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Abstract

In this thesis, we consider the problem of reliable transmission of information via
the times of arrival to a queueing system. On the single-server queue, we show that
the exponential server channel’s maximum-likelihood decoder is a robust decoder.
We give guarantees on this decoding criterion’s performance in situations when the
service times are stationary and ergodic, or when certain unmodeled phenomena,
such as when an adversary deliberately hinders communication, affect the channel.
We also show analogous results on the discrete-time single-server queue.

Using a point-process approach, we give a conceptually simple proof for the ca-
pacity of the exponential server queue. Our results indicate an alternative strategy
with complete feedback that achieves capacity on the point-process channel. Fur-
thermore, the point-process approach enables us to study timing channels that arise
in multiserver queues, queues in tandem, and other simple configurations. Although
the capacities of such channels remain to be found, we provide some bounds obtained
either analytically or from simulations.

We then consider the problem of finding coding schemes that have good perfor-
mance with computationally feasible decoding strategies. On the exponential server
queue, we show the existence of a tree code that performs well in conjunction with the
sequential decoding technique. The expected number of computations before moving
one step ahead in the correct direction is upperbounded by a finite number. The rate

of information transfer for this code is one half of the capacity.
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Chapter 1

Introduction

1.1 Timing Channels

Often, we transmit information not only in the content of messages, but also in
the times at which we send these messages. Pauses in spoken language for example
convey information that adds to the information contained in the speech itself. We can
also convey information through the intervals between telephone calls. If we encode
information in the time interval between telephone calls, the receiver can extract
this information without answering the calls. This strategy uses only the telephone
signaling channel; the voice channel is unused. Unanswered calls are toll-free, and
information can therefore be transmitted at no extra cost over the telephone signaling
channel.

Consider a single-server queue where packets carrying information suffer some
service delay before they exit the system. Unserved packets are stored in a queue. On
this system, information can be encoded in the times of arrival of packets. Assume
that the queue is empty at time 0 seconds. If the service time for each packet is
deterministic, say s seconds, then a packet input to the queue at time z seconds exits
at time z 4 s seconds. The receiver, knowing s, can extract the value z by observing

the exit time. If z € [0,1], an infinite number of bits can be transmitted in finite



time, leading to infinite capacity.

In many situations, however, random mechanisms obfuscate the timing informa-
tion. In the above example, the service times may be random, and the queue may
not be empty at time 0 seconds. The times of departure thus contain a noisy version
of the information encoded in the times of arrival. An interesting problem then is
to assess rates at which information can be transmitted reliably across such noisy
channels via timing.

Such studies are of interest because timing information can be “piggybacked”
on existing data networks to boost “bandwidth”. Consider the single-server queue
where packets or customers are single bits. If the service rate is p bits per second, and
each bit is received noiselessly, it would seem at first glance that the capacity of this
communication link is p bits per second. The capacity is however strictly larger than
¢ bits per second [1], regardless of the service distribution. This surprising result,
reliable transfer of information at a rate faster than the rate at which bits exit the
system, holds because information can be encoded in the times of arrival. This idea
is well-illustrated in the queue with deterministic service times where the capacity is
infinite.

Timing channels are also of interest because they may violate system security
requirements. The headquarters of an intelligence agency is connected by e-mail to
its outside agents. Strict monitoring procedures are in place to prevent the flow of
unauthorized information from the agency to the outside world. It is however possible
to encode covert information in the timing of innocuous e-mail messages.

Consider another example where two processors at different levels of security are
supported on the same system. Both send jobs to a time-shared facility, for e.g., they
may share a common memory system and the jobs may be memory accesses. The
two processors, being at different levels of security, should not communicate with each

other. They can however violate this constraint by using the following strategy. One
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processor encodes information by varying the rate at which it sends jobs to the time-
shared facility. The response time of the facility depends on its instantaneous load;
the other processor therefore gets a noisy version of the information by measuring
the response time to its own jobs. Studies of such channels are done while designing
computer systems for high security applications [2], and are of considerable interest
to the computer security community.

Before we describe the problems tackled in this thesis, we describe some prior

results on timing channels.

1.2 Previous Results

Studies of information contained in timing were pioneered in [3]. We describe the
results of [3] in the following simple setting. Consider a network that consists of two
nodes and a single link between these nodes. K sources are connected to the first
node and K receivers are connected to the second node. Source k sends messages
only to receiver k (1 < k < K). Each message is a string of data bits, followed by
a string of idle time slots. The statistical description of the lengths of the message
and the idle period are known. If the expected delay per message for reproduction
of the message at the receiver cannot exceed a certain value, then some protocol
information about the start of messages and message lengths has to be transmitted
in addition to the data bits. This protocol information is the overhead required to
meet the expected delay constraint. Upper and lower bounds on the required amount
of protocol information were given in [3].

In timing channels, however, the arrival times of message are seen as a means of
communicating information. From this point of view, many interesting results on the
capacity of the single-server queue were derived in [1]. These results were extended to

the discrete-time single-server queue in [4] and [5]. Such channels are closely related



to channels with point-process observations (cf. [6], [7], [8]). We now describe these
results in some detail.

We focus on the simpler model in which all packets are identical and do not
contain information (cf. [1], [4], [5]). Information is therefore contained only in the
times of arrival to the queue. Every message is encoded by a different sequence of n
arrival times to the queue. The decoder, knowing the codebook and the statistical
description of the queue, selects one of the possible messages upon observation of the
corresponding n departure times. The rate of the code is equal to the logarithm of the
number of messages divided by the average time it takes to receive all n packets. The
mechanisms that blur the timing information are the randomness in service times
and the queueing delays. The problem of obtaining the capacity of this channel
is interesting because of the following challenges. The channel has memory due to
the queueing of packets, and is nonstationary because the queue is initially empty.
Furthermore, even for the single-server queue, simple queueing-theoretic results [9]
are known only when the queue is in steady state and the input is amenable to
steady-state analysis; to compute capacity we cannot restrict the encoder to such
inputs.

The single-server queue is characterized by its service distribution. In queueing
theory, the most tractable service distribution is the exponential distribution. In the
usual convention, the exponential server is denoted by -/M/1, and a single-server
with “generic” distribution (independent and identically distributed service times) is
denoted by -/G/1. The following results on the capacity of the single-server queue

are known.

e The capacity of the - /G/1 queue with service rate u packets per second is greater

than or equal to e™'y nats per second [1].

e Among all -/G/1 queues with given service rate, the - /M /1 queue has the lowest
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capacity, equal to e”'u nats per second [1]. The exponential service therefore
plays the same role that Gaussian noise plays in additive noise channels; it is

therefore the “noisiest” service distribution.

Consider a simple model of a telephone signaling channel where, upon placing
the zth call, the transmitter listens until the first ring is heard, at which time
the transmitter hangs up and then, after a period of time that depends on the
message (and possibly on previous transit times), places the (2 4+ 1)st call. The
sources of randomness in this model are the call transit times. If these are
independent and identically distributed (i.i.d) with a certain distribution, this
channel is equivalent to the -/G/1 queue with complete feedback. The capacity
of the telephone signaling channel is greater than or equal to e 'y nats per
second, where 1/u seconds is the average transit time [1]. In this model the

ability to send information in the number of rings is not exploited.

The capacity of the -/M/1 queue does not increase even if the encoder has
complete feedback information of the output of the queue [1]. It does not

decrease if there is an unknown number of packets in the queue initially [1].

Let each packet contain (g nats of information. Packets now are no longer
identical. We assume for simplicity that the packet information (Cy nats per
packet) is received noiselessly by the receiver. The capacity of the information
bearing queue is [1]

Cr =sup [C(A) + A Co],

A<p

where 4 is the service rate of the queue, and C() is the capacity of the queue at
output rate A. This equation reflects an inherent tradeoff; if we input packets
to the queue at a rate A very close to the service rate, then we destroy the

information carried in the arrival times. If Cj is sufficiently large, it may not



be worth sacrificing input rate in order to convey information via timing. For

binary-valued packets, however, the capacity of the queue is equal to

sup [Alog £ + Alog2| = 2e 'y nats per second

A<p A
= 1.06154 bits per second

for the exponential server. The capacity is larger for any other service distri-
bution, i.e., we can transmit reliably at a rate strictly larger than p bits per

second.

e Analogous results hold for the discrete-time queue (cf. [4], [5]). Packets arrive
and depart only at discrete time instants called slots. The geometric server
with service time distribution Pr{S = k slots} = u(1 — u)*~! for k£ > 1, where
0 < p < 1, plays the role of the exponential server. The capacity of the
exponential server queue is log [1 +p(l - ,u)(l_“)/“] nats per slot.

e The channel with point-process observations (cf. [6], [7], [8]) where the trans-
mitter controls the instantaneous rate of the point process, is intimately related
to the single-server queue. Such channels model the direct-detection optical
communication channels [8]. Let the rate controlled by the transmitter be
A= (XA :t€]0,T]), where A; € [0, u]. The receiver observes an inhomogeneous
Poisson process on [0, T'] with rate A. The capacity of this channel is e 'y nats
per second. Furthermore, the capacity of this channel does not increase in the

presence of complete feedback.

1.3 Motivation

In deriving the aforementioned results, an assumption is that both the encoder and

the decoder have full knowledge of the channel, i.e., the distribution of service times.
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There are several situations where the decoder must be designed without this knowl-
edge. The decoder may be used either in different settings with differing channel
statistics, or in situations where unmodeled random mechanisms affect the channel.
It is then of interest to address attainable rates of transmission on a given channel
with a decoding rule that is robust to variations in the channel statistics.

Considerable attention has been given to the single-server queue. Little is known,
however, for other queueing systems such as the multiserver queues, queues in tandem,
or even the single-server queue with finite buffer. For such systems, the approaches of
[1], [4] and [5] do not seem useful; using their techniques, even the likelihood function
of the output given the input is difficult to obtain. New approaches are therefore
required to understand timing channels in networks.

Attention in [1], [4] and [5] is focused on obtaining achievable rates disregarding
the practical issues of complexity and computational feasibility. To build real-life
communication systems, however, we need coding schemes where the decoder has
good performance while being computationally feasible.

In this thesis, we address these issues. The next section gives a preview of our

results and indicates how the thesis is organized.

1.4 Organization

In Chapter 2, we consider using a specific decoding criterion to transmit information
by timing arrivals to a single-server queue. This criterion is the maximum-likelihood
decoding rule for the exponential server queue. For any server with service times
that are stationary and ergodic with mean 1/u seconds, we show that the rate e 'u
nats per second (the capacity of the exponential server timing channel) is achievable

using this decoder. We show that a similar result holds for the timing channel with

feedback.



In some situations, it is necessary to hamper the communication capability over
the timing channel. On the single-server queue, service times blur timing information.
A natural means of hindering communication is to delay the exit of the packets
(in addition to the nominal service times). On this jammed timing channel, we
show that the rate e™'u nats per second is achievable with a random strategy, where
the nominal service times are stationary and ergodic with mean 1/yu; seconds, the
arithmetic mean of the delays added by the server does not exceed 1/u, seconds,
and g = pipa/(p1 + p2). In this random strategy, the encoder picks a codebook
at random. The result of this random choice is known to the decoder, but not to
the server. For the discrete-time jammed timing channel we show the existence of a
nonrandom strategy that transmits reliably at log [1 +p(l — ,u,)(l_”)/“] nats per slot,
where p = pipa/(p1 + p2), if the packets themselves carry information. We also show
converses for exponential-server and geometric-server queues.

In Chapter 3, we prove the capacity formula of [1] for the exponential server
queue from a point-process perspective. Our results imply an alternative strategy
with feedback that achieves capacity on the point-process channel with no back-
ground intensity. Our results for the discrete-time queue imply an alternative strat-
egy with feedback that achieves capacity on a discrete memoryless channel called the
Z-channel. This point-process route suggests a procedure to analyze the capacity
of simple queueing networks. Specifically, we consider multiserver queues, queues in
tandem, and a single-server queue whose output is merged with a stream of Poisson
arrivals. We provide bounds, some analytical and some obtained from simulations,
on the capacities of these systems.

In Chapter 4, we address the question of finding good coding schemes that have
computationally feasible decoding procedures. We show the existence of a good tree
code with a sequential decoder for the exponential server timing channel. The ex-

pected number of node expansions per decoded bit is upperbounded by a constant.
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The rate of information transfer for this code is p/(2e) nats per second, i.e., one half
of the capacity.

In Chapter 5, we collect a few open questions and indicate some future directions.

In the appendix, we discuss one particular open problem. On the single-server
queue, it is possible to discard some codewords as incompatible with the observed
sequence of departure times. Suppose that the receiver outputs a list of compatible
codewords for the received sequence of departure times. We would like this list size
to be 1, i.e., the transmitted message is recovered without any error. Under the
constraint that the average list-size be close to 1, the largest information rate that
can be supported is called the (zero-error) average list size capacity (cf. [10], [11]).
There are strong indications that the (zero-error) average list size capacity of the

single-server queue (without feedback) is 0.






Chapter 2

Robust Decoding for Timing

Channels

2.1 Introduction

Consider the problem of transmitting information through the epochs at which pack-
ets arrive at a single-server queue [1]. All packets are identical and information is
contained only in the times of arrival of these packets. The service times cause delays
that corrupt the input information. Let us recall some results stated in Chapter 1.
If the service times are independent and exponentially distributed with mean 1/p
seconds, the capacity of this channel is e !y nats per second when the cost of trans-
mission is the expected time for the last packet to exit the system [1]. Furthermore,
if the service times are independent and identically distributed (i.i.d) with mean 1/u
seconds, but are not exponentially distributed, then we can communicate reliably at
a rate e~y nats per second [1]. Thus among all servers with i.i.d service times of
mean 1/u seconds, the exponential server has the least capacity. These results in [1]
assume that both the encoder and the decoder know the distribution of the service

times.

11



When the service times are independent and exponentially distributed, maximum-
likelihood decoding is easy to implement. Given the sequence of times at which
packets depart from the queue, the decoder finds the codeword that explains the
sequence of departures with the smallest sum of service times. To do this, the decoder
needs only additions, subtractions and comparisons. Since the exponential server has
the least capacity, and its maximum-likelihood decoder uses simple functions, we
consider using this decoding strategy when the service times are not exponentially
distributed. In this case, although the above decoder is suboptimal, its simplicity and
general applicability are appealing.

In this chapter, we show that we can communicate reliably at a rate e™'u nats
per second using the above decoding strategy when the distribution of service times,
known to the encoder, is stationary and ergodic with mean 1/p seconds. In other
words, the decoder need not know this distribution to achieve e™!y nats per second.
A similar result is known to hold for the discrete-time additive noise channel; the
Gaussian channel’s capacity is achievable using the minimum Euclidean distance de-
coder (cf. [12, Theorem 1] for a version of the result). We describe this result in more
detail later in this section.

Consider the following definition of the cost of transmission. Suppose that the
decoder has to make decisions based only on departures that occur within a certain
time window. If the cost of transmission is the length of the time window of ob-
servation, then we show that we can communicate reliably at e™'y nats per second.
The service times are stationary and ergodic with mean 1/u seconds. Under this new
definition of the cost of transmission, we also show that e™'y nats per second is the
largest rate achievable on the exponential server channel. We do this by mapping any
strategy on the timing channel to an equivalent strategy with complete feedback on
the point-process channel [6].

Discrete-time queues were studied in [4] and [5]. The maximum-likelihood decoder
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for the server with independent and geometrically distributed service times is simple.
We argue that using this decoder, the capacity of the geometric server channel is
achievable when the distribution of service times is stationary and ergodic with mean
1/p slots. If the cost of transmission is the length of the observation window, then we
show the converse for the geometric server channel by mapping any communication
strategy on this timing channel to an equivalent strategy with complete feedback on
a binary memoryless channel.

Timing information can be transmitted covertly by transmitting innocuous in-
formation in the contents of packets, which may be subject to eavesdropping. Since
service times corrupt information encoded in the arrival epochs of packets, we consider
the following jammaing strategy employed by the server to hamper covert communi-
cation. Every packet suffers a delay (extra service time) in addition to the nominal
service time (which is stationary and ergodic with mean 1/u; seconds). If these de-
lays are without limits, then communication in the timing channel can be jammed
completely at the expense of information throughput in packet contents. We there-
fore require that the arithmetic mean of these delays be smaller than 1/u, seconds.
We call the resulting channel the jammed timing channel. This channel is similar to
the arbitrarily varying channel (AVC) introduced in [13]. An important distinction
between the jammed timing channel and the memoryless AVC ( [13], [14], [15], [16]
and references therein) is that in the jammed timing channel current input and delay
can affect future outputs.

We prove an achievability result in the situation where the jammer does not know
the true codebook in use, but knows only a distribution from which the codebook is
selected. In particular, the rate e 'y pa/(p1 + p2) nats per second is achievable with
random codes on the jammed timing channel. When the nominal service times are
independent and exponentially distributed, we show that the rate e ™ pqpa/(p1 + p2)

nats per second is also the largest achievable with random codes, giving us a reduction



in capacity by a factor ua/(p1 + pa).

We now briefly survey previous works relevant to our study. The use of the
exponential server’s maximum-likelihood decoder when the service times are not ex-
ponentially distributed is an instance of decoder mismatch. In the context of discrete
memoryless channels (DMC), suppose that the communication system operates under
a channel with transition probability matrix W(-|-). The decoder performs maximum-
likelihood decoding assuming that the DMC is characterized by V(-|-), i.e., for a re-
ceived sequence y", it chooses the codeword z” that maximizes V(y™|z"), where n is
the number of uses of the channel. Reference [17] showed that using the mismatched

decoder, we can communicate reliably at a rate

SJEXP E llog %] , (2.1)

where @)y is the marginal distribution of the output under the mismatch channel V
and the input distribution Px. The expectation in (2.1) is with respect to the joint
distribution under the true channel W and the input distribution Px. This result
was extended to discrete channels with memory in [18]. Since these results have not
been proved for channels with memory that have continuous inputs and outputs, we
first show the achievability of (2.1) for such channels and then apply this result to
the timing channel. The proof, though different from the proofs in [17] and [18], is a
simple extension of the proof of [19, Lemma 6.9].

Although rates possibly larger than (2.1) are achievable with mismatched decoding
( [20], [21], [22] and references therein), achievability of a rate that is analogous to (2.1)
is enough to show the results in this chapter.

This chapter extends the parallelism found in [1] between the exponential server
timing channel and the discrete-time additive white Gaussian noise channel with

an input power constraint. Consider the additive noise channel. For n uses of the
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channel, each codeword is a point in R™ having power smaller than nP. It is well-
known that for any stationary, ergodic, zero-mean noise process with variance o?,
the rate (1/2)log[l + P/c?| nats per channel use is achievable using the minimum
Euclidean distance criterion for decoding. A version of this result is the direct part

of [12, Theorem 1]. A stronger version of the direct part when o2

< P is given
in [16]. The minimum Euclidean distance criterion for decoding is the maximum-
likelihood decoding when the noise is independent and has the Gaussian distribution;
the capacity in this case is (1/2)log[l + P/o?] nats per channel use. The timing
channel counterparts of this result are Propositions 1 and 2 in Section 2.2. As in [1],
the analogy is rooted in the fact that the exponential distribution and the Gaussian
distribution are similar mutual information saddle-points [23].

