X;2)-1(Y;2)),

ZeM(d)

1
R(d) & = inf (I(X™Z)—I(Y™:Z d
»(d) nz&ln(d)(( 1Z)—1(Y™; 7)), an

A

R*(d) lim R:(d).



Remarks: 1. First note that since Y™ takes values
on a finite alphabet space, we have I(Y"; X") < oo,
and thus by the data processing lemma I(Y"; Z) < oo.
Therefore, the first two definitions are unambiguous.

2. R;(d) is a convex function of d. (See Appendix
B of [10] for a proof).

3. Since Y™ — X" — Z form a Markov chain, we
have that I(X™;Z) — I(Y™; Z) = I(X™; Z|Y"), (see
(2.12) of [10]).

4. It can be shown that the limit of R}, (d) exists if
R;(d) is finite.

5. R*(d) is a monotone decreasing, convex function
of d, over the interval where it is finite.

Using a straightforward extension of the techniques
in [10], the ergodic theorem, and the results of [4] and
[1], we can prove the following theorem. In fact, this
result can be shown to hold for all processes satisfying
condition G, if the distortion function satisfies condi-
tions (2.10) and (2.11) of [10].

Theorem 4 For d > 0, if Rj(d) < oo, then R(d) =
R*(d).

From now on we take R(d) and R*(d) to be syn-
onymous. As in [8] we have not been able to find
closed form expressions for R(d). But we do have
some bounds on this function. Based on the result of

the previous section, we can show the following upper

bound on R(d).

Theorem 5

R(d) < conv (Z m; log (1 + /\% (% - /\min>>> ;

€S
where 8 is the water-level as defined in Theorem 3,
Amin i the minimum of the A;’s, and conv (f) denotes
the convez hull of the function f (the greatest convez

function upper bounded by f).

By noting that we can do no better than the case
when side information is made available at the en-
coder, we can show the following lower bound on the

rate-distortion function R(d).

Theorem 6

R(d) > lz m; log (Aild) — log2] * )

i€S
1 1
where di — { ;0 'Lfe > ;0

6, otherwise,

and 0 is the water-level given by the solution of

Zﬂ'idi =d.

€S

For small distortion d the difference between the
upper and the lower bounds is very close to 1 bit or

less.
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