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Abstract—To transmit information by timing arrivals to a single-
server queue, we consider using the exponential server channel’s
maximum-likelihood decoder. For any server with service times
that are stationary and ergodic with mean1 seconds, we show
that the rate 1 nats per second (capacity of the exponential
server timing channel) is achievable using this decoder. We show
that a similar result holds for the timing channel with feedback.
We also show that if the server jams communication by adding an
arbitrary amount of time to the nominal service time, then the rate

1
1 2 ( 1 + 2) nats per second is achievable with random

codes, where the nominal service times are stationary and ergodic
with mean 1 1 seconds, and the arithmetic mean of the delays
added by the server does not exceed1 2 seconds. This is a model
of an arbitrarily varying channel where the current delay and the
current input can affect future outputs. We also show the counter-
part of these results for single-server discrete-time queues.

Index Terms—Arbitrarily varying channel, channels with
feedback, mismatched decoder, point-process channel, robust
decoding, single-server queue, timing channels.

I. INTRODUCTION

CONSIDER the problem of transmitting informa-
tion through the epochs at which packets arrive at a

single-server queue [1]. All packets are identical and informa-
tion is contained only in the times of arrival of these packets.
The service times cause delays that corrupt the input informa-
tion. If the service times are independent and exponentially
distributed with mean seconds, the capacity of this channel
is nats per second when the cost of transmission is
the expected time for the last packet to exit the system [1].
Furthermore, if the service times are independent and identi-
cally distributed (i.i.d.) with mean seconds, but are not
exponentially distributed, then we can communicate reliably at
a rate nats per second [1]. Thus among all servers with
i.i.d. service times of mean seconds, the exponential server
has the least capacity. These results in [1] assume that both the
encoder and the decoder know the distribution of the service
times.

When the service times are independent and exponentially
distributed, the corresponding maximum-likelihood decoder is
easy to implement. Given the sequence of times at which packets
depart from the queue, the decoder finds the codeword that ex-
plains the sequence of departures with the smallest sum of ser-
vice times. To do this, the decoder needs only additions, sub-
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tractions, and comparisons. Since the exponential server has the
least capacity, and its maximum-likelihood decoder uses simple
functions, we consider using this decoding strategy when the
service times are not exponentially distributed. In this case, al-
though the above decoder is suboptimal, its simplicity and gen-
eral applicability are appealing.

In this paper, we show that we can communicate reliably at
a rate nats per second using the above decoding strategy
when the distribution of service times, known to the encoder, is
stationary and ergodic with mean seconds. In other words,
the decoder need not know the true distribution of the service
times to achieve nats per second.

Consider the following definition of the cost of transmission.
Suppose that the decoder has to make decisions based only on
departures that occur within a certain time window. If the cost
of transmission is the length of the time window of observa-
tion, then we show that we can communicate reliably at
nats per second. The service times are stationary and ergodic
with mean seconds. Under this new definition of the cost
of transmission, we also show that nats per second is the
largest rate achievable on the exponential server channel. We
do this by mapping any strategy on the timing channel to an
equivalent strategy with complete feedback on the point-process
channel [2].

Discrete-time queues were studied in [3] and [4]. The max-
imum-likelihood decoder for the server with independent and
geometrically distributed service times is simple. We argue that
using this decoder, the capacity of the geometric server channel
is achievable when the distribution of service times is stationary
and ergodic with mean slots. If the cost of transmission is
the length of the observation window, then we show the con-
verse for the geometric server channel by mapping any commu-
nication strategy on this timing channel to an equivalent strategy
with complete feedback on a binary memoryless channel.

Timing information can be transmitted covertly by trans-
mitting innocuous information in the contents of packets,
which may be subject to eavesdropping. Since service times
corrupt information encoded in the arrival epochs of packets,
we consider the followingjamming strategyemployed by the
server to hamper covert communication. Every packet suffers
a delay (extra service time) in addition to the nominal service
time (which is stationary and ergodic with mean seconds).
If these delays are without limits, then communication in the
timing channel can be jammed completely at the expense
of information throughput in packet contents. We, therefore,
require that the arithmetic mean of these delays be smaller
than seconds. We call the resulting channel thejammed
timing channel. This channel is similar to the arbitrarily varying
channel (AVC) introduced in [5]. An important distinction
between the jammed timing channel and the memoryless AVC
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([5]–[8] and references therein) is that in the jammed timing
channel current input and delay can affect future outputs.