A similar result is known for a convex and compact family ® of DMCs. For an
input distribution P and a DMC W, let I( P, W) denote the mutual information. Let
P* and W* € O attain the saddle-point of the mutual information functional, i.e.,

max min I(P,W) = Igvni% max I(P,W)=I(P*,W").
€

P Weo

Suppose now that the channel is characterized by W € ©. Then I(P*, W*) is achiev-
able over the DMC W using a maximum-likelihood decoder for the DMC with stochas-
tic matrix W* [24] (see also [25, Section IV-B-4] ).

The jammed timing channel is similar in spirit to the Gaussian arbitrarily varying
channel (Gaussian AVC) [26], [16], in which a jammer changes the mean of the Gaus-
sian noise subject to a power constraint. Proposition 3 in Section 2.2 is related to
results in [26] for random codes in the Gaussian AVC. The capacity of the Gaussian
AVC, when the jammer knows the codebook, is known [16]. We do not know if an
analogous result holds on the jammed timing channel, when the jammer knows the
codebook. In the discrete-time case however we can apply the “elimination” technique

of [14] to get a non-random coding strategy if a certain amount of information can



be transmitted by the packet contents. Only a negligible fraction of packet contents
need be used.

The jammed channel considered in [27] imposes a constraint on the overall delay
suffered by the packets. Let the packet be input into the system at time ¢ and let it
depart from the system at time ¢ 4 d, where d includes the queueing delay and the
service time. Then d is the overall delay suffered by the packet. Let us further assume
that more than one arrival and more than one departure can occur at an instant. Let
P be the distribution of the arrival process such that the arrival rate is A. Let @ be
the channel such that the maximum of overall delays suffered by the packets does not

exceed D. Let I(P, Q) denote the mutual information. Then [27]
1
in I(P = mi I(P = —H(P*
mexminI(P, @) = minmax I(P, @) = [ H(P*),

where P* is the geometric distribution on Z, = {0, 1,2, - - -} having mean AD. Bounds
on the minimax and maximin of the mutual information were given for the constraint
where the average overall delay is constrained to be below D. In the model of the
jammed timing channel studied in this thesis, the constraint is on the service times
of the packets. The model in [27] is therefore significantly different from the jammed
timing channel.

The rest of this chapter is organized as follows. Section 2.2 states the basic
definitions and results. Section 2.2.1 covers the mismatched decoding problems for the
continuous-time single-server queue. Section 2.2.2 studies the jammed timing channel.
Section 2.2.3 discusses the signaling channel, or the timing channel with feedback.
Section 2.2.4 describes the discrete-time single-server queue. Section 2.2.5 shows the
converses for the exponential and the geometric server channels. Section 2.2.6 collects

several observations on our results. The proofs are in Section 2.3.
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2.2 Definitions and Results

2.2.1 Continuous-Time Single-Server Queue

This subsection deals with mismatched decoding for the continuous-time single-server
queueing system without feedback. The definitions of the relevant quantities are as
in [1], but written in our notation. Let R; = [0,00),Z; = {0,1,---} and N =
{1,2,---}. We assume that the following conditions hold:

e The queue is work-conserving, i.e., if a packet departs after service and another

one is in the queue, then the server begins to serve the packet in the queue;

e The queue is initially empty, and the server follows a first-in-first-out service

discipline;

e The sequence (Si : k € N) of service times is a stationary and ergodic process

with mean 1/ seconds.

For each n € N, the input to the queueing system is a vector 2™ = (z1,- -+, z,) of
n nonnegative interarrival times, such that the kth arrival occurs at time 3% | z;, k =
1,---,n. The decoder observes y™ = (yo,¥1," - -, Yn), Where yo = 0, and yj is the time
between the (k — 1)st and the kth departures, k=1, -, n.

For each n € NV, the input alphabet is R7, and the output alphabet is R%™". The
o-algebras associated with the alphabets are the product Borel o-algebras. Let E C
R7+! be a Borel set and 2™ € R7;. A transition probability function (28, p.315], Pyr x=,
from the input space to the output space, is a mapping (2", E) — Pynx~(E | z™)
having the following measurability properties: (a) for each z™ € R7, the mapping
E — Pynx~(E | 2™) is a probability measure on the output space; (b) for each Borel
set E C R%™, the mapping 2™ — Pynx»(E | ™) is measurable with respect to the
input space. A channel is a sequence (parametrized by n) of transition probability

functions from the input space to the output space.



Fix n € N. Let s; be the service time of the kth packet, kK = 1,---,n. The
observable y™ can be described as follows. Let wy be the amount of time for which
the server is idle between the (k — 1)st departure and the kth arrival, i.e.,

k k-1
wkzmax{(), Zazi—Zyz}, k=1,---,n. (2.2)
i=1 i=0
Thus if the kth arrival occurs before the (k — 1)st departure, the idling time wy, is 0.

The interdeparture times are then given by

0, k=0,
Yk = (2.3)
wg+ 8k, k=1,---,n.

The stationary and ergodic process (Sg : £ € N) and the queue equations (2.2)
and (2.3) induce the true channel (PY'n.|X'n 'n € ./\/), which is a sequence of transition

probability functions from the input space to the output space.

Definition 1: An (n, M, T, ¢e)-code consists of a codebook of M codewords and a de-
coder. Each codeword is a vector of n nonnegative interarrival times (z1, -+, Zn). The
decoder, after observing the n departures, selects the correct codeword with probability
greater than 1 — ¢, under equiprobable codewords and Pyn xn. The nth departure oc-
curs on the average (under equiprobable codewords and Pyn x») no later than T. The
rate of the code is (log M)/T. Rate R is achievable if, for every v > 0, there ezists a
sequence of (n, M, Ty, €,)-codes that satisfies (log My,)/T, > R —+ for all sufficiently

large n, and lim,,_,o €, = 0.

We now describe the mismatch channel (Qyn|Xn 'n € ./\/) according to which the
decoder performs maximum-likelihood decoding. Let a synchronizing zeroth packet be
sent at ¢ = 0 and interpret yo as the amount of unfinished work at £ = 0, including the
service time of the zeroth packet (i.e., the time at which the zeroth packet departs from

the system). Let the number of packets in the queue at ¢ = 0 have the equilibrium
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distribution that is associated with an M/M/1 queue [9, pp. 48-49] having input rate
A < p packets per second. The mismatch channel is then the channel induced by the
process (Sk : k € N) that is independent and exponentially distributed with mean
1/p seconds. It will soon be clear that the decoding strategy does not depend on the
parameter A’

Let e,(z) denote the exponential density function pe™#* z € R,, having mean
1/p. The random variable Y5 has the exponential density e,_x(yo) under Qynx» [1],
for every n € V. In contrast, Yy = 0 under Pyn|x», for every n € N.

Let m denote the Lebesgue measure (the argument will indicate the appropriate
space). Fix n € N. Using the queue equations (2.2) and (2.3), and the density for

exponentially distributed service times, Qy~ x~» can be written as

dQyn x~(y"[z") = dn(y™) p(z",y") (2.4)

for every z™ € R7}, where

P(mn;yn) é eu—)\’(yo) H ey(yk - wk); )\I < H. (25)
k=1

Let the distribution Px» on the input space be given by
dPXn(:En) = dﬂ'(:lln) H BAI(.’IJk), N < . (26)
k=1

This is the distribution of the first n arrivals induced by the Poisson arrival process
with rate A'. Let Qxnyn~ denote the joint distribution under the input distribution
Pxn (cf. (2.6)) and Qynx» (cf. (2.4)). The joint distribution @x»y~ can then be

written unambiguously as
dQxnyn(z™,y") = dPxn(z™) dr(y") p(z™,y™), (2.7)

due to Fubini’s Theorem [29, Theorem 18.3, p.238]. Let Qy~ denote the marginal
distribution of Y™ = (Yg,---,Y,) under Qxnyn. Let Pxn X Qyn denote the joint



distribution under which the random variables X™ and Y™ are independent, and have
marginal distributions Px» and Qy=, respectively.

As a consequence of (2.7), we have that Qxny» < Pxn X Qyn [30, Corollary
5.3.1, p.112], and that Qy» < my~. A version of the Radon-Nikodym derivative
dQxnyn/d(Px» X Qy=) is the function f given by

fam g { P y)/m(y), i () >0 08)
1, if m(y™) =0
where

m(y™) 2 /R _dPxn(z") p(a”,y"), y" € RT. (2.9)
+

We can easily verify that
dQy~(y") = dr(y™) m(y™). (2.10)
Clearly, the function f (cf. (2.8)) satisfies

dPxn(a™)f(a",y") = Bf(X",y") = 1 (2.11)

R’II.

+
for every y™ € R7™'. The output of an M/M/1 system with input rate X' < p is a
Poisson process with rate A’ (see, for e.g., [9, Fact 2.8.2, p.60]). Consequently, under
Qxnyn, the random vector (Y1,---,Y,) is a vector of independent and exponentially

distributed random variables with mean 1/)’ seconds, i.e.,

dQYl,"',Yn(yla e 7yn) = dw(yh e 7yn) l_n[ eA’(yk)- (212)

k=1
We will use (2.10), (2.11) and (2.12) in the proof of our results.

We now describe the mismatched decoder. The decoder makes a decision based
on f (cf. (2.8)) as follows. Let the codebook be {x1,---,xa}, where x; € R} for 2 =
1,---, M. The decoder ¢;: R} — {0,1,---, M} maps the observed interdeparture

times y™ to

a { i, i maxjz f(x4,9") < f(xi,97) (2.13)

0, if no such s exists.
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We interpret the output 0 as an error in decoding.

From Lemma 2 in Section 2.3, m(y™) = 0 if and only if yo 4+ y1 = 0, in which case
é#(y™) = 0. But m(¥Y™) = 0 with zero probability under Qy». When m(y™) > 0,
which is the case almost always, the decoder ¢4 tries to pick the unique codeword
that maximizes p(-,y") (cf. (2.5)). This is the same as picking the unique codeword
(among the compatible ones) that minimizes the sum of service times, > 7_; (yx — wk),
or equivalently maximizes the sum of idling times of the server, > 3_; wx. When
the decoder cannot find such a unique codeword, it declares 0, an error. The only
functions required to make this decision are additions, subtractions and comparisons.
Although these functions are simple, >°7_, wy must be evaluated for every codeword
before a decision is made. Since the number of codewords is exponential in time, the

number of operations performed to decode is exponential in time.

Proposition 1: Let the queue be work-conserving and initially empty. Let the server
follow a first-in-first-out service discipline with stationary and ergodic service times

of mean 1/u seconds. The rate e~ 'u nats per second is then achievable using the

decoding rule in (2.13).

The result [1, Theorem 7] on the achievability of e™*u nats per second for i.i.d
service times is a special case of Proposition 1. To transmit reliably at e™!u nats per
second on such a channel, maximum-likelihood decoding is not required; the decoder
¢¢ 1s sufficient. This decoder is therefore robust to the distribution of service times.
The decoder’s robustness, however, does not imply that a single sequence of codes
works for all stationary and ergodic distributions of the service times. Furthermore,
Proposition 1 does not give rates at which the probability of error goes to zero. The
term “robust” should therefore be interpreted with caution. We only argue that,
knowing the true channel, a sequence of good codes with decoder ¢; and rate close

to e”!u nats per second can be selected.



Suppose that the codebook is such that for every codeword, the last arrival occurs
before t = T'. Then the decoder, ¢, need not observe departures beyond ¢ = 7".
This is because of the following. Suppose that y™ satisfies >3 _,yxr > 77. Given
any candidate codeword, the server is not idle beyond 7", i.e., the quantity that is
required to make a decision, > y_; wg, can be evaluated upon observation of departures
in the time window [0, 7"]. Departures in [0,7"] therefore constitute a set of sufficient
statistics for determining the input codeword. This is not surprising because of the
memoryless property of exponential service times.

Now suppose that the decoder observes only the departures that occur in [0, T,
where T is known to the encoder. Clearly, it is useless to have arrivals after time 7.

This motivates the following definition.

Definition 2: An (n, M,T,¢e)-window-code consists of a codebook of M codewords
and a decoder. Each codeword is a vector (z1,---,2n) of n nonnegative interarrival
times. The nth arrwal of every codeword occurs before time T. The decoder, after
observing departures in [0,T], selects the correct codeword with probability greater
than 1 — ¢, under equiprobable codewords and Py~ x~. The rate of the window-code is
(log M)/T. Rate R is achievable with window-codes if, for every v > 0, there ezists
a sequence of (n, My, Ty, e,)-window-codes that satisfies (log My,,)/T, > R — v for all

sufficiently large n, and lim,,_, o €, = 0.

Thus the term “window-code” refers to a code whose decoder observes only those
departures that occur in the window [0, T]; the cost of transmission for the window-
code is T seconds. In contrast, the code in Definition 1 has a decoder that observes
all the n departures; the cost of transmission in that case is the expected time of the

nth departure, i.e., the expected time the decoder waits to gather the output data.

Proposition 2: Let the queue be work-conserving and initially empty. Let the server

follow a first-in-first-out service discipline with stationary and ergodic service times
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of mean 1/u seconds. The rate e u nats per second is then achievable with window-

codes using the decoding rule in (2.13).

2.2.2 Jammed Timing Channel: Random Codes

We now consider the jammed timing channel where the server acts as an adversary.
The queue is initially empty, and the server follows a first-in-first-out service discipline.
The process (Sk : k € N') of nominal service times is stationary and ergodic with mean
1/p1 seconds. Fix n € N. The server (jammer) includes a delay of z; seconds to the
service time of the kth packet, k =1,---,n. We call z = (21, -, 2,) € R the state
sequence, since it determines the state of the channel. The resulting service time for
the kth packet is Sg + 2z seconds, k = 1,---,n. If no constraints are imposed on the
state sequence, communication in the timing channel can be jammed completely at
the expense of information throughput in packet contents. We impose the following
constraint. For a code with n packets, we allow only those state sequences z that

satisfy
(z) 2 =Yz < —,

i.e., a total delay of at most n/u, seconds is allowed for all the n packets. Each state
sequence, z, induces a transition probability function from the input space to the
output space, denoted by W™(z). We need communication strategies that perform
well for every state sequence z that satisfies I(z) < 1/u,.

The problem of finding achievable rates for deterministic codes, i.e., when the
codebook is known to the jammer, appears to be nontrivial. Instead of fixing a
single good (deterministic) codebook, we allow communication strategies with random
codes. The encoder chooses the codebook that is used for transmission from a set
of possible codebooks. The decoder knows this selection. The jammer, however, is

ignorant of the selected codebook. Its partial knowledge is modeled by a distribution



on the set of codebooks. Such a code is usually called in the AVC literature, somewhat
deceptively, a random code.

Given a selected codebook c, the decoder is ¢ (cf. (2.13) and (2.8)). For the
codebook c, the average probability of error (over equiprobable codewords) is denoted
by P.(c,¢s, W"(z)) when the state sequence is z.

Let C be a random variable taking values in the family of all codebooks that have
M codewords, and such that the nth arrival in each codeword occurs before 7'. The
parameters (n, M, T) of the random variable C will be clear from the context. The
following definition is an extension of window-codes and achievability with window-

codes (Definition 2) for the jammed timing channel.

Definition 3: An (n, M, T, ¢)-random window-code consists of a probability distri-
bution for C, and a decoder ¢ that depends on the codebook realization. FEach re-
alization c is a set of M codewords. Fach codeword is a vector of n monnegative
interarrival times. The nth arrival of every codeword occurs before time T'. The de-
coder, knowing the codebook realization ¢, makes a decision after observing departures
in [0,T]. The average probability of error satisfies E[P.(C, ¢, W™(z))] < € for every
z with I(z) < 1/ps. Rate R is achievable with random window-codes if, for every
v > 0, there exists a sequence of (n, My, Ty, €n)-random window-codes that satisfies

(log M,,)/T,, > R —~y for all sufficiently large n, and lim, o €, = 0.
Proposition 3: On the jammed timing channel, the rate e *pypa/(p1 + p2) nats per

second is achievable with random window-codes using the decoding rule in (2.13)

2.2.3 Signaling Channel

In a telephone signaling channel [1], the encoder knows exactly when the packet is

removed from service, i.e., complete feedback is available. The encoder can make use
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of this information to avoid queueing altogether, and the resulting channel is a simple
additive noise channel.

On this channel, the rate e ! nats per second is clearly achievable in the presence
of complete feedback. Indeed, the encoder can ignore feedback completely, and use
a code suggested by Proposition 1. Making use of feedback, however, leads to an-
other decoder that achieves e 'y nats per second. It will be clear from the following
definition that feedback is used only to avoid queueing.

The sequence of service times is stationary and ergodic with mean 1/u seconds.
An (n, M, T, ¢)-feedback code consists of codebook of M codewords and a decoder.
Each message is an n-vector (z1,---,,) of positive real numbers. The first arrival
occurs at t = z;. The kth component, zj, is the amount of time the encoder will
wait after the (k — 1)st departure, before sending the kth arrival, k = 2,---,n. The
last packet exits on the average before 7. The encoder thus makes use of feedback
to avoid queueing and to control completely the idling times of the server. Feedback
however is not used to choose the waiting times z;. The rate of the feedback code
is (log M)/T nats per second. The decoder, after observing the interdeparture times
y™ = (y1, -, Yn), makes the correct decision with probability larger than 1 — & when
averaged over equiprobable codewords.

Rate R is achievable with feedback if, for every v > 0, there exists a sequence of
(n, My, Ty, en)-feedback codes that satisfies (log M,,)/T, > R — v for all sufficiently
large n, and lim, o, £, = 0.

The decoder chooses the codeword that explains the received sequence of de-

partures with the minimum sum of service times. For a candidate codeword, x =

(z1, -, Zn), let d(x,y™) 2 > r_q d(yx — zx), where

T, ifr >0,

d(r) & _
+o0, ifr<0.



Given the codebook {xi,---,xpr}, the decoder pg maps y™ to

a) o i d(x;,y™) < minjy; d(x;,y™)

pa(y™) (2.14)

0, if no such z exists,

where an output 0 is interpreted as an error in decoding.

Proposition 4: Let the queue be work-conserving and initially empty. Let the server
follow a first-in-first-out service discipline with stationary and ergodic service times
of mean 1/u seconds. The rate e ' nats per second is then achievable with feedback

using the decoding rule in (2.14).

We remark that Proposition 4 is not implied by previous results on mismatched
decoding. In particular, we cannot apply [20, Theorem 2] because it precludes input
distributions with infinite differential entropy. For the input distribution that we
choose, differential entropy does not exist. This input distribution is the one that

attains the mutual information saddle-point [23, Theorem 1].

2.2.4 Discrete-Time Single-Server Queue

In this subsection, we describe the discrete-time single-server queueing system [4], [5],
and state the counterparts of Propositions 1, 2 and 3. The proofs are omitted since
they are analogous to the continuous-time case.

In the discrete-time model, arrivals and departures occur only at integer-valued
epochs, called slots. At most one packet arrives and at most one packet departs in
each slot. Unserved packets are stored in a queue. The queue is work-conserving, and
the server follows a first-in-first-out service discipline. The sequence (Si : k € N) of
nominal service times is an A-valued, stationary and ergodic process with mean 1/u,
slots, 0 < p; < 1. Each packet requires at least one slot of service.

For each n € N, the input is a vector of n interarrival times, " = (21, -, ).

The decoder observes y™ = (yo,¥1, " ,Yn), Where yo = 1, and yi is the time (in



2.2. DEFINITIONS AND RESULTS 27

slots) between the (k — 1)st and the kth departures, & = 1,---,n. We set yo = 1
because z; > 1 and s; > 1, i.e., the first slot does not give any information about
the transmitted message. The input alphabet is A/ and the output alphabet is
N7t The o-algebras associated with the alphabets are the collection of all the

corresponding subsets.

Fix n € N. Given the sequence of service times (s1, -, s,) € N™, the interde-
parture times in y™ = (yo,¥1, -, Yn) are
1, k=0,
Yk = (2.15)
s twg, E=1,---,n,
where wy = maX{O, E?Zl T; — E?;cl) yj} is the server’s idling time before serving

the kth packet. The stationary and ergodic process (S, : k& € N') and the queue
equation (2.15) induce the true channel (Pyn|Xn 'n € N)

The definitions of (n, M, T, ¢€)-code, achievability, (n, M, T, e)-window-code and
achievability with window-codes are analogous to those in Definitions 1-2.

Fix n € N. For the jammed timing channel (discrete-time), the state sequence
z= (21, ,2,) € Z} satisfies the constraint [(z) 2 (Xro12k)/n < 1/pa, w2 > 0. As
in the continuous-time case, each z induces a transition probability function, W™(z),
from the input space to the output space.

The definitions of (n, M, T, €)-random window-code and achievability with random
window-codes are analogous to those in Definition 3.

We now describe the mismatch channel (Qynp(n 'n € /\/) based on which the
decoder performs maximum-likelihood decoding. We say that a random variable X
has the Geo®()) distribution, 0 < X < 1, if P{X = z} = ga(z) 2 AM1-=X)"1 zeN.
Let a synchronizing zeroth packet be sent at ¢ = 0 and interpret yo as the amount
of unfinished work at ¢ = 0, including the service time of the zeroth packet. Let the
number of packets in the queue at £ = 0 have the equilibrium distribution that is

associated with the queue having Geo™()\')-distributed arrivals, 0 < X < p; < 1,



and Geo™(u;)-distributed service times. This queueing system is the discrete-time
counterpart of the M/M/1 system. The mismatch channel is then the channel induced
by the process (Si : k € N') of independent and Geo™ (p;)-distributed service times.
Fix n € N. Using the queue equation (2.15), we see that the mismatch transition
probability function Qyn x~ is the probability mass function (pmf) on V™! given by

Qyvrix»(y™z™) = gu-x(yo) [ 9u(ve — wi)
k=1

for every z™ € N™. Let the pmf on the input alphabet N'™ be

PXn(.’ZJn) = H g)‘l(.’lik), 0< X< n1 < 1.

k=1
For (z™,y™) € N™ x N™t! let f(z™,y™) 2 Qyrx~(y™|z™)/m(y™), where
n A n n n n n
m(y") = Y Px~(z") Qunix=(y"z"), y" € NN
:E"EN"

The function f satisfies Ef(X™,y™) = 1 for every y™ € N™!; the expectation is with

respect to Px». Given a codebook with M codewords, the decoder is the function

¢s: N*t1 — {0,1,---, M} defined in (2.13).

Proposition 5: Let the discrete-time queue be work-conserving and initially empty.
Let the server follow a first-in-first-out service discipline with stationary and ergodic

nominal service times of mean 1/u; slots. The following statements then hold:

(a) The rate log[1 + py (1 — 1 )2=#)/¥1] nats per slot is achievable using the (discrete-
time) decoding rule in (2.13),

(b) The rate log[l + p1(1 — p1 )E=H21)/ 8] nats per slot is achievable with window-codes

using the decoding rule in (2.13),

(c) On the jammed timing channel, the rate log[l + u(1 — p)*~#/#] nats per slot,
where p = pi1p2/(p1 + p2), is achievable with random window-codes using the

decoding rule in (2.13).
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On the discrete-time jammed timing channel, if each packet carries a non-zero
amount of information, we can apply the elimination technique of [14] to get a non-
random communication strategy that has rate log[l + u(1 — u)*=#)/#] nats per slot.
The first step in this technique is random code reduction [19, Lemma 6.8], which we
now describe.

Given a codebook ¢ and the decoder ¢y, let P, ;(c, o5, W™(z)) be the probability of
error when the state sequence is z and the transmitted message is 2, where 1 <1 < M.
In the rest of this subsection, let the definition of (n, M, T, e)-random window-code
be analogous to that in Definitions 3 with the condition on the average probability

of error replaced by

max E [PE,i(C7 ¢f7 Wn(z))] <e,

1<i<My
i.e., a condition on the maximum probability of error.
We can easily modify the proof to show the following extension to Proposi-
tion 5(c). On the jammed timing channel, for every v > 0, there exists a sequence of

(n, My, Ty, €n)-random window-codes that satisfies

(3)  (log M,)/T, > log[l + u(1 — u)*=¥/¥] — 4 for all sufficiently large n,

(12) . lr(lrzl)eaé:»cl/u2  Dax E[P.;(C,¢s,W"(z))] < €n for every n € N, and

(721) Jim &, = 0.

Now suppose that the error probabilities need not vanish. Fix n € N. On the
discrete-time channel, the cardinality of {W™(z): {(z) < 1/u»} is upperbounded by
(1 +n/u2)". We can therefore apply random code reduction [19, Lemma 6.8] to get
the following. Given € > 0 and 7 > 0, for all sufficiently large n, we can find a set of
n? codebooks {c; : j = 1,---,n?}, where each codebook has parameters (n, M,,T,),
the set of codebooks satisfies

max max 1 i P.i(cj, 95, W™(2)) < €, (2.16)
=1

z: I(2)<1/py 1<i<Mn n2 7



and (log M,,)/T, > log[1 + u(1 — p)A=K/E] — 4,

If each packet carries Cy nats of information, Cy > 0, then we can employ the
elimination technique of [14] as follows. Fix n € N. Let the set of equiprobable
messages be {1,---,n%} x {1,---, M,}. Given a message (j,7) from this set, choose
the codebook c;. Transmit ¢+ on the jammed timing channel using codebook c;.
Convey the codebook index j to the receiver using the first 2logn nats (of the nCy
nats) of packet contents. We thus use only a negligible fraction, (2logn)/(nCy), of
the packet contents. The average probability of error over equiprobable codewords is

smaller than ¢ for this (non-random) communication strategy because of (2.16).

2.2.5 Converses

In this subsection we state converse results for the continuous-time (resp. discrete-
time) queueing system with independent and exponentially (resp. geometrically)

distributed service times. Converses to Propositions 1, 4 and 5(a) were shown in [1]

and [4].

Proposition 6: For the continuous-time system, let the queue be work-conserving
and initially empty. Furthermore, let the nominal service times be independent and

ezponentially distributed with mean 1/p; seconds.

1

(a) The largest achievable rate with window-codes is e~'y; nats per second.

(b) On the jammed timing channel, the largest achievable rate with random window-

codes is € pipa/ (1 + p2) nats per second.

Similarly, for the discrete-time system, let the nominal service times be independent

and Geo™(u;)-distributed with mean 1/py slots.

(¢) The largest achievable rate with window-codes is log[1 + p1 (1 — py )E#V/H] nats

per slot.
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(d) On the jammed timing channel, the largest achievable rate with random window-

codes is log[l + u(1 — p)~H#/E] nats per slot, where p = pypa /(1 + p2).

Proofs of (a) and (b) are in Section 2.3. The key idea in the proof of (a) is to
map any window-code on the timing channel to an equivalent strategy with complete
feedback on the point-process channel. We now prove (¢). We omit the proof of (d)
since it is analogous to the proof of (b).

Proof of (c): The service times are independent and have the Geo™t(u;) distri-
bution. The key idea here is to map any window-code on the timing channel to a
strategy with complete feedback on a binary memoryless channel.

Fix n € N. Suppose that the codebook is designed to transmit M, messages.
Each message maps to a codeword (z1, - - -, ) € N™ of interarrival times that satisfies
Y512k < Tn. The decoder observes departures until slot 75,. Let 1{-} denote the
indicator function of an event. Let the output be the binary-valued vector (vq, - - -, vT,)
given by

vg = 1{ Departure in slot £}, k=1, -+, T,. (2.17)

Clearly, v; = 0 since z; > 1 and each packet requires at least one slot of service.
Fix a codeword (z1,---,z,). Let (Ax : 1 < k < T,) be the cumulative arrival

process;
k
=1

denotes the number of arrivals in the first k& slots. Analogously, the cumulative de-
parture process is (D : 1 < k < T,), where Dy, = Ele v; 1s the number of departures
in the first k slots, 1 < k& < T3,. The number of packets that remain in the system at
the end of the kth slot is Ay — Dy, 1 < k < T,,.

If Ay — Dy = 0, the queue is empty at the end of the kth slot, and hence no packet
exits in the (k + 1)st slot. If Ay — Dr > 0, a packet is served in the (k + 1)st slot.

Using the memoryless property of geometric service times, this packet departs in the



(k + 1)st slot with probability p;, or stays in the system with probability 1 — uq,
independent of the past.

The timing channel therefore behaves like a binary memoryless Z-channel, W,
with W(1|1) = p1 and W(1|0) = 0. The inputs to the Z-channel are u; = 0, and
Upyr = 1{Ax— D >0}, k = 1,---,T,, — 1. The output sequence is (vi,---,vr,)
given by (2.17).

Any window-code on the timing channel is therefore equivalent to the above strat-
egy with complete feedback on the memoryless Z-channel. Complete feedback is nec-
essary because the (k + 1)st input, ug;1, depends on the past departures (outputs)
through Dy.

The capacity of the timing channel (for window-codes) is therefore upperbounded
by the capacity of the memoryless Z-channel with complete feedback. Since feedback
does not increase the capacity of the memoryless Z-channel, the upperbound is found

using standard techniques to be

max  [h(pp1) — ph(pa)] = log 1+ (1 — ) dem]

This completes the proof. [ |

We can in fact say more about the converse. For window-codes with rate above
log[14 p1(1 — p1 )2 =#)/#1] nats per slot, the probability of error goes to 1. This follows
from the strong converse for DMCs with feedback [19, P.2.5.16(c)].

2.2.6 Discussion

Propositions 1 and 2 show that the exponential server’s maximum-likelihood decoder,
é5 (cf. (2.13) and (2.8)), is a robust decoder. Suppose that the service times are sta-
tionary and ergodic with mean 1/u seconds. When the cost of transmission is the
expected departure time of the last packet, rate e 'u nats per second is achievable

using the decoder ¢¢ (Proposition 1). A window-code is one where the decoder makes
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a decision based on departures in a certain time window, and all arrivals fall within
this time window. The decoder ¢; does not have to look beyond the time window
to make a decision. Rate e™'u nats per second is achievable with window-codes using
the decoder ¢; (Proposition 2). Furthermore, when the service times are independent
and exponentially distributed, this rate is the largest achievable with window-codes
(Proposition 6(a)). We prove this result by mapping any window-code on the tim-
ing channel to an equivalent strategy with complete feedback on the point-process
channel. Using feedback on the timing channel to avoid queueing, rate e 'y nats
per second is achievable with feedback using the decoder ¢4 (Proposition 4). The
mutual information saddle-point inequality plays a crucial role in the proof of our
achievability results under mismatch.

On the jammed timing channel, the jammer (server) includes an arbitrary amount
of delay to the service time of each packet. This is done to diminish the transmission
capabilities of the timing channel. The total delay for all the n packets cannot exceed
n/u, seconds. The nominal service times are stationary and ergodic with mean 1/p,
seconds. Let u = pypa/(pu1+p2). Rate e !y nats per second is achievable with random
window-codes using the decoder ¢; (Proposition 3). Furthermore, when the service
times are independent and exponentially distributed, rate e!u nats per second is the
largest achievable with random window-codes (Proposition 6(b)).

Analogous results hold for the discrete-time single-server queueing system (Propo-
sitions 5 and 6(c,d)). Furthermore, if each packet carries a non-zero amount of in-
formation, there is a non-random communication strategy to transmit information
reliably on the jammed timing channel (cf. discussion following Proposition 5). This
strategy uses only a negligible fraction of packet contents. We do not know if a similar
result holds for the continuous-time system. Suppose that the jammer is now aware
of the codebook in use, and there is no side channel available. We do not know the

(deterministic-code) capacity of such a jammed timing channel.



We conclude this section with the following observation. We can map any window-
code on the timing channel to an equivalent strategy with complete feedback on
the point-process channel (binary memoryless Z-channel in the discrete-time case).
Proposition 2 (resp. Proposition 5(b)) therefore gives us an alternative capacity-
achieving strategy with complete feedback on the point-process channel (resp. Z-
channel). It is well-known that the capacities of the point-process channel and the
discrete memoryless channel do not increase with feedback. This fact gives a simple

explanation of why the capacity of the timing channel does not increase with feedback.

2.3 Proofs

In this section we prove Propositions 1-4 and 6(a,b). We begin with a simple exten-
sion of [19, Lemma 6.9]. We provide the proof because of some minor variations in
the statement of the lemma and its applicability to standard measurable spaces. A
standard measurable space is a measurable space (A, .A) that is isomorphic to (F, F),
where F' is a Borel subset of [0, 1] and F is the Borel o-algebra on F.

Let (A, A) and (B, B) be two standard measurable spaces. Let Py x be a transition
probability function from (A, A) to (B,B). Let Px be a probability measure on
(A, A). Px and Py|x induce a joint probability measure Pxy (cf. [29, P.18.25(b),
p.247] ), and a marginal probability measure Py (cf. [29, P.18.25(d), p.247] ), on the
appropriate spaces.

Let ¢ = {21, --,zm} be a codebook of M codewords, z; € Aforz=1,---, M.
Let g : A — R4 be a measurable function that represents a constraint on the inputs.
For a fixed I' € R, we require that g(z) < T for every z € c. Fix a set H € B. Let
f:Ax B — R, be a measurable function. Let ¢sm: B — {0,1,---, M} denote the



2.3. PROOFS 35

mapping
A | % ify € H and maxjy; f(z;,y) < f(zi,v)
¢1u(y) = _ , o
0, ify ¢ H or if no such z; exists in c.

In other words, when y € H, the decoder looks for a unique codeword that maximizes
f(-,y). Given a codebook c, the encoder and the decoder are thus fixed. An error
occurs whenever the decoder declares a symbol that is different from the transmitted
symbol. Let P.;(c, ¢5m, Py|x) denote the probability of error when the codebook is

c and the transmitted message is 3.

Lemma 1: Let (A, A) and (B,B) be standard alphabet spaces. Let I' € R, and
8§ € (0,1). Let Px be a probability measure on (A, A) that satisfies

Px{g(X)<T}>1-46. (2.18)
Let f : Ax B — Ry be a measurable function that satisfies
Ef(X,y)=1 (2.19)

for everyy € B. Let H € B. There exists a random variable C that takes values in
the set of codebooks with M codewords of blocklength 1, such that for any realization
c of this random variable, g(z) < ' for every z € c. Furthermore, for every 8 > 0,
every 1 € {1,---, M},

Pxy {f(X,Y)<B} M _ Pr{Y¢H)
EPei(C,¢5m, Prix) < 1-6 Tei-se T 1-5

Proof: Let Ar ={z € A:g(z) <T}and Ar = {GNAr: G e A}. From (2.18),
Px {Ar} > 1 —6. Let Pjgr be the restriction of Px to (Ar,.Ar). Let Py be the

probability measure on (Ar, Ar) given by

dPY(z) = %, z € Ar. (2.20)



Fix M € N. Each codebook is a subset of Ar that contains M elements. Let the
codebook random variable C = (X3, -+, Xjs) have the product distribution

dPc(z1, -, zp) = dPx(z1)dPx(z2) - - dPx(znr), (2.21)

n (AM AM) where AM is the product Borel o-algebra on AM. Each codeword
therefore is drawn independently from Ar according to P%. Clearly, for any realization
c of the codebook random variable, g(z) < T for every z € c.

Consider an auxiliary threshold decoder that declares ¢ as the transmitted message
only if, for the received y € H, z; is the only codeword that satisfies f(z;,y) > 8.
Otherwise this auxiliary decoder declares 0, an error. Whenever this auxiliary decoder
declares a non-zero symbol, it agrees with the output of the decoder ¢;g. The
auxiliary decoder therefore performs worse than ¢4 g.

The error probability given that message ¢ is transmitted, averaged over the ran-
dom selection of the codebook, is the same for all 2 = 1,---, M. We therefore assume
without loss of generality that the message 2 = 1 is transmitted. For a fixed codebook
(z1,---,2m), we are interested in the probability of error when z; is transmitted. The
error event depends on the entire codebook. Let E € B. It can be verified that the
mapping defined by ((z1, -, zun), E) — Pyx(E|z:1) is a transition probability func-
tion from (AM, AM) to (B, B). It represents the probability of an event E given that
the codebook is (z1,---,znm) and z; is transmitted.

For any set F' C A x B that is measurable relative to the product o-algebra on

AM x B, let

Pr{F}é/AMch(ml,---,mM) /BdPY|X(y|m1) 1{(z1, -, za,9) € F},  (2.22)

i.e., probability of the event F' given that message : = 1 is transmitted, averaged over
the random selection of codebooks.

If the auxiliary decoder makes an error, then one of the following events should
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have occurred: (2) f(z1,y) < B, () f(zj,y) > B, for some 5 # 1, or (12)y ¢ H.

It is therefore sufficient to upperbound the probabilities of these events.

Using (2.22), (2.21), (2.20), (2.18), we upperbound the probability of event (z) by

Pr{f(X,Y) < B} < Pxy {f(X,Y) < 8}/(1 - 6).

To upperbound the probability of event (:2), observe that

Pr{f(X;,Y) > B,for some 5 # 1}
D M P {f(X,,Y) > B}

® [ dPk(e) dPk(=) /B dPy x(y|z1) 1{f(z2,y) > B}
© M
@ %/A APx(22) [ dPr(y) 1{f(z2,) > B}
M f(fliz,y)
< W/A dPx(iﬂz)/BdPY(y)T
€) M
= 6(1_5)2/; dPy(y)
M

B(1—8)*
In the above chain, (a) follows from the union bound for probabilities, () from (2.22)
and (2.21), (c) from (2.20) and (2.18), (d) from Fubini’s theorem and [29, P.18.25(d),
p.247], (e) from the fact 1 {f(z2,y) > B} < f(z2,y)/B, and (f) from Fubini’s theorem
and (2.19).

Under maximum-likelihood decoding, f = dPxy/d(Px x Py); step (f) would

/.., dPx(e1) dPx(2) [ dPrix(yler) 1{f(az,y) > B}

then be unnecessary, and the last equality would follow immediately after (e). Under
mismatched decoding, (2.19) is sufficient to obtain the last equality.
The probability of event (22z) is upperbounded by

Pr{Y ¢ H} < Pxy{Y ¢ H}/(1—6) = Py {Y ¢ H} /(1 - 6).

This completes the proof of Lemma 1. [ |



Fix n € N. We apply Lemma 1 to the timing channel with A = R? and B =
Rut!. Let B play the role of 8. Let 0 < A" < X < p. Fix § € (0,1). Let Px~ be as
defined in (2.6). Pyn x~ is the transition probability function from the input space to
the output space that is induced by a stationary and ergodic process of service times
and the queue equations (2.2) and (2.3). Let Pxn»y= denote the joint distribution
under Px» and Py» x». Let Py~ denote the marginal of Y™ under Pxn y=.