We prove an achievability result in the situation where the
jammer does not know the true codebook in use, but knows only
a distribution from which the codebook is selected. In particular,
the rate nats per second is achievable with
random codes on the jammed timing channel. When the nominal
service times are independent and exponentially distributed, we
argue that the rate nats per second is also
the largest achievable with random codes, giving us a reduction
in capacity by a factor .

We now briefly survey previous works relevant to our study.
The use of the exponential server’s maximum-likelihood de-
coder when the service times are not exponentially distributed
is an instance of decoder mismatch. In the context of discrete
memoryless channels (DMC), suppose that the communication
system operates under a channel with transition probability
matrix . The decoder performs maximum-likelihood
decoding assuming that the DMC is characterized by ,
i.e., for a received sequence , it chooses the codeword
that maximizes , where is the number of uses of
the channel. Reference [9] showed that using the mismatched
decoder, we can communicate reliably at a rate

(1)

where is the marginal distribution of the output under the
mismatch channel and the input distribution . The expec-
tation in (1) is with respect to the joint distribution under the
true channel and the input distribution . This result was
extended to discrete channels with memory in [10]. Since these
results have not been proved for channels with memory that have
continuous inputs and outputs, we first show the achievability
of (1) for such channels and then apply this result to the timing
channel. The proof, though different from the proofs in [9] and
[10], is a simple extension of the proof of [11, Lemma 6.9].

Although rates possibly larger than (1) are achievable with
mismatched decoding ([12]–[14] and references therein),
achievability of a rate that is analogous to (1) is enough to show
the results in this paper.

This paper extends the parallelism found in [1] between
the exponential server timing channel and the discrete-time
additive white Gaussian noise channel with an input power
constraint. Consider the additive noise channel. Foruses of
the channel, each codeword is a point in having power
smaller than . It is well known that for any stationary,
ergodic, zero-mean noise process with variance, the rate

nats per channel use is achievable using
the minimum Euclidean distance criterion for decoding. A
version of this result is the direct part of [15, Theorem 1]. A
stronger version of the direct part when is given in [8].
The minimum Euclidean distance criterion for decoding is the
maximum-likelihood decoding when the noise is independent
and has the Gaussian distribution; the capacity in this case is

nats per channel use. The timing channel
counterparts of this result are Theorems 1 and 2 in Section II.
As in [1], the analogy is rooted in the fact that the exponential

distribution and the Gaussian distribution are similar mutual
information saddle points [16].

A similar result is known for a convex and compact family
of DMC’s. For an input distribution and a DMC , let

denote the mutual information. Let and
attain the saddle point of the mutual information functional, i.e.,

Suppose now that the channel is characterized by . Then
is achievable over the DMC using a maximum-

likelihood decoder for the DMC with stochastic matrix [17]
(see also [18, Sec. IV-B–4]).

The jammed timing channel is similar in spirit to the Gaussian
arbitrarily varying channel (Gaussian AVC) [8], [19], in which
a jammer changes the mean of the Gaussian noise subject to a
power constraint. Theorem 3 in Section II is related to results
in [19] for random codes in the Gaussian AVC. The capacity of
the Gaussian AVC, when the jammer knows the codebook, is
known [8]. We do not know if an analogous result holds on the
jammed timing channel, when the jammer knows the codebook.
In the discrete-time case, however, we can apply the “elimina-
tion” technique of [6] to get a nonrandom coding strategy if a
certain amount of information can be transmitted by the packet
contents. Only a negligible fraction of packet contents need be
used.

The rest of the paper is organized as follows. Section II
states the basic definitions and results. Section II-A covers
the mismatched decoding problems for the continuous-time
single-server queue. Section II-B studies the jammed timing
channel. Section II-C discusses the signaling channel, or the
timing channel with feedback. Section II-D describes the
discrete-time single-server queue. Section II-E shows the con-
verses for the exponential and the geometric server channels.
Section II-F collects several observations on our results. The
proofs are in Section III.

II. DEFINITIONS AND RESULTS

A. Continuous-Time Single-Server Queue

This subsection deals with mismatched decoding for the con-
tinuous-time single-server queue without feedback. The defi-
nitions of the relevant quantities are as in [1], but written in
our notation. Let and

. We assume that the following conditions hold.

• The queue is work-conserving, i.e., if a packet departs
after service and another one is in the queue, then the
server begins to serve the packet in the queue.

• The queue is initially empty, and the server follows a
first-in-first-out service discipline.