Fix M € N. A codebook is a subset of R7 that contains M elements. Let the
function g that denotes the input constraint in Lemma 1 be g(z") 2 (Xr_1 zk) /1,
where z" = (21, -, Zn). We require that g(z™) < 1/X” for every z™ in the codebook.
By the weak law of large numbers for i.i.d random variables, we have that for every
6 €(0,1),

Pxn {g(X™") <1/X"}>1-6 (2.23)
for all sufficiently large n.

The function f in (2.8) satisfies E[f(X™,y™)] = 1 for every y* € R7*'. We
deal with two decoders. The decision set H for the decoder ¢;m will be either
{y” ERV Y r oy < n/)\"} or R%™'. When H = R7}t!, the entire output set, we

denote the corresponding decoder by ¢; after omitting the subscript H.

Corollary 1: Fiz§ € (0,1) and M € N. Fizn € N so that Px» {g(X™) < 1/X"} >
1 — 6. There exists a random variable C that takes values in the set of codebooks with
M codewords, such that for any realization c of this random variable, g(z™) < 1/X"
for every z™ € c. Furthermore, for every 8 > 0,

1 M Pyny= {f(X™,Y") < 7} M
3t 2 Pl © 91 P < 16 T (-
and with H = {y” € R Yh oy < n/)\"},
1 M Pxnyn {f(X",Y") < B"} M
b) E— Pei C7 7P P S < , -
Pyn {350 Ye > n/X"}
1-6 '

(a) E

N

_|_
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Proof: The corollary follows from Lemma 1 after averaging the probability of

error over the M equiprobable codewords. [ |

Since the function f depends on the quantity m (cf. (2.9)), we need the following
lemma to evaluate Px»y» {f(X™, Y") < 5"}

Lemma 2: Let 0 < X < p. For y™ € R, the function m satisfies m(y™) = 0 of

and only if yo +y1 = 0.

Proof: Fix y™ € R%™ so that yo+y; > 0 and >3 yx < oo. Let
S(y™) 2 {93” € RL: ka Syo-l-?h}-
k=1
Fix 2" € S(y™). Then 0 < w; = max{0, z1 — yo} < y1 and wx = 0,k = 2,---,n.
These two conditions and (2.5) imply that p(z™,y"*) > u(y™), where u(y") £ (p—
Aprexp{—p>Xi_oyk}. Observe that u(y™) > 0. Moreover, for any z™ € S(y™"),
[Ti; ex(zk) > v(y™) > 0, where v(y™) 2 (A" exp{—X(yo+y1)}. Furthermore,
Jstm) dr(z™) = (yo + y1)*/n! > 0. After substitution of these quantities in (2.9), we

get

\Y

m(y")

fogry ¥ T exte) pta )
> oy uly™) [ dn(a)

S(y™)
> 0.

Conversely, if yo + y1 = 0, then either z; = 0 or p(z™,y™) = 0, and thus

m(y") = - dPxx(z™) p(z™,y") 1{z1 =0} = 0.
+
This completes the proof of the lemma. [ |

We now show that under a mild condition on the process of service times the

quantity Pxay= {f(X™, Y™) < 8"} goes to zero as n — oo if B is chosen judiciously.



Lemma 3: Let the process (Sg : k € N') of service times (not necessarily stationary

or ergodic) satisfy for every a > 0, the condition

1
lim Pgn { Z Sk > —+ a} = 0. (224)
Then for every v > 0,
Lim Pxn y» {—log f(xm,y") < log A 'y} 0. (2.25)

Proof: Observe that Y5 = 0 under Pxn yn for every n € . Let
A 3
T=(z"y") ERE xR yo=0 and D (yx—ax) >0, forj=1,--,ny,
k=1
i.e., the set of all pairs (z",y™) such that y™ is a possible sequence of interdeparture

times (with yo = 0) when the sequence of interarrival times is z”. From the queue

equations (2.2) and (2.3), we have Pxn yn{T'} = 1. We therefore have from (2.8) that

Pxn yn {— log f(X™,Y") <log Y — fy}
< Prn{n() =0 DY)
p(X",Y™)

p(X™Y")
Pxrnyn< —1 <log — —7; y" (XM Y" T5.(2.2
+ Fx Y {’)’L og —— >~ m(Y”) og )\, Y m( ) > O’ ( ’ ) € } ( 6)

From Lemma 2, (2.2) and (2.3), we have that
{m(y")=0; (="y")eTt={yo+y:1=0; (z",9") €T} C{z:1 =0},
and therefore
Pxnyn {m(Y™)=0; (X™,Y")eT} < Px~{X;=0}=0.

We now upperbound the term in (2.26). Let (z™,y") € T and m(y™) > 0. From (2.10)

and (2.12) we can write

m(yn) = H e)\'(yk) ’ gYo|Y1,"-,Yn(y0|y17 s 7yn)7
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where the function g is the conditional density of Yy given (Yi,---,Y,) under Qyn.
Using (2.5), we get
1 p(z™,y™) A P 1.
—log ———+ =1 - = - — —ly,.y; - ; S Yn),
n 0g m(y ) og 3, 3\ —I_ kz;yk nkz:l(yk ’LUk) n,]’YO,Yh ,Yn(yO v Y1, Y )
(2.27)
where (1/n)iy,.y, ... v, (cf. [1, Lemma 3] ) is the normalized information density of the

relevant quantities, under Qy». Observe that
duk > Tk,
k=1 k=1
and that
Z Yk — Wk) Z Sk;
k=1
the sum of service times (cf. (2.3)). Using these facts and (2.27), we get that

p(=",y")

m(yn)
M E 1 n ,n
n ka__zsk_nzYoYl Yn(yOJ Y1, 7yn)g_7) (:IJ Y )ET

k=1 k=1

/—’H
3| =
—
@]
oQ
3
—
3&3
:

<log£ v my”) >0 (2 y") ET}

1. ¥
C {_ZYO;Yly"',Yn(yO ) yl:"'ayn) = 3}

{nkzl BBV 3)\’} { ZSW; %; (m”,y”)eT}-

Using the above inclusions, the term in (2.26) is upperbounded by

Pyn{%iyo;yl Y 2 3} + Px~ {%kz::le < %— 3)\,} ‘|‘PS"{ ZSk > — —I— @}

(2.28)
where the last term follows after a change of variables. The first term in (2.28) goes
to 0 by [1, Lemma 3], since Pxn» yn{Yy = 0} = 1, for every n € N. In fact, from the
proof of [1, Lemma 3|, this term equals 0 for all sufficiently large n. The second term

in (2.28) goes to 0 by the weak law of large numbers for i.i.d random variables. The
third term in (2.28) goes to 0 by the assumption of the lemma. [ |



We are now ready to prove Propositions 2 and 3.

Proof of Proposition 2: Let the assumptions preceding Corollary 1 hold. Fix
arbitrary v > 0. Let log 8 = log(u/X') — v. We now apply Corollary 1(a). Since
the process (S : k € N) is stationary and ergodic, it satisfies (2.24) by the ergodic
theorem (see for e.g., [9, Theorem 7.3.3, pp.236-237]), and therefore (2.25) holds by
Lemma 3. Choosing M, so that

log(p/X') — 2y < (log Mn)/n < log(p/X") — 3v/2

ensures that lim,_,., M,/(8™(1—§)?) = 0. We can therefore find a sequence (¢, : n €
N), such that

1 &

Eﬁ ZPE,,L'(C, ¢f7PY’n|X'n.) S En

=1
for every n € N, and lim,,_,o0 €5 = 0.
Consequently, for each n € NV, there is a codebook realization c that satisfies

1 M
M. Z Pei(c, ¢4, PY"|Xn) < en.

n ;=1
Furthermore, every codeword z™ € c satisfies }7_; zx < n/A”. The decoder ¢y
observes only those departures that occur in the time window [0,/)A"]. We therefore
have a sequence of (n, M,,,n/\", e,)-window-codes that satisfies

log M,

©
/3 > Mlog — — 29)"

)\I

for every n € NV, and lim,_,o0 €, = 0. Setting A’ = e *p and X' = e~ 'p/(1 +7), we
get
X'(log Mn)/n > €™ i — 3ye™ p/(1 + )

for every n € N. This means that rate e 'y nats per second is achievable with
window-codes (since v was arbitrary). [
Proof of Proposition 8: Fix arbitrary v > 0. The process (S : K € ') of nom-

inal service times is stationary and ergodic. Consider n € N and z € R" satisfying
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[(z) < 1/pa. Let W"(z) be the corresponding transition probability function. Set
1/pw=1/p1 + 1/ps. Since l(z) < 1/pa, for every o > 0, we can write
{lzn:(sk—l—zk)>l—l—a}C{ Zsk>i—|—a} (2.29)
L p L] H1
With W™(z) in place of Pynx» in the proof of Lemma 3, and by using (2.29), we
obtain
Pxnyn {—103 J(X™Y") < log £ v ’Y}
< Pyn{li}fo;y1 Y 2 }+PX"{ ZXk< - }
n 3 AN
+ Psn{ Zsk> —+@} (2.30)
k=1
Observe that Pxnyn{-} and Py={-} depend in general on the state sequence z. For
sufficiently large n, however, the term Py~ {(1/n)ty, .y, ..y, > 7/3} does not depend
on z because of the following. Indeed, for every z, Py={Y; > 0} = 0. In this case, we
can extend the proof of [1, Lemma 1] to get Py» {(1/n)iv,v; .. v, > 7/3} = 0 for every
n > no(y, A, #). The quantity no(~y, A’, 1), which can be taken as —(3/)log(1—A"/u),
is independent of z. Furthermore, for a fixed n, the remaining two terms in (2.30) do
not depend on z if [(z) < 1/u,; they go to 0 as n — oo.
Choose X', X", 8 and the sequence (M, : » > 1) as in the proof of Proposition 2.
From Corollary 1(a), there is a sequence (e, : n € N), such that for all sufficiently
large n,

1 M,

E<r Y Pei(C,¢5, WH(2)) <o

n -1
for every z with I(z) < 1/us, and lim,_,o €, = 0. We have therefore obtained a

sequence of (n, M,,,n/)", e,)-random window-codes. The sequence also satisfies

10gMn>e_1,u—3e_1,u Y
no (1+7)

for every n € . [ |



Proving Proposition 1 requires more work. We need to the find an upperbound
on the expected time of departure of the nth packet. We first prove the following

lemma.

Lemma 4: Let the single-server queue be work-conserving and initially empty. Let
the server follow a first-in-first-out service discipline with stationary and ergodic ser-
vice times of mean 1/u seconds. Let the queue be driven by a Poisson process of rate

N <p. Then (1/n)Y7_; Y — 1/X in probability.

Proof: Let (X, : n € N) be the process of independent and exponentially
distributed interarrival times, and (S, : n € N') the stationary and ergodic process
of service times. Let P{-} denote the probability of an event with respect to the
joint process. Let R, be the waiting time of the nth packet. Observe that > 7_, Yx =
Yi—1 Xk + Rn + Sn. Since R,,, S, > 0, we have that for any v > 0,

{ ZYk<)\i—fy}<P{ ZXk<——fy}—>0

™ =1

as n — oo. On the other hand, using >7_; ¥x = > 7_; Xk + R, + S and the union
bound for probabilities, we get
plamvegeaper{adher (o gher{fEne e g)
(2.31)
The last two terms on the right side of (2.31) go to 0 as n — co. We now upperbound
the first term in (2.31).
It can be shown that ((X,, S.) : n € N) is a stationary and ergodic process. R,

converges in distribution to a finite random variable ¢ that satisfies P{¢ < oo} =1

because A’ < u [9, Theorem 7.4.5, p.241]. Observe that

lim P{R, < C}=P{¢p<C}

if C is a point of continuity of the cumulative distribution function (cdf) of ¢. A cdf

can have only a countable number of discontinuities. Fix arbitrary € > 0. Choose
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C € (0,0) large enough so that P{¢ > C'} < e and C is a point of continuity of the
cdf of ¢. Then, for all sufficiently large n,

P{R, >nv/3} < P{R,>C} < P{¢>C}+e< 2.

This proves the lemma. [ |

Proof of Proposition 1: Let the assumptions preceding Corollary 1 hold. Fix
v>0. Let X =e tu, XM =etp/(147), A = e 'u/(1+27) and log B8 = log(p/X')—7.
Let H = {y” eERY Y E oyk < n/)\"}. Consider the decoder ¢4 . Clearly, this
decoder cannot outperform ¢;. The process (S : k € N) is stationary and ergodic
with mean 1/p seconds; it therefore satisfies (2.24) and therefore (2.25) holds by
Lemma 3. Choosing M, so that

log(p/X") — 2y < (log My )/n < log(pu/X') — 3v/2

ensures that lim, .o, M,/(8™(1 — §)?) = 0. Since Py~{Yy; = 0} = 1 for every n € N
and 1/A\" = 1/X + ve/u, we can apply Lemma 4 to get lim, .o, Py-{Y™ ¢ H} = 0.

From Corollary 1(b), we can find a sequence (e, : n € N), such that

B %P (C, ¢s.11, Pynixn) < 2
M, i—1 =S ELH ST = 2
for every n € N, and lim,,_,o0 € = 0.
Fix n € N'. We can find a codebook ¢(n) such that
L S% Py (eln), g, Peopre) <
_— eilClT ; ; n|Xn) > —.
M, 2o fH, Fyn|x 5

Furthermore, every codeword z™ € c(n) satisfies >1_, zx < n/A”. By removing the
M, — | M, /2| worst codewords, relabeling the remaining codewords from 1 through
| M, /2], and denoting the resulting codebook as c'(n), we get

P.i(c'(n), ¢1.m, PY"|X") < &n,



fori=1,---,|M,/2]. In particular, this implies that

1 & 1

for every z"” € c'(n). The next lemma shows that the expected time of the nth

departure given each codeword is smaller than n/A for all sufficiently large n.

Lemma 5: Fiz 0 < A < X < X < p. Let (e, : n € N) satisfy lim, 00 €, = 0.
Let (c'(n) : n € N) be a sequence of codebooks that satisfies for each n € N, the
condition (2.32) and the condition > 5_; zr < n/X" for every z™ € c'(n). Then for
all sufficiently large n,

1.7
E[—men <1/)
nk:O

for every z™ € c'(n).
Proof: Fix a v > 0sothat 1/A" 4+ v <1/A. Let

F,2{y" € R Ty >n/A'}
k=0
Let F? denote the complement of the set Fy,, and 1g, the indicator function of F,.
From (2.32), Pynx»{Fn | 2"} < &, for every z" € c/(n).

Let Sy be the service time of the kth packet. For a C > 0, let

Gké{skER+:3k>C}.

For every 2™ € ¢'(n), every k = 1,---,n, we have
E[Sklpn | .’Zln] = E[Sklpnlgk | .’Zln] + E[Slean; :En]
< E[Silg, | "] + CPynixn{F, | z"}. (2.33)

Observe that E[Sklg, | 2" is independent of z™ and of k because the process (S :

k € N) is stationary and independent of the arrivals. Furthermore,

E[S] = E[S1c] + E[Slg] = 1/p < oo.
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Using the monotone convergence theorem, we can choose a C large enough so that
E[S1¢] < v/3. Pick n large enough so that max{1/A",C} e, < v/3. Using (2.33),

we therefore have that for all sufficiently large n,
E[Sklp, | 2" <v/3+ Ce, < 2v/3.

Since >7_; zx < n/A" for every z" € c'(n), we get

E Kl i(mk + 5/«)) 1p, [ 2"

n k=1

<en/N' +2v/3 <.

Since we can assume Y p_o Yy < Y0_; (2 + Sk) under Pynx»{- | 2"}, it follows that

E[((1/n) X7 oY) - 1F, | 2"] < v. Therefore, for every z™ € c'(n),
m"]

12 1 & 1 &
nk:O nk:O nk:O

< vH41/)
< 1/
This completes the proof of the lemma. [ |

Continuing with the proof of Proposition 1, for all sufficiently large n, the expected
time of the nth departure is not greater than n/A (cf. Lemma 5). We therefore have
a sequence of (n, | M,/2]|,n/), €,)-codes that satisfies

A(log|Mn/2]) /n > e p — Sye  p/(1 + 2v)

for all sufficiently large n, and lim,_,., €, = 0. This proves that rate e~'u nats per
second is achievable. |

Proof of Proposition 4: Fix 0 < A < X < pu. Consider an n € N'. We apply
Lemma 1 with A = B = R7. Observe that Yy = X + Sk, k= 1,---,n. Let Pynxn
denote the transition probability function from the input space to the output space.
Choose M, as in the proof of Proposition 2. Let g(z™) 2 (1/n) X%, zk. We require

that g(z") < 1/X — 1/u for every codeword z”. Since the mean service time is 1/u



seconds, it follows that the expected time of the nth departure is not greater than
n/A.

Let Px be the mixture of a point mass and an exponential distribution given by

PX{XZO} = )‘I//u’a

A /
Px{X >z} = (1——)8_)‘z, z > 0.
"

Note that Px is the input distribution that attains the mutual information saddle
point [1, Theorem 3], [23, Theorem 1]. Let Px» be the distribution under which
X" =(X1,---,X,) is a vector of i.i.d random variables with distribution Px. Observe
that if the service times are independent and exponentially distributed with mean 1/4
seconds, then the outputs are independent and exponentially distributed with mean
1/X" seconds. Let

o,y & T e 2] (230

e ex(ye)
This function satisfies Ef(X™,y") = 1 for every y™ € R7. Let H = R7. Observe
that the decoder ¢4 (cf. (2.13)) with f as in (2.34) is the same as the decoder ¢q (cf.
Section 2.2.3).

Let Pxny~ be the joint distribution under Px~» and Pynx». We only need to
consider (z",y") € R} x R7 that satisfy 0 < zx < yx, k = 1,---,n. For such an
(™ 9™), 1 i "

log S(e"y") =log -+ 13 o - o) S

n k=1
From this and the stationarity and ergodicity of ((Xn,Yn) :n > 1), we get
: 1 W
lim Pxn yn {—log f(X™,Y") <log v fy} = 0.
n—oo n
The rest of the proof is similar to that of Proposition 2. [ |
Proof of Proposition 6(a): Fixn € N. There are M,, messages. Each message

corresponds to a sequence of interarrival times; the nth arrival occurs before time T,.
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This sequence maps to a (right-continuous with left limits) point process of arrivals
(A¢ =t € [0,T,]). A: is the number of arrivals in [0,¢], ¢t € [0,75]. Analogously, the
observed departures form a (right-continuous with left limits) point process (D; : ¢ €

[0,T,]), where D, is the number of departures in [0,¢], ¢ € [0,7,]. Let

FAEo(A,:s€(0,t]), FP2o(D,:s€e(0,t]), FAP 2 o{FA FP}.

Fort =0, let v(0, A, D) 20. For ¢ > 0, fix an increasing sequence of rational numbers
(rn:n € N) such that r, 7 ¢, and let v(¢, A, D) 2 lim, 1t (A;, — D,,). The quantity
v(t, A, D) represents the number of packets that remain in the system at time t—,
i.e., just prior to ¢t. Clearly v(¢, A, D) is FAP _measurable for every ¢ € [0,T,] and
(v(t,A,D):t e0,Ty]) is a left-continuous process. Let

At, A, D) 2 p1{v(t,A, D) >0}, te€0,Tyl

Observe that A(¢, 4, D) is FP _measurable for every ¢t € [0, T,,] and that (A(¢, A, D) :
t € [0,7y]) is a left-continuous process; it is therefore a predictable process [31, Defi-
nition 3, p.173].

Fix arbitrary ¢ € [0,75]. If A(¢, A, D) = 0, there is no packet in the system at time
t—, and therefore no packet can depart at time ¢; the intensity of the point process
of departures is 0 at time ¢. If A(¢, A, D) = p, there is at least one packet in the
system at time t—. Due to the memoryless property of exponential service times,
the residual time for the next departure is exponentially distributed with mean 1/p
seconds, independent of the past. In other words, when A(¢, A, D) = p, the intensity
of the point process of departures also takes the value y at time ¢. The process of
departures is therefore a point process with intensity (A(¢, 4, D) : t € [0,Ty]).

Any window-code on the timing channel is therefore equivalent to the above strat-
egy with complete feedback on the point-process channel with maximum intensity p

and no background intensity. Complete information about the past departures is



necessary to determine the intensity of the departures at time ¢. The capacity of the
timing channel (for window-codes) is therefore upperbounded by the capacity of the
point-process channel with complete feedback. From the corollary to [32, Theorem
19.10, pp. 318-320] and the converse proofs in [6] and [7], this upperbound is e !p
nats per second. [ |
Proof of Proposition 6(b): The process (Sg : k € N') of nominal service times
is a sequence of independent and exponentially distributed random variables with
mean 1/u; seconds. Let py € (0,00). Let p 2 pipa/(p1 + p2). Suppose that there
were a sequence of (n, M, Ty, €, )-random window-codes that satisfies for some a > 0,
(log M,,)/T. > e 'u + « for all sufficiently large n, and lim, .o €, = 0. Then, for
some ¢ and C,
sup E[P.(C,¢,W™(2))] < en. (2.35)

z : I(2)<1/p2
Choose ph so that 1/u, < 1/uy and e tp > e 'y’ — a/2, where p/ 2 papey /(g1 + ph).
Let Pz be the distribution given by

Px{Z=0} = W/m,

Px{Z >z} = (1 — ,u_') e Hz 2> 0.
H1
Note that Z has mean 1/uy, = 1/u'—1/p;1 seconds. Furthermore, if S is independent of
Z and exponentially distributed with mean 1/p; seconds, then S+ Z is exponentially
distributed with mean 1/4’ seconds.

Let Z = (Z1,--+,Zn) be a vector of i.i.d random variables with common distri-
bution Pz, independent of the codebook distribution and the nominal service times.
We then have

E[P(C,¢,W™(Z))] <  sup E[P(C,¢,W™(2))]+ Pz{l(Z) > 1/p2}

z : I(2)<1/p2

en + Pz{l(Z) > 1/ps},
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where (a) follows from (2.35). Let 6, 2 en + Pz{U(Z) > 1/p2}. From the weak
law of large numbers, we get lim, o0 6, = 0 since 1/uy < 1/ps. Observe that
E[P.(C,¢,W™Z))] is also the expected probability of error (expectation over the
codebook distribution) for the exponential server channel with mean service time 1/4/
seconds. We can therefore find for this channel, a sequence of (n, My, Ty, 6, )-window-
codes with (log M,,)/T,, > e 'p' + /2 for all sufficiently large n, and lim,_, 8, = 0.
Since e~!u’ nats per second is the largest rate achievable with window-codes, we reach

a contradiction. [ |






Chapter 3

Point Process Channels and

Timing Channels

3.1 Introduction

We recall the following results from Chapter 1:

e The capacity of the exponential server queue with service rate p packets per

second is e~!y nats per second [1].

e The capacity of the point-process channel with maximum input intensity p

points per second, and no background intensity, is also e™'yx nats per second

(cf. [6], [7]).

e In both channels, the capacity does not increase in the presence of complete

feedback.

In [1], the connection between both channels in the presence of complete feedback
was discussed briefly. In Chapter 2, this connection was further explored. We saw
that any strategy on the exponential server channel can be mapped to an equivalent

strategy that uses feedback on the point-process channel. This observation implies
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that the capacity of the exponential server channel is upperbounded by the capacity
of the point-process channel with complete feedback, i.e., e 'y nats per second.

From [1] and Chapter 2, we know that e™'u nats per second is indeed achievable
on the exponential server channel. The route taken in Chapter 2 was to show the
achievability result in full generality for a stationary and ergodic sequence of service
times. Considerable attention has been focused on the single-server queue (cf. [1], [4],
[5]). Not much is known however about other queueing systems such as multiserver
queues, queues in tandem, or even the single-server queue with a finite buffer. For
such systems the approaches of [1], [4], [5] and Chapter 2 do not seem useful; using
their techniques, it is difficult to write the likelihood function of the output given the
input.

In this chapter, we take a point-process approach to timing channels. We re-
strict ourselves to exponential servers. We first show the direct part for the single-
server queue using the point-process approach. This approach is then used to study
timing channels in some simple networks of exponential servers. In particular, we
obtain bounds, either analytically or from simulations, on the capacities of multi-
server queues, the single-server queue with spurious departures, and a pair of queues
connected in tandem.

In Section 3.2, we derive the capacity formula for the exponential server queue.
We also find the capacity region when two or more users access this channel. We
obtain lowerbounds on the capacity of multiserver queues. In Section 3.3, we study
two examples to see how the point-process approach can be used. In the first example,
the output of a single-server queue is merged with an independent stream of Poisson
departures. The receiver cannot distinguish between the two types of departures. In
the second example, we consider the channel where two queues with identical service
rates are connected in tandem. In both these examples, we find achievable rates

through simulations. Section 3.4 is a discussion of our results.
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3.2 Single Queueing Station

The departures from the exponential queueing system form a point process whose rate
depends on whether the queue is empty or not. If the queue is empty at a certain
time, no departure can occur in the immediate future. If the queue is nonempty at a
certain time, the residual time for the next departure is exponentially distributed with
mean 1/u seconds. This observation was made in Chapter 2 to prove the converse
for window-codes.

In this section, we re-derive the capacity formula for the exponential server queue
using the above observation. We also find the capacity region when two or more users
transmit on the channel. We give lower bounds on achievability rates for the -/M/m
queue. We first give some mathematical preliminaries before we describe the channel

in Section 3.2.2.

3.2.1 Preliminaries

Let Z, = {0,1,--,00}. Let (£, F) be a measurable space. Fix finite 7' € (0, 00).
Let (F; : t € [0,T]) be an increasing family of sub-o-algebras that is right-continuous.
An uppercase letter X = (X; : ¢ € [0,T]) will denote a stochastic process on [0, T].
We say X is adapted to the family (F; : t € [0,T]), if X; is Fi-measurable for each
t€[0,T]. Let FX = o{X, :5 €[0,t]} for ¢t € [0,T], and F¥X = o0{X, : s €[0,t)} for
t e (0,T].

A stochastic process X is predictable with respect to (F; : t € [0,T]), if X is
measurable with respect to ([0, 7] x Q,P), where P is the o-algebra generated by all
left-continuous processes adapted to (F; : t € [0,7]). Any adapted left-continuous
process is therefore predictable.

The input space is (X,f%(), where the alphabet X is the set of functions z :



[0,T] — Z, that are non-decreasing and right-continuous with left limits. X repre-
sents the set of arrival processes on [0, 7] with possible multiple arrivals at the same
instant. Let z € X. This function’s value at ¢, denoted by z;, represents the number
of arrivals in [0,¢]. Similarly, the output space is (y, .7:%,), where ) is the set of
functions y : [0,7] — Z, that are non-decreasing, right-continuous with left limits,
have unit jumps and satisfy yo = 0. ) represents the set of counting processes (or
point processes) on [0, 7.

Let (Q, Fr, P) be a probability space ((£2, Fr) could be a larger measurable space
than (y, .7:%’)) We say that the point process Y adapted to (F; : t € [0,T]) has
the rate (or intensity) process A with respect to the family (F; : ¢ € [0,T]), if the

following conditions hold:

(7) the nonnegative process A = (A; : t € [0,T]) is predictable with respect to the
family (F: : ¢t € [0,T));

(11) fiX, ds < oo, P —a.s,foreachte [0,T]; and

(722) for every nonnegative process C that is predictable with respect to (F; : ¢t €
[0,T]), we can write E UOT C, dYs] =F [fOT C,A, ds], where foT C, dY, denotes
Lebesgue-Stieltjes integration for a fixed w € . It is well-known that the

quantities under the two expectations are random variables [33].

The above definition of rate process, though slightly more restrictive than the defini-
tion in [33], serves our purposes the best.

Let P, be the measure on (y, .7:%,) such that Y is a point process having constant
and unit-rate process with respect to (fty 't € [O,T]). This is the projection of the
standard Poisson point process on %, and will be our reference measure on the space

(y, f%’) The dependence of Py on T is understood.
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3.2.2 The -/M/1 Queue
Channel Model

Let P(z,dy) be the transition probability function [28, p.315] from the space (X, ‘7:7}«()
to the space (y, .7:%,), satisfying the following measurability properties: (a) for each
z € X, the mapping B — P(z, B) from F¥ to [0,1] is a probability measure on
(y, .7:%,), and (b) for each B € FY, the mapping z — P(z, B) is F3-measurable.
Yet again, the dependence of P(z,dy) on T is understood.

For each T, we now define a transition probability function that models the rate
p exponential server timing channel with information encoded in the arrival times
of packets. We motivate our definition as follows. Consider an M/M/1 queue in
equilibrium at ¢ = 0. Define the state process Q@ = (Q: = X; — Y; : ¢t € [0,T]) (right-
continuous with left limits), where @; denotes the number of packets that remain in
the system at time ¢. It is shown in [33, Ex. 2.6] and [33, Ex. 1.3] that for the M/M/1
queue, the departure process Y admits the rate process A = (p1{Q:- >0} : ¢t € [0,T])
with respect to (ftQ 1t €10, T])

Fix T"and z € X. Let

Qi=z:—Y;, te[0,T]. (3.1)

Fix arbitrary ¢t € [0,7]. If Q;— = 0, then there is no packet in the system at time
t—, and therefore no packet can depart at time ¢; the rate of the point process of
departures is 0 at time ¢. If Q;_ > 0, there is at least one packet in the system at ¢t—.
Due to the memoryless property of exponential service times, the residual time for
the next departure is exponentially distributed with mean 1/u seconds, independent
of the past. In other words, the rate of the point process of departures is p at time ¢.

For a fixed z € X, therefore, the probability measure P(z,-) on (y, .7:%:) is such



that Y, the point process of departures in [0, T'], admits the rate process
A= (pl{Q: >0}:t€[0,T]) (3.2)

with respect to (.7-?/ 1t €0, T]), where @Q; is as defined in (3.1).
We therefore model this channel by setting the Radon-Nikodym derivative of
P(z,-) with respect to Py as,

dz(;(: ')(y) = p(z,9), (3.3)
where
p(z,5) 2 exp {/0 log(X:) dy, + (1 — X,) dt]} . (3.4)

The results [33, VI T2-T4], ensure that the point-process of departures Y admits
the rate process (3.2) with respect to (ftY :t €0, T]) under the probability measure
P(z,-). The function p(z,y) is measurable with respect to Fa V Fy [33], which
implies that P(z,dy) is a transition probability function. Note that (3.3) and (3.4)
are related to the sample function density for a self-exciting point process with rate
A [34, Theorem 5.2.2], the difference being that (3.3) is written as a Radon-Nikodym
derivative with respect to P.

We adopt the following definitions for achievability and capacity. Each of M
equiprobable messages is mapped to an element in X. The decoder observes the de-
partures in the time interval [0, 7] and declares one of the M messages as transmitted.
An error occurs if the decoded message is different from the transmitted message. For
a fixed T, a codebook with M codewords, and a decoder, let € be the probability of
error. We call this a (7, M, e)-code. Rate R is achievable if, for every v > 0, there is
a sequence of (T, My, £,)-codes that satisfies lim, oo 75, = 00, (log My,)/T > R —
for all sufficiently large n, and lim,,_, o, €, = 0. The capacity is the largest achievable
rate.

The codes considered in Chapter 2 require all codewords to have the same number

of packets. The codes considered in [1], require that packets exit before T on the
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average. The above definition is without such restrictions. As we will see the capacity
of the single-server queueing system does not increase.

P(z,dy), in addition to modeling the exponential server timing channel, is also
the resulting transition probability function under the coding technique (3.2) on the
point-process channel. This coding technique utilizes feedback on the channel where
background noise is absent and a peak constraint u is placed on the rate. From [6] we
know that A; € {0, »} is optimal on the point-process channel. The coding technique

described in the above paragraphs also results in rate values on the set {0, u}.

Mutual Information

Let v be a probability measure on (X,fj)«(). Then v and P(z,dy) define a joint
probability measure 7 on (X x Y, FXvV .7:%:), denoted by

(dz, dy) = v(dz)Fo(dy)p(z,y). (3.5)

We can verify from Fubini’s theorem [29, Theorem 18.3, p.238] and some measurability
arguments that, under 7, the stochastic process Y has rate A with respect to the
information pattern (.7:% VFY itelo, T])

Let 7% and 7Y be the restrictions of 7 to F£ and F%, respectively. From (3.5),
we get that 7 < 7% x 7¥ < v x P, [30, Corollary 5.3.1, p.112], and that 7¥ < F.
Furthermore, [33, VI R8| gives

dn¥ T . .
m(y) = €xp {/0 [(10g )‘t) dy: + (1 — )\t) dt]} ,
where Y has rate ) with respect to (ftY 1t €0, T]) under the probability measure

7¥. More specifically, we can take A\ =E [)\t|.7:t1:], for each t € [0,7] [32, Theorem
18.3]. Thus the normalized information density (1/7") 7(z,y) is

%bg <d(7er7>r< WY)(m’y)> B

%/OT [(log \u) dye + (1 = Ae)dt — (log A,) dye — (1= Ac)dt| . (3.6)



Finally, as a consequence of property (2:z) in the definition of a rate process, we can

write the normalized mutual information as

1

b= 5o [ 60000

where ¢(u) = ulogu (see [6], [32], [7], [33] ). We take #(0) = 0. The function ¢ is

strictly convex on [0, co).

Optimal Decoding

Suppose that there are M equiprobable codewords. Each codeword is mapped to a
sequence of arrivals z € X, in the time interval [0,7"]. Suppose y € ) is received. It
is well-known that the optimal decoder that minimizes the probability of error works
as follows. For each codeword, assign a score of f [log(At)dy: + (1 — A¢)dt], where
At is obtained from (3.2) and (3.1). Then choose the codeword that maximizes this
score, and in case of a tie choose the one with the least index.

Note that for a codeword under consideration, if ¢, = 0 and a departure is
observed at time ¢, i.e., dy; = 1, then the score is —co. This codeword therefore
does not explain the received sequence of departures. If the codeword is indeed
compatible, then A; at instants of departures is p. Thus the decision is based on
maximizing fOT(l — A¢)dt, or equivalently, is based on maximizing the net idling time

of the server.

Converse

The following converse was proved in [7], [6]. Observe that it works for any predictable
process A on the point-process channel that satisfies A; € [0, p]. The coding that arises
in the queueing system (cf. (3.2) and (3.1)) is only a specific case.
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Proposition 7: ([7], [6]) The capacity of the point-process channel with mazimum
intensity p cannot exceed e 'y nats per second, even in the presence of complete

feedback.

Proof:  This proof is taken from [7], [6]. Let A be an arbitrary predictable
process with A; € [0, u]. We interpret A as an encoding strategy of the input message

in the presence of (instantaneous noiseless) feedback. Then the following sequence of

inequalities holds.

plr06Y) = 78 [T [0~ (W) 7
9 %E OTdt ¢(At)—¢<%E/OTdt L)
®) %E OTdt ¢(At)—¢<% OTdt E3\t>
9 Lp [ a ¢(At>—¢(% [ EAt)
< max s [ 8(2)F(d2) - (a)

~—

9 pax max (h(a) - /0” h(z)F(dz)) .

0<a<p F:fou zF(dz)=a

Inequality (@) follows from Jensen’s inequality applied to the strictly convex function
$. Equality (b) follows from Fubini’s theorem. Equality (c) follows from E); = E).
Inequality (d) comes from fixing (1/7') T dtE), = a, maximizing over all possible
distributions F' on [0, 4] with mean a, followed by a maximization over a. Equality
(e) represents an equivalent maximization with A(z) = (2/p)éd(p) — é(z) = zlog(p/z).

Observe that because h(0) = A(p) = 0, and h(z) > 0 for every z € (0,p), the
maximizing F' puts mass only on the set {0, u}. Furthermore, because the mean is a,
F puts masses (1—a/p) and a/p on 0 and p, respectively. Moreover, h(a) = alog(p/a)

has maximum value e 'y at a = e~'u. We therefore have that (1/T)I7(X;Y) < e 'pu.
|



Remark: This proves the converse for the timing channel without feedback.
The converse is valid for any predictable A that lies within [0, u]. Complete feedback

therefore cannot increase the capacity of the timing channel.

Direct Part

Let N = {1,2,---}. The liminf in probability of a sequence of random variables
(Zn :n € N) is the supremum of all reals a such that lim, . P{Z, < a} = 0. If the
limit does not exist for any real «, we take the liminf in probability to be —oco. It was
shown in [35, Theorem 2] that the liminf in probability of the normalized information

density is an achievable rate.

Proposition 8: Fiz finite T > 0. For the ezponential server timing channel given by
P(z,dy), there is an input probability measure v such that (1/T) Ir(X;Y) = e 'p.
Furthermore, for any sequence (T, : n € N) with lim,_,o T, = oo, the liminf in
probability of the sequence ((1/Ty) i, (X;Y) :n e N) ise p.

Proof: From [1] and Chapter 2, we know that the maximum mutual information
e 'y nats per second is attained using Poisson input following equilibrium at time
t = 0. We now show this directly from the converse (3.7).

Let v be such that X, ( i.e., Qo), the initial number in the queue, has the equi-
librium state distribution associated with an M/M/1 queue with Poisson arrivals of
rate a = ey, i.e., v{Xo = k} = (1 — a/u)(a/p)k for k € Z,. Furthermore, let the
arrivals X; — Xy on (0,7 form a Poisson process of rate a = e~'u. Let ); and Q; be
defined as in (3.2) and (3.1). Let 7 be as defined in (3.5). Under 7, @ is the state
process of an M/M/1 queue starting from equilibrium at ¢ = 0. We can therefore

apply a result due to Burke (see for e.g., [33, V T1] ), which states that

m{Q.=k|F} } =v{Qo =k} (3.8)

for every t € [0, T, m-a.s. This means that Q, is independent of F} for everyt € [0, T].
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We now verify that all inequalities in (3.7) are equalities. Observe that, A; €
{0, #}. The system remains in equilibrium throughout [0, T]; A; is therefore either 0
or p with probabilities 1 — a/p and a/p, respectively, for every ¢t € [0,7']. Hence

1 T .
TE/(; dt i =a=¢e"p.

This implies that inequality (d) in (3.7) is an equality.