• The sequence of service times is a stationary
and ergodic process with mean seconds.

For each , the input to the queuing system is a vector
of nonnegative interarrival times, such

that the th arrival occurs at time . The
decoder observes , where , and

is the time between the st and the th departures,
.
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For each , the input alphabet is , and the output
alphabet is . The -algebras associated with the alpha-
bets are the product Borel-algebras. Let be a
Borel set and . A transition probability function[20,
p. 315], , from the input space to the output space, is
a mapping having the following
measurability properties: a) for each , the mapping

is a probability measure on the output
space and b) for each Borel set , the mapping

is measurable with respect to the input space. A
channelis a sequence (parameterized by) of transition proba-
bility functions from the input space to the output space.

Fix . Let be the service time of theth packet,
. The observable can be described as follows.

Let be the amount of time for which the server is idle be-
tween the st departure and theth arrival, i.e.,

(2)

Thus if the th arrival occurs before the st departure, the
idling time is . The interdeparture times are then given by

(3)

The stationary and ergodic process , (2) and (3)
induce the true channel , which is a sequence
of transition probability functions from the input space to the
output space.

Definition 1: An -codeconsists of a codebook
of codewords and a decoder. Each codeword is a vector of
nonnegative interarrival times . The decoder, after
observing the departures, selects the correct codeword with
probability greater than , under equiprobable codewords
and . The th departure occurs on the average (under
equiprobable codewords and ) no later than . The rate
of the code is . Rate is achievableif, for every

, there exists a sequence of -codes that
satisfies for all sufficiently large , and

.

We now describe the mismatch channel
according to which the decoder performs maximum-likelihood
decoding. Let a synchronizing zeroth packet be sent at and
interpret as the amount of unfinished work at , including
the service time of the zeroth packet (i.e., the time at which
the zeroth packet departs from the system). Let the number of
packets in the queue at have the equilibrium distribution
that is associated with an queue [21, pp. 48–49] having
input rate packets per second. The mismatch channel is
then the channel induced by the process that is
independent and exponentially distributed with mean sec-
onds. It will soon be clear that the decoding strategy does not
depend on the parameter.

Let denote the exponential density function
, having mean . The random variable

has the exponential density under [1],
for every . In contrast, under , for every

.
Let denote the Lebesgue measure (the argument will indi-

cate the appropriate space). Fix . Using (2) and (3), and
the density for exponentially distributed service times,
can be written as

(4)

for every , where

(5)

Let the distribution on the input space be given by

(6)

This is the distribution of the first arrivals induced by the
Poisson arrival process with rate. Let denote the
joint distribution under the input distribution (cf. (6)) and

(cf. (4)). The joint distribution can then be
written unambiguously as

(7)

due to Fubini’s Theorem [22, Theorem 18.3, p. 238]. Let
denote the marginal distribution of under

. Let denote the joint distribution under
which the random variables and are independent, and
have marginal distributions and , respectively.

As a consequence of (7), we have that

[23, Corollary 5.3.1, p. 112], and that . A version
of the Radon–Nikodym derivative
is the function given by

if
if

(8)

where

(9)

We can easily verify that

(10)

Clearly, the function (cf. (8)) satisfies

(11)

for every . The output of an system with
input rate is a Poisson process with rate (see, for
e.g., [21, Fact 2.8.2, p. 60]). Consequently, under , the



408 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

random vector is a vector of independent and ex-
ponentially distributed random variables with mean sec-
onds, i.e.,

(12)
We will use (10), (11) and (12) in the proof of our results.

We now describe the mismatched decoder. The decoder
makes a decision based on(cf. (8)) as follows. Let the code-
book be , where for .
The decoder maps the observed
interdeparture times to

if
if no such exists.

(13)

We interpret the output as an error in decoding.
From Lemma 2 in Section III, if and only if

, in which case . But
with zero probability under . When , which is
the case almost always, the decodertries to pick the unique
codeword that maximizes (cf. (5)). This is the same
as picking the unique codeword (among the compatible ones)
that minimizes the sum of service times, , or,
equivalently, maximizes the sum of idling times of the server,

. When the decoder cannot find such a unique code-
word, it declares, an error. The only functions required to make
this decision are additions, subtractions, and comparisons. Al-
though these functions are simple, must be evaluated
for every codeword before a decision is made. Since the number
of codewords is exponential in time, the number of operations
performed to decode is exponential in time.