For inequality (a) to be an equality, we need \ = E {)ﬂf,}:] = a, for each
t € [0, T]. Note that A; is a function of @;_. From Burke’s theorem, @, is independent
of FY for each s € [0, T]. Consequently, @Q;_ is independent of F} [31, Theorem 1.6],
and therefore ); = E); = a. Hence, (1/T)I7(X;Y) = e 'y, i.e., the input probability
measure v maximizes mutual information.

We now consider the normalized information density. Fix T,,. Consider the same
input measure v as in the first part of this proof. Since X\i = a for every t € [0,T,],
we get

1

7 (@y) = Tin /oTn [log(As/a)dy: + (A — a)dt].

Observe that a departure can occur only when there is a packet in the system. At all
times, we know exactly how many packets are in the system from (3.1). If a packet
exits at time ¢, we must have that A\; = p1{Q;— > 0} = p. The first integral is there-
fore (Y1, /Tn)log(p/a); it converges to alog(x/a) in probability. The second integral
converges to 0 in probability because the time average of the quantity ul {@Q;— > 0}
converges in probability to a [36, Theorem 6.1]. By setting a = e™'u, we get that the
normalized information density converges in probability to e~ . [ |

Remark: From this result and the converse, the capacity of the exponential
server timing channel is ey nats per second. Moreover, the coding scheme utilizing

feedback described in (3.2) and (3.1) achieves capacity on the point-process channel.



3.2.3 Multiuser Capacity Region

Suppose now that two users input packets to a single-server queue. The capacity
region is the triangle given by Ry > 0, Ry > 0, and R; + R, < e 'y nats per second
[37]. Indeed, by time-sharing and by the single-user result with output constraint
[1], this region is clearly achievable. To show the converse, note that even if the two
users cooperate, they have to transmit information through a queueing system whose
maximum service rate is u. Consequently joint coding cannot achieve a (sum) rate
larger than e 'u nats per second. In contrast, in the Gaussian case, joint encoding
leads to an increase in available power. An analogous argument holds when there are

more than two users.

3.2.4 The -/M/m Queue

The model for the -/M/m queue timing channel is given by (3.1) and (3.3) with the
rate A = (A; : ¢t € [0,7']) being

Ay = pmin{m, Q:-}, (3.9)

i.e., the rate is p times the number of servers among the m that are busy. The optimal
decoding strategy is as before with A; given by (3.9), i.e., choose the codeword that
maximizes [ [log(X)dy: + (1 — X;)dt]. In case of a tie, choose the codeword with the
least index.

Note that since the maximum possible rate is mpy, the capacity is upperbounded
by mu/e nats per second (this follows straightforwardly as in (3.7)).

For the direct part, although inequality (a) in (3.7) can be made an equality by
choosing Poisson input, inequality (d) in (3.7) is clearly not an equality. This is
because, unlike the single-server system, the encoder is unable to keep the rate at
the extreme values 0 and my; the intermediate values are unavoidable. The following

result gives achievable rates on the -/M/m queue timing channel.
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Proposition 9: For the -/M/m queue timing channel,
m—1
o(m) = 515 (I(0) = 3 pmaliYhn(i)
0<al<mp =1

is an achievable rate, where hny,(z) = zlog(mu/z) for z € (0,mu] and pmq(-) s the

equilibrium state distribution for the M/M/m queue with input rate a.

Proof: The input distribution v is as in the proof of Proposition 8, with input
rate a. We therefore have an M /M /m queueing system. We now apply Burke’s result
for the M/M/m queue [33, V T1] to get Xe = a for every t € [0,T]. Consequently,

inequality (a) of (3.7) is an equality, and we get

%IT(XY)_h l /dth )\t],

with Ay € {0, , 2y, -+, mu}. Upon simplification, we get
FIRCGY) = hla) = B |3 frG)hnti)].

where fr(z) is the fraction of the time the system is in state 7; its expected value

i$ Pma(2). Upon optimization over a, we obtain that g(m) is the maximum mutual

information under Poisson arrivals.

To show achievability, however, we need to show that the liminf in probability of
the normalized information density is larger than g(m). Fix any sequence of (7,
n € N) such that lim, .o 7, = oco. Substitution of )\ = ain (3.6) simplifies the
normalized information density to

1 1 T, Tn

rin(@y) = 7 [ /0 log(\e/a)dy, + /0 ()\t—a)dt]. (3.10)
The second integral converges in probability to 0 as in the proof of Proposition 8.
The first integral can be written as

(yTin) ( L% og(0 ) ) (3.11)

Tn =1



where 71, ,7T,, denote the departure times in [0,73,]. It is enough to show that

T
the two terms within parenthesis in (3.11) converge in probability to appropriate
constants. The convergence in probability of the first term to the constant a is clear.
We now show the convergence in probability of the second term.

Observe that the process (Qr,—,@r,—, - -) of the number of packets in the system
preceding the kth departure forms a discrete-time Markov chain on the state space
N. Indeed, we have Q,,,,— = Q. — 1 + A for k € NV, where A is the number
of arrivals between departures &k and k + 1. The distribution of Ay does depend on
the previous state (),,_ because new arrivals can possibly change the departure rate.
The value 0 for the state is impossible because at 74—, there is at least one packet
in the system. The Markov property follows from the memoryless property of the
exponentially distributed interarrival times. Clearly, this Markov chain is irreducible,
aperiodic, and starts at equilibrium. Furthermore, the equilibrium distribution is
P(2) = Pma(t — 1) because the departing packets leave the queue in equilibrium.

The second term in (3.11) can be written as a weighted average of the m quantities
log(zp/a), 2 = 1,---,m. The weights are the fractions of departures for which the
system is in one of 1,2,---,m — 1 or > m states. These fractions converge in proba-

bility to the appropriate steady state probability values. The normalized information

density (3.10) therefore converges in probability to

o [ pmati = Dlog(infa) + (3 pmati = 1)) og(rmaa)

Simple algebraic manipulation that uses the fact pmo(i) = @ pma(v — 1)/(2p) for
t=1,---,m — 1, results in the stated expression for g(m). [ |

Table 3.1 gives the achievable rate g(m) in Proposition 9 as a function of m and
compares it to the upperbound m/e nats per second. We take u = 1 packet per
second. The values were obtained numerically by varying the input load factor a/m

in steps of 0.01. The load factor that achieves g(m) is reported in the second row.
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Table 3.1: Achievable rates for multiserver queues; p = 1 packet per second.

m 1 2 3 4 S 6 7 8
a/m | 0.3679 | 0.34 0.31 0.28 0.25 0.22 0.19 0.17
g(m) | 0.3679 | 0.5014 | 0.5524 | 0.5716 | 0.5780 | 0.5798 | 0.5801 | 0.5802
m/e | 0.3679 | 0.7358 | 1.1036 | 1.4715 | 1.8394 | 2.2073 | 2.5752 | 2.9430

Remarks: Settingm = 1 we get Proposition 8. Proposition 9 is thus a generaliza-
tion. Note that the lowerbound for m = 2 and m = 3 give significant improvements
over the single-server queue. For higher values of m, our lowerbound saturates at
about 0.5804y. The capacity of the -/M/oco queue is however infinite. We therefore
believe that both the upper and the lower bounds are quite loose. The capacity of

the multiserver queue remains an interesting open problem.

3.3 Other Examples

In this section, we analyze two simple configurations of exponential servers and get
bounds on the timing channel capacity. Our steps to find these bounds can be applied

to other queueing systems too.

3.3.1 Single Server Queue with Spurious Departures

Suppose that the output of a single-server queue is merged with a stream of Poisson
arrivals having rate o (cf. Figure 3.1). The departures from the two streams are
indistinguishable to the receiver. In situations where the capacity of the single server
queue is to be reduced, the above scheme that merges the departures from the queue
with departures from another system is useful. It is therefore of interest to study
the reduction in capacity offered by this scheme. The resulting model is similar to a

point-process channel with background intensity a.
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Figure 3.1: Single server queue with spurious departures

We assume single arrivals at the input. Fix 7' € (0,00). The input space is
(X,f%), where X is the set of counting functions z : [0,7] — Z, (non-decreasing
and right-continuous) with unit jumps and zq € Z;. Let (y, f%’) be the output
space where ) is the set of counting functions y : [0,7] — Z, with unit jumps and
yo = 0.

Our first goal is to find the transition probability function that models this channel.
We now outline the steps to do this.

Step 1: Fix z € X. We first identify an information pattern (G; : t € [0,T]),
where FY C G; for t € [0,T], so that Y has a known rate A = (X; : ¢ € [0,T]) with
respect to (G; : t € [0,T]).

Let (w: : ¢t € [0,T]) denote the departures from the queue, and let (e; : t € [0,T])
be the spurious departures. The output y € ) observed by the receiver is y = (y; :
t € [0,T]), where y; = e; + w; for t € [0,T]. The service times are independent and
exponentially distributed with mean 1/ seconds, and E is a Poisson process having
rate a arrivals per second.

Fix z € X. Let Q; = z; — W; for t € [0,T]. Clearly, with
)\0 = &,
)‘t = a+ )u’l{Qt— > 0}7 te (07T]7

Y has rate A = (A : ¢ € [0, T]) with respect to the information pattern (G; : ¢t € [0,T1),
where G, = FV vV FF for t € [0, T].
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Step 2: Observe that 7} C G; for t € [0,T]. The measure P(z,-) on (y, .7:%’)
that models the channel is represented by (cf. [33, VI R8] )

d};(;;o, -)(y) = exp {/OT [(log Ae)dy: + (1 — Ar)dt] } : (3.12)

where Y has rate ) with respect to (ftY :t €10, T]) under P(z,-). Furthermore, we
may assume that ) satisfies (cf. [32, Theorem 18.3], [31, Theorem 1.6] )

)\0 = «,
he = li%E[a+u1{Qs>O}|}"ﬂ, t e (0,T). (3.13)

Step 8: Fix ¢ € X. Given the observed y € ), we obtain the estimates for
the queue states so that we can evaluate £ [1{Qt >0} | ftY] for t € [0,T]. Substitu-
tion of this evaluation in (3.13) and (3.12) yields the transition probability function
P(z,dy) from (X,f%) to (y, .7:%’) Given (3.12), the maximum-likelihood criterion
for decoding is then straightforward.

For the single-server queue with spurious departures, the following proposition

shows how to calculate the estimates of queue sizes given the observations. Let Z;(n)

2 1{Q; = n} and Z(n) 2 E [1{Qt = n}|.7:tY] forn € Z,.

Proposition 10: Consider the single-server queue with spurious departures. Fiz z €
X. The process (Z(n) :t €10, T]) forn € Z, can be recursively evaluated using the

following update rules.
(a) Initialize Zo(n) = 1{zo = n} forn € Z,.
(b) If an arrival occurs at time T, i.e., dz, = T, — T, = 1, then
Z(n)=Z,_(n—1)1{n >0}, n € Z,.

(c) If a departure occurs at time T, i.e., dy, = 1, then

A Z,_ Z,_(n+1
ZT(n):a (n) + plr-(n + ),nEZ+.

a4+ u (1 — 27_(0))




(d) Let 7 and 7x41 be two successive instants of discontinuity of z +y. Lett €

(Tky Tet1). Then

Zt(o) _ _ ZTk(O) exp{,u(t B Tk)} _ ,
Zn,(0) exp{u(t — )} + (1 — Z,,(0))
Zn) = - Zr(n) , neN.

27 (0) exp{p(t — )} + (1 = Z,,(0))

Proposition 10 solves (ZAt(n) 1t € [O,T]) explicitly for n € Z,. Such explicit
solutions are however hard to obtain in most cases because of the difficulty in solving
a system of non-linear differential equations. In most cases, we can only write an
integral equation for the updates. The single-server queue with spurious departures
in this subsection and a pair of queues connected in tandem considered in Section 3.3.2
are two exceptions where an explicit solution can indeed be found.

Step 4: We use [33, VI R8| to obtain an expression for the mutual infor-
mation. We proceed as in Section 3.2.2. Let v be any probability measure on
(X,]:%). The input measure v and the transition probability function P(z,dy)
in (3.12) define the joint probability measure 7 on (X X YV, FXV ]:%,), denoted by
n(dz,dy) = v(dz)P(z,dy). We can again verify that under 7, the stochastic process
Y has rate A with respect to the information pattern (‘7:7)«( VFL i telo, T])

With 7% and 7%, the restrictions of 7 to F3 and F¥, respectively, we get that

T L 1% x ¥ € v x Py, and that 7¥ < P,. Furthermore, [33, VI R8] gives

%(y) = exp {/OT Klog it> dy; + (1 — it) dt] } ,

where Y has rate ) with respect to (ftY 1t €0, T]) under the probability measure
7¥. We may take A, = E P\t|ft{], for each ¢t € [0,T] [32, Theorem 18.3]. The

normalized information density (1/7) ir(z,y) is therefore given by

11 dm ( )_l/T
T Ogd(7rX><7rY) Y T Jo
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the normalized mutual information can be written as
1 T . 2
“I(XY) = —F [log ()\t/)\t)] dy, (3.14)
0
= B[ a [(ﬁ () — ¢ (At)] , (3.15)
where ¢(u) = ulogu.

Step 5: To find achievable information rates, we choose an appropriate input

distribution v and evaluate the normalized mutual information under #. To do this
we need to evaluate A = (5\t 1t €0, T])

For the single-server queue with spurious departures, let v be such that

on-0- 15 ()

for k € Z,, and (X; — Xo : ¢t € (0,7]) is a Poisson process having rate a. For each
t € [0,T], we then have

he = E[A|F]

= E|E \\FFVFL]IF]

= E|MF] (3.16)
= o+ uB [1{Q, > 0}|F/]

= a+a, (3.17)

where (3.16) follows from [29, Theorem 34.4], and (3.17) follows from the fact that
Qs and (E,, D,) are independent, which implies that @, and Y, are independent.

Substitution of (3.17) in (3.14) yields
()i
T)Yr 8 ata

=1

1
—Ir(X;Y)=F
TT( ) )

(3.18)

Although we are unable to evaluate this normalized mutual information analyti-
cally, (3.18) is amenable to numerical evaluation through simulations. The results

are plotted in the Figure 3.2.
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Figure 3.2: In this figure 4 = 1 packet per second. The results are for a« = 0.1
and a = 0.5 packets per second. The abscissa is the input rate to the queue. The
ordinate is the estimate of (1/7)I(X;Y) in (3.18), the normalized mutual information
for the single-server queue with spurious departures. The reported value for each a is
an average of 500 values of (1/T)i(z;y), where each realization of the process y has
yr = 1000. These simulations indicate that 0.21 nats per second is achievable when
a = 0.1, and that 0.09 nats per second is achievable when o = 0.5; the corresponding
upperbounds C, are 0.251 nats per second and 0.132 nats per second, respectively.

Step 6: We can find an upperbound on the capacity of the single-server queue
with spurious departures. Recall that P(z,dy) (cf. (3.12)) is the transition probability
function for the self-exciting point process having rate A (cf (3.13)), i.e., the rate X at
any instant of time instant ¢ is determined by the input and by the past departures.

The capacity of the point-process channel with complete feedback, and where A €
[, o + p], is (cf. [6], [7])

Co = a [ (14 pfa) /" — (1 + a/p)log (1 + p/a)| .
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The capacity of the single-server queue with spurious departures is therefore upper-

bounded by C,.

3.3.2 Two Queues in Tandem

In Section 3.3.1 we outlined a method to study the single-server queue with spurious
departures. We now consider two exponential-server queues in tandem with identical

service rates of u packets per second (cf. Figure 3.3).

w
X N @ @%Y

Figure 3.3: Two exponential-server queues in tandem

Step 1: Let (X,]:%) and (y, .7:%’) be as in Section 3.3.1. Let z = (z:: t € [0,T])
be the input, w = (w; : t € [0, T]) the departures from the first queue (i.e., the arrivals
to the second queue), and y = (y: : ¢t € [0,7']) the departures from the second queue,
which are observed by the receiver. The state of the queue at any time ¢t € [0, 7] is
( 51), 52)), where Q,El) = z; — W; and ng) =W;—Y, fort € [0,T].

We choose G; = F/V v F} for t € [0,T]. Then for each fixed z € X, the process
of departures Y is a point process having rate A = (,ul{ng_) >0}:te [O,T]) with
respect to (G; : t € [0,T]).

Step 2: The transition probability function P(z,dy) that models the tandem-

queue timing channel is represented by (3.12), where we take Xo=0andforte (0,71,

A

de = E[M|F]
— li%E[l{Q§2)>0}|]-"}’]. (3.19)

Step 8: The estimates for the queue states can be evaluated from Proposition 11

below. Let
Zt(n17n2) é 1{Q§1) =n, 1(52) = n2}



and
2(”1,”2 [ {Q(l) ni, t _n2}|-7:y]

forn € Z,.

Proposition 11: Consider two queues in tandem with identical service rates of p
packets per second. Fiz x € X. The process (zt(nl,ng) 1t €10, T]) can be recursively

evaluated using the following update rules.
(a) Initialize Zo(nl,nz) = 1{zo = n1, wo = na} for (n1,n,) € Z2.
(b) If an arrival occurs at time T, i.e., dz, = 1, then

ZAT(nl,nz) = ZT_(nl —1,n2)1{ns > 0}, (n1,n2) € Zf_.

(c) If a departure occurs at time T, i.e., dy, = 1, then

T 2 (na +na +1,0)

(ni,ms) € Z2.

(d) Let 7 and 7ry1 be two successive instants of discontinuity of z +y. Lett €
(TkyTht1), $ =t — Tk, and n = z,, — y.,. There are ezactly n packets in the

system at time t. Furthermore,

. Z.(n,0
Z(n,0) = 2(,0)
1+ psZ;(n,0)
. ZTnO + e MY K—L,JZA., n—7,7 —Z, n,0
G i)~ Znm0) i Yl [ 2, ) = Zn( )]7

1+ ,usZTk(n,O)
for1<i1<m—1, and
n—1

Zi(0,n) =1 =" Zy(n —1,1).

2=0
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Step 4: An input measure v on (X, .7:7)«() and the transition probability function
P(z,dy) from (X,}"%) to (y, .7:%:) define the joint measure 7 on (X x Y, FXvV ‘7:%’)
as before. With other analogous definitions, the normalized mutual information
(1/T)Ir(X;Y) is given by (3.14) and (3.15).

Step 5: As expected we can evaluate it when v is such that the arrivals are
Poisson with rate a < g in (0, 7], and the queue size is in equilibrium at time ¢ = 0.

Under these circumstances, X; = a for each t € [0,T], which leads to

(%) ;T fjlog (’::)] (3.20)

Yet again, being unable to evaluate this expectation analytically, we obtain estimates

1
—Ir(X;Y)=FE
TT( ] )

for the normalized mutual information from simulations. The results are shown in

Figure 3.4. The capacity of this system is an open problem.

3.3.3 Proofs of Propositions 10 and 11

Proof of Proposition 10: Recall that the process w = (w; : t € [0,T]) has rate
(p(1—Z,_(0)) : t € [0,T]) with respect to (G, : t € [0,T]). Moreover, we can write

Zu(n) = Zo(n) + /t Z,_(n—1)1{n > 0} — Z,_(n)] da,
+ / (n+1)— Z,—(n)1{n > 0}] dw,
= Zo(n) + / [Z,_(n — 1)1{n > 0} — Z,_(n)] dz,

+ / (n+1) = Z,_(n)1{n > 0} (1 = Z,_(0)) ds
+  w(n), (3.21)

where

= /Ot [Zs-(n+1) = Z,_(n)1{n > 0} [dw, — p(1 — Z,_(0))ds] .  (3.22)
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Figure 3.4: In this figure 4 = 1 packet per second. The abscissa is the input rate to
the first queue. The ordinate is the estimate of (1/7)I(X;Y ) in (3.20), the normalized
mutual information between the input to the first queue and the output of the second
queue. The reported value for each a is an average of 200 values of (1/7)i(z;y), where
each realization of the second queue’s departures y has yr = 1000. The simulation
indicates that 0.23 nats per second is achievable. The capacity of this system cannot
exceed the capacity of the -/M/1 queue, which is 0.36 nats per second.

Observe that

[Zs—(n+1) = Z,-(n)l{n > 0} (1 = Z,_(0)) = [Z;—(n + 1) = Z,—(n)1{n > O}]
(3.23)
for every n € Z,. Furthermore, the process Z(n) = (Z(n) : ¢ € [0,T]) is bounded
(in fact, either 0 or 1). From [33, IT T8(8)], the process u(n) = (us(n) : ¢ € [0, T]) is
a (G: : t € [0,T]) martingale because

E [/Ot (Zo(n +1) = Zs_(n)1{n > O}) p(1 = Z,_(0))ds| < 2ut
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for every t € [0,7']. Furthermore, u(n) is almost surely of bounded variation on [0, T].

It follows from (3.21), (3.23) and the proofs of [33, IV T8] and [32, Theorem 19.5],
that

t

Zy(n) = + [ |Ze-(n=1)1{n >0} - Zu-(n)] dz,
+ /Ot -(n+1) = Zo_(n)1{n > 0} pds
+ /Ot [W1,0(n) + Wap(n) — Zy(n)] [dys — Dods],  (3.20)
where A, = a + (1~ Z,-(0)) for s € 0,7}, and (¥;, : ¢ € [0,T]), i = 1,2, are

predictable with respect to (ftY 1t €0, T]), and satisfy

t t ~
E [/ CoZy(n)A, ds] - E [/ C, 01 ,(n)h, ds] ,
0 0
t t ~
E [/ C, Au,(n) dys] - E [/ C, 0,5, (n)h, ds] .
0 0
It is easy to verify that

B Z,_(n)(a + pl{n > 0})

\I’1,a(n) - a+p (1 — 25—(0)) ,
pun) = © (Ze-(n 1) = Zi(m)L{n > 0}) (3-25)
2,8 - a+ W@ (1 2 (0)) |

Substitution of (3.25) in (3.24) leads to

Zi(n) = (n—1)1{n >0} — (n)] dz,

\\

) (1{n = 0} = Z,_(0)) pds

_(n+1) = Zy_(n) (1 — Z.—(0))
a+p(1—2,(0))

The update rules (a), (b) and (c) follow straightforwardly from (3.26). For ¢t €

\

dys.  (3.26)

(Tk, Tk+1) where 7, and 7x41 are two consecutive points of discontinuity of z + y,

observe that )
dZt(n) A A
o = nl(n) (1{n = 0} — Z,(0))




forn € Z,, a system of non-linear differential equations with initial conditions ka (n)
for n € Z,. Using standard techniques to solve differential equations, we get (d). W
Proof of Proposition 11: We give only a brief outline of the proof; most of

the steps are analogous to the proof of Proposition 10. The state Z;(ni,n2) can be

represented by

t
Zt(nl,nz) Zo 'I’Ll,’ng + A n1 -1 'I’Lz)]_{'nl > 0} Z ('I’Ll,’nz)] dflls
t
+ /0 —(n1,n2)1{ny > 0} + Z,_(n1,n2 + 1) dys
t
+ / —(n1,n2)1{n, > 0}
0

+Zs_(n1 + 1,ny — 1)1{ny > 0}] dws,.

This leads to the following equation for the estimates,
A A t A A
Zt(nl,ng) = Zo(nl,’ng) —|— /0 [Zs_ (’)’Ll — 1,n2)1{n1 > 0} — ZS_(nl,ng)] deJs

¢ al 23—(nl7n2+ 1)]
—|—/ —Zs_(n1,n2) + ~ dy,
0 l (ma,ma) + =72 Z (0 |7

+/0t %, (na,m2) (1 = Zy_(-,0))
—2,_(n1,n2)1{n2 > 0} — 23_(n1,n2)1{n1 > 0}

+23_(n1 + 1,2 — 1)1{ny > 0}] pds, (3.27)

where 2,(-, 0) = Yoez, ZAs(n, 0). The update rules (a), (b) and (c) then follow
straightforwardly. Let n = z,, — y,,. To get the update rule (d) for ¢ € (7%, Tk41), we
need to solve the system

1dZy(n —i,9)

P dt = Zn—4,3)(1—1{n—1>0} —1{s > 0})

~

—Zy(n —1,3) Ze(n,0) + Zy(n — i+ 1,i — 1)1{s > 0},

for 0 <2 <n. Let n > 0. When ¢ = 0, we solve the differential equation

Y0 _ (2, 0))
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to get

Z ( 0) ZATk(nﬂ 0)
n,U) = = .
t L+ p(t — 1) Zr, (n, 0)

Suppose now that 1 <z <n — 1. Then

1 dZy(n — 1,4 . . . ) o
;% = —Z(n —1,1) (1 + Zt(n,O)) + Zy(n—1+1,2—1).

We search for solutions of the form Zt(n —1,%) = hy(2)g;. We can always take

o= exp{—p(t - k) }
L+ p(t — %) 2n,(n,0)

which implies that

dhi(z) exp{—p(t - 7k)} =pZyn—1+1,i—1), 1<i<n-—1.

dt 1+ p(t — 1) 2y (n, 0)

We now proceed by induction. Solving for A:(2), substituting it in ZAt(n—i, 1) = hy(2)gt,
we obtain the update rule (d) for 1 < ¢ < n — 1. The expression for Z(O,n) now

follows because Y 7 Zt(n —1,%) = 1 for every t € (7k, Tht1)- [ ]

3.4 Discussion

We gave a conceptually simple proof of the capacity of the single-server queue (Propo-
sition 8). Our proof emphasizes the connection between the point-process channel and
the single-server queue. We also observed that the capacity region of the two-user
single-server queue is a triangle. We then showed a lowerbound on the capacity of
multiserver queues (Proposition 9 and Table 3.1) by optimizing the mutual informa-
tion over Poisson inputs. We however do not know the capacity of such queues.
Estimates for the queue size, given partial information (either the departures
alone, or the departures and arrivals) play a key role in determining the sample
function densities and therefore the mutual information between the input and the

output. This observation leads to a methodology to study timing channels that arise



in some simple networks. We looked at two examples, the single-server queue with
spurious departures, and a pair of queues connected in tandem. In these two special
cases, we could explicitly write an expression for the sample function density (cf.
Propositions 10-11, (3.13), (3.19) and (3.12)). In other examples such as the single-
server queue with finite buffer size, or the single-server queue where the spurious
packets are input to the queue, we can write an integral equation for updating the
estimates for queue sizes along the lines of (3.26) and (3.27); we are however unable
to explicitly solve them as in Propositions 10-11.

In the two examples considered, because we were unable to evaluate the mutual
information analytically, we resorted to evaluations based on simulations. For the
single-server queue with spurious departures of rate 0.1x, our simulations indicated
that the capacity is at least 0.21p nats per second (Figure 3.2). We showed that the
capacity is upperbounded by C, which is 0.251u nats per second. For the pair of
queues connected in tandem, our simulations indicated that the capacity is at least
0.23p nats per second (Figure 3.4). The capacities of these channels are however not

known.



Chapter 4

Sequential Decoding for the

Exponential Server Timing

Channel

4.1 Introduction

In Chapters 2 and 3, we concentrated on obtaining rates that are achievable when no
constraint is placed on the complexity of the encoder and the decoder. To build prac-
tical communication systems, however, we need coding schemes where the decoder
has good performance while being computationally feasible. In this chapter, we see
that tree coding schemes can transmit reliably at rates below half the capacity on the
single-server queue while maintaining computational feasibility.

Sequential decoding of convolutional codes and tree codes ([38], [39], [40], [41],
[42], etc.) is a useful decoding technique wherein the average number of computa-
tions performed is linear in block length as compared to an exponential number of
computations for the maximume-likelihood decoder. A vast majority of the literature
on sequential decoding deals with memoryless channels. A few papers, (for e.g., [43],

[44]) extend the sequential decoding technique to a class of channels with memory,
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namely, finite-state channels. In this chapter we show that the sequential decoding
technique can be used on timing channels (for e.g., [1] and [4]). Interestingly, this
timing channel is a channel with memory and cannot be described within the class
of finite-state channels.

Specifically, we want to transmit information reliably through a single-server queue
[1], [4], at rates below half the capacity, but with manageable decoding complexity.
In [1], [4] and Chapter 2 a decoding technique for block codes was described where
the number of computations is exponential in n, the number of packets. By imposing
a tree structure on the codes and using the sequential decoding technique, we save
on computations at the expense of the rate at which information is reliably transmit-
ted. This chapter is perhaps a first step in the direction of finding good codes for
communication over timing channels.

There are many versions of the sequential decoding technique. The basic idea
behind the Fano algorithm [40] is to move forward in the decoding tree so long as
we seem to be (based on a metric) on the right track. Once the metric falls below a
certain threshold, we backtrack and explore other paths, possibly changing the value
of the threshold to account for the changed circumstances. The stack algorithm [41],
[42], extends the node with the highest metric at each stage, until the end of the tree
is reached. There is a relation between the number of computations in both these
algorithms.

We are interested in finding bounds on the average number of computations before
proceeding one step forward in the correct path. The difficulty with analyzing the
performance of the sequential decoding technique for communication systems with
memory is the following. When comparing two paths that are the same up to a
certain node, the choice of one or the other depends on the branches common to
both paths in a way that is typically difficult to handle. For memoryless channels,

however, the metric that determines this choice can be selected so that the choice
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does not depend on the common branches.

We can also get over this difficulty for timing channels. We show that the first m
branches can be summed up by one quantity that lends itself to a simple analysis. Our
proof is based on the proof in [39] for multiple-access channels, restricted to single-
user channels. Burke’s output theorem for an M/M/1 queue plays an important role
in determining a suitable metric. The main contributions of this chapter are the
choice of this metric, and a simple analytical artifice (used earlier in [1] in a different
context) that shows how the elegant technique in [39] can be modified to prove the
existence of a good tree code for this system with memory.

Section 4.2 introduces the problem in the appropriate notation and states the
result. Section 4.3 contains the proof. We conclude with a brief discussion in Section

4.4

4.2 Tree Codes for Single-Server Queue

Before describing the tree code and our result, we briefly describe the channel. The
queue is initially empty. The encoder inputs a certain (non-zero) number of packets
at time ¢ = 0. The last packet input at time ¢ = 0 is called the zeroth packet. Let yo
be the time at which the zeroth packet exits the queue after service. The quantity yo
is therefore the amount of unfinished work at time ¢ = 0. Depending on the message
to be transmitted, the encoder then sends the first packet at time z; seconds, the
second packet at time z, after the first packet, and so on. Thus the interarrival times
of packets are z;, 3, --. The receiver observes the interdeparture times, y;,v2, -,
following the departure of the zeroth packet. Let Ry = [0,00). Let e,(s) = pe™#*,
s € Ry. The conditional probability density of the output y™ = (y1,- -, yn) given z"

and yq is

y |$ JyO Heu _wz (4:].)



where

P 1—1
w; = max {0, Yoz — Zyj} (4.2)
7=0

j=1
is the server’s idling time before serving the :th packet.

We now describe the tree code. We follow the notation in [39] with a few modifi-
cations. At each instant of time ¢, the source generates a letter u; € {0,1,---, M —1},
and the sequence u = (u1,us,--) is encoded by a tree code g. The tree g is such
that M edges leave each node of the code tree. Each edge is labelled by an N-tuple
of nonnegative real numbers. The root node is labelled by the number of packets
input at time ¢ = 0 including the zeroth packet. We denote by u* = (u1,ua, -, us),
the path leading from the root node to the tth level. The code corresponding to the

source sequence u' is given by zVt (uf) € Ri”, where

SV (ut) _ (:1:1 (ul) LTy (ul) , TN 41 (uz) 1 TN (ut))

is the sequence of interarrival times of the Nt packets for message sequence uf. Fur-

thermore, we denote the entire codeword corresponding to the source sequence u

by
x(u) = (ml (ul) , L, TN (ul) TN 41 (u2) ,) .

The source sequence from m to [ is defined to be

ufn = (Um, Um+1, "+, UL)-

Similarly we define
N (4) = (ormes (77 - 2 (o).

The set of all paths in g that diverge from u at the mth level is called the mth

incorrect subtree for the path u, i.e.,

um(ll) = {ﬁ = (ul; e 7uTn—17'&ma'&'m+17 t ) D U, % um}'



4.2. TREE CODES FOR SINGLE-SERVER QUEUE 85

Let g be a tree code. We characterize the source as follows. The source sequence
U = (U;,U,,---) is an independent and identically distributed (i.i.d) sequence of
random variables where each source letter U; is uniformly distributed on the set
{0,1,---,M — 1}. The tree code g then transmits information at a rate R nats per
unit time, where

(4.3)

if the limit exists. The quantity E [Efito Y;] is the average time to receive the Nt

packets, when the tree code is g. This rate can also be written as

e (05 ([ g])

The quantity r = (log M)/N depends only on the structure of the tree, and is a

measure of the number nats of information transmitted per packet.
We now define the metric. This metric depends on the quantity r. Fix 0 < A <
p/2 = u'. We take

T (wlyo,y™) = M (2™ (v) lyo,y™), (4.4)
where

[T5, ea(wi) ) (1+e). (4.5)

The bias term nr(l + €) in (4.5) is to make a fair comparison between paths of

M(z"|yo,y™) 2 log (

different lengths. M(:|-,-) in (4.5) is similar to the metric in [39, Equations (4.1),
(4.4)]. Note the dependence on the quantity u' rather than p. This is because the
quantity m which determines the metric [39, Equation (4.4)] normalizes to
)

The function M in (4.5) is further related to [39, Equation (4.4)] due to the
following special case of Burke’s output theorem [9, Fact 2.8.2, p.60]. Let A < p'. Let
the number of packets ¢)o at time ¢ = 0, excluding the zeroth packet, be distributed
according to Pr{Qo =k} = (1 —X/p')(1 — A/p))*, k € Z,. In addition to these



packets, the zeroth packet is sent. Thus the zeroth packet sees the queue in steady
state upon arrival. Let the arrivals thereafter form a Poisson process of rate A.
The zeroth packet departs the queue at time Y;, whose probability density is e,/_y.
Furthermore, at the moment of its departure, the queue is in equilibrium. The output
starting from time Yj is then a Poisson process of rate A [9, Fact 2.8.2, p.60]. In other

words,
E[fu(y"|X™, Yo)] = l:[ ex(yi), (4.6)

where the expectation is with respect to X™ and Y;. X™ is a random vector of i.i.d
exponential random variables with mean 1/X seconds, Y; is independent of X™, and
is exponentially distributed with mean 1/(p’ — A). The right hand side of (4.6) is the
normalizing denominator within the log function in (4.5).

The decoder follows the stack algorithm. From a stack containing some paths in
g, the decoder selects a path with the largest metric, extends it to the next level in M
possible ways and stores the M new paths in the stack. A sorting is done as soon as
the new paths are added. The stack algorithm terminates for a tree code with finite
depth as soon as the last level of the tree reaches the stack top. As mentioned in
[38] we shall consider only infinite trees because the average complexity of sequential
decoding is most cleanly formalized and conservatively estimated in the framework
of infinite trees. For finite trees, we also need to evaluate the probability of error,
which occurs when the last level of the tree to reach the stack top is not the correct
message sequence. The proof in Section 4.3 applies to finite tree codes with simple
modifications.

Using (4.1), the first term in the right hand side of (4.5) can be expanded as

nlogh — (W —NYh iy + p'Yh w,

fu'(y"|$”,yo) .
! T el | if y; ; =1.... 4.
8 < H'?:l eA(y,L-) if Y > wy, for 2 ]_’ , 7, ( 7)

—00, otherwise,
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where w; is the idling time defined in (4.2).

We now make the following important observation. Suppose we compare two
paths of lengths 7 and [, respectively, that are identical for the first m — 1 nodes and
diverge at the mth node. The past up to the first m — 1 nodes can be summarized

by one quantity,
N(m-1) N(m-1)

Ym—1 = Z Yi — Z z;.
i=0 i=1
This quantity §m-1 is the amount of unfinished work at the instant when the N(m —
1)st packet arrives. To decide which of the two paths is placed higher on the stack,
we can simply treat the (m — 1)st node as the root node with §,,—1 playing the role
of yo. The terms in (4.7) common to both paths are the same up to the (m — 1)st

node. Furthermore, the w;’s for branches from node m and beyond are unchanged

with §m,—1 in place of yo. This is because, for £ > N(m — 1), we can rewrite (4.2) as
k k-1
wy=max30, > @ — >,  Yi — Gm-1g-
i=N(m-1)+1 i=N(m-1)+1
Thus the path metric depends on the common nodes only through the unfinished

work at the instant of the arrival of the last common packet. This observation is

summarized by

r (uj|y0:yNj) =T (um_1|y0:yN(m_1)) +T (u2n|gm—1:y11\\;gm—1)+1) ) (4'8)

if 7 > m. Of course, I' for the root node is taken to be 0. Comparing I’ (uj|yo,yNj)
and T (ul|yo,le), where [,7 > m, and when the two source sequences have identical

initial m — 1 branches, is therefore equivalent to comparing

r (Ufnlﬂm—l;yxfm_l)+1) and T (uin|gm—17y]]\\f[ém—1)+1) .

Let Cn(g,u,y) denote the number of nodes in U,,(u) that reach the top of the

stack for a given tree code g and a received sequence y. This is precisely the number



of computations made in the mth incorrect subtree. Let
Cm(g) = E[Cm(g, U, Y)]

be the average number of computations (averaged over the source sequence and out-
put of the channel). The random variables over which the expectation is taken are

indicated in uppercase letters. For each L > 1, let

s Ci(g)+ - +Cu(g)
. .

Dr(g)

Dy(g) is therefore a measure of the average number of computations required to move

one step ahead on the correct path [38].

Proposition 12: For every § > 0, there exzists a tree code g and a constant A < oo
such that the rate of information transfer is R nats per second where R(1 + §) >
©/(2e), and Di(g) < A for every L > 1.

4.3 Proof of Proposition 12

4.3.1 Main Steps

Our proof technique to show the existence of a good tree code with sequential decoding
is the well-known random coding technique. A tree is characterized by the number
of packets at time ¢t = 0, and the labels for all the branches. A suitable distribution
on these quantities induces a distribution on the set of infinite trees (using extension
theorems in probability theory). We state some bounds over this ensemble of trees
and thence argue the existence of a good tree. We then prove the stated bounds in
the following subsection.