Theorem 1: Let the queue be work-conserving and initially
empty. Let the server follow a first-in-first-out service discipline
with stationary and ergodic service times of mean seconds.
The rate nats per second is then achievable using the de-
coding rule in (13).

The result [1, Theorem 7] on the achievability of nats
per second for i.i.d. service times is a special case of Theorem 1.
To transmit reliably at nats per second on such a channel,
maximum-likelihood decoding is not required; the decoder
is sufficient. This decoder is therefore robust to the distribution
of service times. The decoder’s robustness, however, does not
imply that a single sequence of codes works for all stationary
and ergodic distributions of the service times. Furthermore, The-
orem 1 does not give rates at which the probability of error goes
to zero. The term “robust” should therefore be interpreted with
caution. We only argue that, knowing the true channel, a se-
quence of good codes with decoder and rate close to
nats per second can be selected.

Suppose that the codebook is such that for every codeword,
the last arrival occurs before . Then the decoder need
not observe departures beyond . This is because of the
following. Suppose that satisfies . Given any
candidate codeword, the server is not idle beyond, i.e., the
quantity that is required to make a decision, , can be
evaluated upon observation of departures in the time window

. Departures in therefore constitute a set of suffi-
cient statistics for determining the input codeword. This is not
surprising because of the memoryless property of exponential
service times.

Now suppose that the decoder observes only the departures
that occur in , where is known to the encoder. Clearly,
it is useless to have arrivals after time. This motivates the
following definition.

Definition 2: An -window-codeconsists of
a codebook of codewords and a decoder. Each codeword
is a vector of nonnegative interarrival times .
The th arrival of every codeword occurs before time.
The decoder, after observing departures in , selects
the correct codeword with probability greater than ,
under equiprobable codewords and . The rate of
the window-code is . Rate is achievable with
window-codesif, for every , there exists a sequence of

-window-codes that satisfies

for all sufficiently large , and .

Thus the term “window-code” refers to a code whose decoder
observes only those departures that occur in the window ;
the cost of transmission for the window-code isseconds. In
contrast, the code in Definition 1 has a decoder that observes
all the departures; the cost of transmission in that case is the
expected time of the th departure, i.e., the expected time the
decoder waits to gather the output data.

Theorem 2: Let the queue be work-conserving and initially
empty. Let the server follow a first-in-first-out service discipline
with stationary and ergodic service times of mean seconds.
The rate nats per second is then achievable with window-
codes using the decoding rule in (13).

B. Jammed Timing Channel—Random Codes

We now consider the jammed timing channel where the
server acts as an adversary. The queue is initially empty, and
the server follows a first-in-first-out service discipline. The
process of nominal service times is stationary
and ergodic with mean seconds. Fix . The server
(jammer) includes a delay of seconds to the service time of
the th packet, . We call
the state sequence, because it determines the state of the
channel. The resulting service time for theth packet is
seconds, . If no constraints are imposed on the
state sequence, communication in the timing channel can be
jammed completely at the expense of information throughput
in packet contents. We impose the following constraint. For a
code with packets, we allow only those state sequences that
satisfy

i.e., a total delay of at most seconds is allowed for all the
packets. Each state sequenceinduces a transition probability
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function from the input space to the output space, denoted by
. We need communication strategies that perform well

for every state sequencethat satisfies .
The problem of finding achievable rates for deterministic

codes, i.e., when the codebook is known to the jammer, appears
to be nontrivial. Instead of fixing a single good (deterministic)
codebook, we allow communication strategies with random
codes. The encoder chooses the codebook that is used for
transmission from a set of possible codebooks. The decoder
knows this selection. The jammer, however, is ignorant of
the selected codebook. Its partial knowledge is modeled by a
distribution on the set of codebooks. Such a code is usually
called in the AVC literature, somewhat deceptively, arandom
code.

Given a selected codebook, the decoder is (cf. (8) and
(13)). For the codebook, the average probability of error (over
equiprobable codewords) is denoted by
when the state sequence is.

Let be a random variable taking values in the family of all
codebooks that have codewords, and such that theth arrival
in each codeword occurs before. The parameters
of the random variable will be clear from the context. The fol-
lowing definition is an extension of window-codes and achiev-
ability with window-codes (Definition 2) for the jammed timing
channel.