Choose € > 0 so that (146) > (1 —|—5)3. Fix A =e 'y = ©/(2e). Fix M and N so
that » = (log M)/N satisfies (1 +¢) < log(u'/A) = 1 < r(1 +¢€)?. Each realization g
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is a tree of infinite depth having M branches per node, the root node is labelled by
a positive integer o + 1, and every branch of the tree is labelled by an N-tuple in
Rf. Qo + 1 is the number of arrivals (including the zeroth packet) at time ¢ = 0.
The distribution G on the set of infinite trees is described as follows. @)q is selected
independent of the other branch labelings according to the distribution Pr{Qo = k} =
(1 — X/p)(A/p)* for k € Z,. Furthermore, each N-tuple is i.i.d, and such that
each component of the N-tuple is independent and has density ey. This induces a

distribution G on the set of infinite trees.

Let

1 ML
Tr(g, v, y"*) = mzyi
=1

denote the average time for a packet to exit, given the input message is u”, and the
output stream is yVL. Let Tr(g) = ETL(g, UL, YNE). Consider the random variable
T.(G). The queue is in equilibrium at time ¢ = 0, and the arrivals thereafter are

Poisson with rate A. By Burke’s output theorem, the departures are also Poisson

with rate A. Hence, for every L > 1,
ETL(G) =1/, (4.9)

where the expectation in (4.9) is with respect to the distribution G.

From the argument in the introduction, while finding the expected number of
computations in the mth incorrect subtree, the past up to m — 1 nodes can be sum-
marized by one quantity, Jm_1. Equilibrium at ¢ = 0 and Poisson arrivals thereafter
ensures that the N(m — 1)st packet (the last common packet to the paths under
consideration) sees the queue in equilibrium upon arrival. Y,,_1 therefore has the
same distribution as Y. Consequently, the random variables Cy,(G), m > 1, are
identically distributed. Recall that Di(G) = (C1(G) + --- + CL(G))/L. In Section

3.2 we show the following result.

Lemma 6: If r(1+¢) <log(u'/A), there is a finite K such that EC;(G) < K.



Stationarity and the ergodic theorem [45, p. 374] imply that, as L — oo, both
T.(G) and DL(G) converge almost surely to random variables 7'(G) and D(G),
respectively, such that ET'(G) = 1/A, and ED(G) = EC;(G) < K. Furthermore,

because Yy(G) has a finite expectation, dominated convergence theorem implies that

Looo N[
Hence, with T(G) = T'(G) + limz e (Yo(G)/(NL)), we get ET(G) = 1/A.

E [nm LYO(G)] 0.

From Chebyshev’s inequality and the union bound on probabilities, we obtain

P{{T(G) > 1+5} U {D(G) . 2K(1+e) +5)}} cL1+e2

A € - 1+e
which implies that

plre) < 28 nlpay < 2K0 L o e/2
{{() A}{() }}

€ 1+4+¢
> 0.

Hence, there exists a tree code g such that T'(g) < (1+¢)/A and D(g) < 2K(1+¢)/e.

Following the argument in [38], we then get limsup Dr(g) < 2K(1 + ¢)/e, and
therefore sup{DL(g) : L > 1} < A for some finite A. Moreover, because r(1+¢)? > 1,
we get

R(1+e)* =r(1+¢)*/T(g) > Ar(1 +¢€)* > p/(2e).

This concludes the proof of Proposition 12. [ |

4.3.2 Expected Number of Computations over the Tree En-

semble

In this subsection, we prove Lemma 6. Fix the first incorrect subtree ¢;(u). The

number of computations in this subtree is upperbounded by (cf. [39, Equation (3.1)])

Cl(g7u7Y) < ZZ Z €Xp {F ('&'j|y07yNj) -T (ul|y07le)}-

lZO .721 o Eul(u)
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Our aim is to find the expected value of this upperbound over the code ensemble and
the output. Clearly, this average value does not depend on the source sequence due
to symmetry.

We now look at a 47 in the first incorrect subtree. The distribution of G is
such that the choice of zi(4!), -, zn;(%W?), is independent of the choice of x(u).
Consequently, taking the expectation with respect to the choice of z;(41), - -, zn;(47),
and denoting that expectation by E[-] as in [39], we get

BCi(Gu,y) < XY exp{-T (v'lyo,y™)}

I1>035>1

> Elexp{T (#]yo,y™)}]. (4.10)

ai ety (u)
The last summation in (4.10) can be upperbounded as follows. This would have been
straightforward if it were not for the memory represented by yo.
Lemma 7:
. . Ny Nire e(H'=Nwo
ﬁjgﬁ:(u)E [exp {I‘ (u7|y0,y J)H < e e m

Proof: There are exp{jNr} nodes at depth j in the set ¢;(u). The left hand

side is therefore equal to

. . | S (N XNy
eJNr . e—JNr(l-}—e) . E © ( N | 0) 7 (411)
Hi:l eA(yi)

where the expectation E’[] is with respect to X7, which represents the branch la-
belings for a generic path in the first incorrect subtree.

We now introduce an auxiliary random variable Z which denotes the number of
packets in the system when the zeroth packet departs after service. The conditional
distribution of Z given Y, = vy is,

()\yo)z e~ AWo

2! ’

Z|Y0( zlyo) =



for z € Z,. The marginal of Z when the service times are independent and have

o-(-3) ()

for z € Z,. The prime indicates that the service times have density e,.

density e, is given by

Observe that

e(#'=A)wo (1'yo)? e~ K'Y

Py, (zlyo) = Pg(2)

(1—=A/w) 2!
e(ﬂ’—’\)yo
< Py(z) CESYD) (4.12)

where (4.12) follows from (u'yo)?e™#'¥ /2! < 1 for every z € Z, and yo € R,.
Let

1) 1) 1) 1)
Pyni\xniy,, Pynipyg, Pyviy, 7z, Prwi,

denote the conditional densities of Y7 given the indicated random variables. We

then have the following sequence of inequalities,

E [fu' (yNj|XNj;yo)] = E I:P}IfNj|XNj,YO (yNj|XNj;yo)]
= PllfN:‘|YO (?/Nj|yo)

= Z P§|Y0(2|y0) Pll’Nj|Yo,Z (yNj|yo;Z)
ZEZ+

(a) ;
2N Phy(2lyo) Pywiz (vV2)
ZEZ+

e(#' =m0

Y 5 R R ()

(1 =X)yo
(e) I Nj €
- YN (y J) (1 _ )\/’U/I)’

e —Nw N

(=) L) 9

where (a) follows because Y, and Y7 are conditionally independent given Z, a con-

sequence of the memoryless property of the interarrival times; (b) follows from (4.12);
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in equality (c), the dependence on yo has been successfully separated; equality (4.13)
follows from (4.6).
Substitution of (4.13) in (4.11) yields Lemma 7. [ |
We continue with the proof of Lemma 6. Observe that the random variables in
the right hand side of (4.10) are Y and (X(u),Y). Substitution of (4.5) and the
result of Lemma 7 in (4.10), followed by the expectation operation with respect to Yy
and (X(u),Y), yields

ECi(G,u,Y) < Y3 emiNreg ilr(ite) dyo Pe () ('~ N)wo
s, = g I eI TE / Yo £yvo\Yo) 77—~
>035>1 Ry (1 _ )\/,u’)

[ duN' E lf ( NI N1 ) < ) ex(y:) )H (4.14)
ry “\ I\ WX o) ) |

where the expectation in the innermost integral in (4.14) is with respect to X*'.

Observe that

o] = sl ) (2)”

Ju (yNHXNE y0)
Nl e(ﬂ’—’\)yo 4 Ni
< (H ek(y”) =) (ﬁ) ’

where (4.15) follows from (4.13). Furthermore, because 24’ = p and Py,(yo) =

(4.15)

e,-A(Yo), we obtain

ez(ﬂl—)‘)yo (,u/)\ _ 1)
/1‘14_ dyo Py,(yo) (1—A/p')? = (1— )\/#,)27 (4.16)

and

2

Nl Nl
d Nl ; — / d )\2 —22y
/Ri“ Y <1;[1 e(y )) <R+ y Me )

= (32" (4.17)



Substitution of (4.15), (4.16) and (4.17) in (4.14) yields

oo {iv o) -1os (2)]).

The summation over j is finite. The summation over [ is finite because 7(1 + ¢) <
log(p/(2X)). Consequently, EC1(G) < K, for some finite K. This concludes the

proof of Lemma 6. |

4.4 Discussion

We have shown that for every § > 0, there is a tree code such that the rate of
information transfer, R, using the sequential decoding technique, satisfies R(1 +§) >
©/(2e) nats per second, and the average number of computations to move one step
forward in the correct direction is upperbounded by a finite number. The quantity
©/(2e) nats per second is one half of the capacity, and is a lower bound on the cutoff
rate for sequential decoding. Some open questions remain. For example, we do not
know the cutoff rate for this exponential server timing channel.

Although we have not dealt with discrete-time timing channels [4] in this chapter,
analogous results follow straightforwardly. However, we do not know a closed form
expression for the rate achievable using sequential decoding with an analogous metric.

)k—l

For the geometric service time distribution P(S = k) = u(l — p k > 1, the

?

corresponding achievable rate in nats per slot is

e MMiog [LoVEZA) L 10g (222)]
A€0, 1-/1—x ) 1++/1—p A

Let A* be the maximizing A. To remove the dependence on Yj as in the continuous-

time case (cf. (4.13)), A* should satisfy

(1—(p—)\*))-(2—)\*+ 1—,L)2<1.
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Although we have not proved that this holds for all p € (0,1), numerical evidence
indicates that this is so.

In practice, we need trees with finite depth having extra terminating branches.
These tail branches ensure that the last few source symbols can also be decoded
correctly with high probability. While this causes a loss in rate, the loss is negligible
if the number of additional branches is small in comparison to the block length of
the code. In this case, we can easily show that the number of computations in each
incorrect subtree is upperbounded by a constant that is independent of the code
length. Furthermore, the probability of error, when one of the other terminating
leaves reaches the top of the stack, can be made small by choosing a sufficiently long
tail [41]. We omit proofs for the rationale of these simple modifications.

If all terminating leaves have the same Y.V, z;, where ¢ is the maximum depth of
the tree, then the state represented by g; is the same for all terminating leaves, given
a sequence of received interdeparture times. All states have therefore merged into a
single one. Transmission can then begin afresh, with a decision up to depth ¢ not
affecting future decisions.

We finally remark that A, the net throughput in packets per second, should be
smaller than u/2 for the sequential decoding scheme to work with finite per-branch
computational complexity. Therefore, in already existing systems, information can
be piggy-backed through timing in the above tree-code form only if the system is
lightly loaded. Moreover, unlike convolutional codes, we need to store the labels for
the entire tree at the decoder. Despite these drawbacks, this chapter is a positive
step in the direction of finding good codes with computationally feasible decoding

techniques for communication over timing channels.






Chapter 5

Open Questions

In this chapter, we collect the open problems mentioned in the previous chapters. We
include a few more on which this thesis did not focus attention. In the appendix, we
look at one other interesting problem in detail.

We described a robust decoder in Chapter 2 for the single-server queue. Given any
stationary and ergodic sequence of service times with mean 1/u seconds, we showed
that e 'y nats per second is an achievable rate using this decoding criterion. Given a
particular stationary and ergodic sequence of service times, is there a systematic way
to give tighter lower and upper bounds on the capacity under this specified decoding
rule?

Suppose that the codebook random variable C with parameters (n, M,,T,) is
chosen as in Chapter 2 (cf. (2.21), (2.20) and (2.6)). We call C a Poisson codebook
because of the following. A realization ¢ of this random variable consists of M,
codewords; each codeword is a realization of the Poisson process such that the nth
arrival occurs before time T;,. Let Py» x» be the channel induced by a stationary and
ergodic process of service times with mean 1/4 seconds. Let E [Pe (C, by, PY'n|Xn)]
be the average probability of error for window-codes employing the robust decoder,

averaged over the ensemble of Poisson codebooks. Is it true that for any stationary
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and ergodic sequence of service times,
E[P.(C, ¢, Pyrxn)| — 1

as T,, — oo for rates above e 'y nats per second? A similar result holds for Gaussian
codebooks on the additive noise channel [12, Theorem 1|. The parallelism between
the single-server queue and the additive noise channel seems to indicate this might
be true.

We showed that for the discrete-time queue random-code reduction is possible and
that we can apply the elimination technique of [14]. This implied that on the jammed
timing channel with geometrically distributed nominal service times, the largest rate
achievable with random window-codes is in fact achievable with a nonrandom strategy,
provided the packets themselves carry a certain amount of information noiselessly. Is
there a similar strategy on the continuous-time queue?

What is the capacity of the jammed timing channel with exponentially (resp.
geometrically) distributed nominal service times, when no side channel is available,
and when the jammer has complete knowledge of the codebook?

We mentioned in Chapter 2 that the discrete-time queue satisfies the strong con-
verse (cf. paragraph following proof of Proposition 6(c)). This means that for every
8 > 0 and every sequence of (n, My, Ty, €, )-window-codes with rate

log M,
T

> 10g [1 + ;1,1(1 — Ml)(l_ﬂl)/ﬂl] + 8,

we have that lim, . €, = 1. Does the continuous-time queueing system satisfy the
strong converse? The answer to this question will be affirmative if we can show that
the ideal Poisson channel with noiseless feedback [46] satisfies the strong converse.
In Chapter 3, we saw how the point-process approach suggested a method to
give bounds on the capacity of some simple queueing systems. We do not however

know the capacity of such systems. In particular, we would like to know answers to
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the following questions. How does the capacity of the multiserver queue increase to
infinity with the number of servers? How does the capacity of queues connected in
tandem decrease to 0 as the number of queues increases?

Are there systematic ways to develop codes with computationally feasible decoding
criteria on the single-server queue? We saw one approach in Chapter 4; we showed
that tree codes with sequential decoding can achieve rates below half the capacity on
the single-server queue. It would be interesting to find techniques that attain rates
larger than half the capacity.

Consider the single-server queueing system with noiseless feedback. Suppose now
that coding schemes having arbitrarily small probability of error with random trans-
mission times are allowed. Are there any transmission strategies that achieve capac-
ity? What is the capacity if we insist on zero probability of error?

Another interesting question for further work is the following. On the continuous-
time queueing system, consider the (n, M,, Ty, P,)-window-code. Let P*(n, M,,T,)
be the infimum of those P, for which a window-code with parameters (n, M, T,,, P,,)
exists. For rates below the capacity, 0 < R < e 'y, let the reliability function E(R)
be the optimal error-exponent for window-codes, i.e.,

E(R) 2 lim sup —Tilog pr (n, Cazdh Tn) ,

Tp—00 n

maximized over the best choice of (T, : n € N'). What is the E(R) of the single-
server queue for 0 < R < e 'u? Bounds on the reliability function for the ideal
Poisson channel with noiseless feedback, a channel closely related to the single-server
queue, were given in [46]. It would be interesting to compare the reliability function
of the single-server queue with the reliability function of the ideal Poisson channel

with noiseless feedback.






Appendix A

(Zero-Error) Average List Size
Capacity

In this appendix we discuss the following open problem. We restrict ourselves to the
-/M/1 queue. The channel is (Qynx» : n € N), where Qynx~ is given by (2.4)
and (2.5). Fix n € N. It is possible that certain codewords are incompatible with
the observed sequence of departures y™. This naturally raises the following question.

Let n € M. Let ¢ be the codebook containing M,, codewords. Recall that y™ =
(Y0,91,"**,Yn) in Chapter 2. We now assume that yo = 0, and henceforth we take
y™ = (Y1, ,¥Yn). The output alphabet is therefore R7. Upon observing y", let the
decoder output the set

L(y™,c) £ {z" € c: p(z”,y™) > 0},

i.e., the list of codewords that could explain the received sequence of departures y™.

Observe that p(z™,y™) > 0 is equivalent to

\Y

Y1 Z1,

Y1+y2 > T1+ Ty,

i+ Y2+ -+ Yn

\Y

Ty + Tyt T,
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i.e., a codeword is compatible with y™ if only if the 2th arrival in the codeword occurs
before the ith departure, ¢ = 1,---,n. If |L(Y™, c)| = 1, the decoder recovers the
transmitted message without error.

Given an € > 0, suppose that we require E[|L(Y™, c)|] < 1 + g, where the ex-
pectation is over uniform inputs and the transition probability function Qy= x». The
largest asymptotic rate lim,_,o(log M, )/n that can be supported is called the (zero-
error) average list size capacity (cf. [10], [11] ). What is the (zero-error) average list

size capacity of the single-server queue?

We believe that the answer is 0 due to the following. Fix n € A/ and M, € V.
We pick the codebook (of M, codewords) according to a distribution Pg¢, and show
that, if the (zero-error) average list size is smaller than 1 4 ¢ when averaged over the

choice of codebooks, then

M, <1+e(2n+1), (A1)

for a fairly large class of distributions Pg¢.
Let Px~ be an arbitrary distribution on R7 and its product Borel o-algebra. We
pick the codebook of M,, codewords according to P¢, where

dpc(Xl, L 7X]\,[n) = dPXn(Xl)dPXn(Xg) L dPXn(XM).

Let E[|L(Y™, C)|] denote the (zero-error) average list size, averaged over the choice

of codebooks. We can easily verify that
p(x2,%1) > 0 and p(x1,y") > 0 = p(x,,y"™) > 0. (A.2)
We then have the following sequence of inequalities,

1+e¢ > E[L(Y™,C)|

= 1+E %1{p(X¢,Y") > 0}

2=2
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— 14 (M,—1) / dPxn(x1) dPxn(x3)

RExRY
[ dQrmn(y) 1 {p(xa,47) > 0}
+

(a)
> 14 (M, —1) dPx~(x1) dPxn(x3) 1{p(x3,%1) > 0},

R7TXRT
where (a) follows from (A.2). Let z; = z;1—; 5, and s; = 23':1 zj. Then, p(x3,%x1) > 0
is equivalent to saying that the sequence (s;:2=1,---,n) stays above 0, i.e., s; > 0
forze =1, ---,n. We then have

€
Ps- {S;>0:1=1,--- ,n}

Let Pxn be such that dPx~(z") = [[,; dPx(=;), where the cdf of X is continuous.
This implies that the cdf of Z is continuous and symmetric, that (S1,---,5,) is a
random walk, and that [47, pp. 396-397]

Psn{sizo:z':l,---,n}:(2n)i. (A.4)

Substitution of (A.4) in (A.3) and the observation

2n\ 1 1
— >
n /227 — In+1

yields (A.1).

Under the input measure Px~ and the transition probability function Qynx=,
let the output measure be Py.. Furthermore, let Pxnyy» be the joint probability
measure where X™ and Y™ are independent with marginals Px» and Py~. Observe
that for some codebook ¢ with M, codewords, we require

3 iy 10 i) (31 57) > 0}).

X€Ec n acc

= M, /R1 dPy~(y") (Z Minl {r(a,y™) > 0}>

acc

= Mn . PX"XY"’" {p(Xn,Yn) > 0},

1+e¢

\Y



where Pxn is the uniform distribution on the set ¢ and Py~ is the corresponding

output distribution. We then have that

14+¢
M, <
Pxnyyn {p(Xn7Yn) > 0}
(%) 14+¢

minp,, Pxnxy= {p(X™,Y")> 0};
in (a), Px~ is any arbitrary distribution on the input space, not necessarily restricted
to uniform distribution on a finite set with M, points.
Is there a sequence (Px» :n € N) for which Pxnyy» {p(X™,Y™) > 0} goes to 0

exponentially fast? It seems unlikely in the light of (A.1).
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