Definition 3: An -random window-codecon-
sists of a probability distribution for , and a decoder that
depends on the codebook realization. Each realizationis a set
of codewords. Each codeword is a vector ofnonnegative
interarrival times. The th arrival of every codeword occurs
before time . The decoder, knowing the codebook realization
, makes a decision after observing departures in . The

average probability of error satisfies
for every with . Rate is achievable with
random window-codesif, for every , there exists a
sequence of -random window-codes that
satisfies for all sufficiently large , and

.

Theorem 3: On the jammed timing channel, the rate
nats per second is achievable with random

window-codes using the decoding rule in (13).

C. Signaling Channel

In a telephone signaling channel [1], the encoder knows ex-
actly when the packet is removed from service, i.e., complete
feedback is available. The encoder can make use of this infor-
mation to avoid queuing altogether, and the resulting channel is
a simple additive noise channel.

On this channel, the rate nats per second is clearly
achievable in the presence of complete feedback. Indeed, the
encoder can ignore feedback completely, and use a code sug-
gested by Theorem 1. Making use of feedback, however, leads
to another decoder that achieves nats per second. It will
be clear from the following definition that feedback is used only
to avoid queuing.

The sequence of service times is stationary and ergodic with
mean seconds. An -feedback codeconsists of

codebook of codewords and a decoder. Each message is an
-vector of positive real numbers. The first arrival

occurs at . The th component, , is the amount of
time the encoder will wait after the st departure, before
sending the th arrival, . The last packet exits on
the average before. The encoder thus makes use of feedback
to avoid queuing and to control completely the idling times of
the server. Feedback however is not used to choose the waiting
times . The rate of the feedback code is nats per
second. The decoder, after observing the interdeparture times

, makes the correct decision with probability
larger than when averaged over equiprobable codewords.

Rate is achievable with feedbackif, for every , there
exists a sequence of -feedback codes that sat-
isfies for all sufficiently large , and

.
The decoder chooses the codeword that explains the received

sequence of departures with the minimum sum of service times.
For a candidate codeword, , let

where

if
if

Given the codebook , the decoder maps to

if
if no such exists

(14)

where an output is interpreted as an error in decoding.

Theorem 4: Let the queue be work-conserving and initially
empty. Let the server follow a first-in-first-out service discipline
with stationary and ergodic service times of mean seconds.
The rate nats per second is then achievable with feedback
using the decoding rule in (14).

We remark that Theorem 4 is not implied by previous results
on mismatched decoding. In particular, we cannot apply [12,
Theorem 2] because it precludes input distributions with infinite
differential entropy. For the input distribution that we choose,
differential entropy does not exist. This input distribution is the
one that attains the mutual information saddle point [16, The-
orem 1].

D. Discrete-Time Single-Server

In this subsection, we describe the discrete-time single-server
queuing system [3], [4], and state the counterparts of Theorems
1, 2, and 3. The proofs are omitted because they are analogous
to the continuous-time case.

In the discrete-time model, arrivals and departures occur only
at integer-valued epochs, called slots. At most one packet ar-
rives and at most one packet departs in each slot. Unserved
packets are stored in a queue. The queue is work-conserving,
and the server follows a first-in-first-out service discipline. The
sequence of nominal service times is an -valued,
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stationary and ergodic process with mean slots,
Each packet requires at least one slot of service.

For each , the input is a vector of interar-
rival times, . The decoder observes

, where , and is the time
(in slots) between the st and the th departures,

. We set because and , i.e.,
the first slot does not give any information about the transmitted
message. The input alphabet is and the output alphabet is

. The -algebras associated with the alphabets are the
collection of all the corresponding subsets.

Fix . Given the sequence of service times
, the interdeparture times in

are

(15)

where

is the server’s idling time before serving theth packet. The
stationary and ergodic process and (15) induce
the true channel .

The definitions of -code, achievability,
-window-code and achievability with window-

codes are analogous to those in Definitions 1 and 2.
Fix . For the jammed timing channel (discrete time),

the state sequence satisfies the con-
straint

As in the continuous-time case, eachinduces a transition prob-
ability function from the input space to the output space.

The definitions of -random window-code and
achievability with random window-codes are analogous to those
in Definition 3.

We now describe the mismatch channel
based on which the decoder performs maximum-likelihood de-
coding. We say that a random variablehas the dis-
tribution, , if

Let a synchronizing zeroth packet be sent at and inter-
pret as the amount of unfinished work at , including
the service time of the zeroth packet. Let the number of packets
in the queue at have the equilibrium distribution that
is associated with the queue having -distributed ar-
rivals, , and -distributed ser-
vice times. This queuing system is the discrete-time counter-
part of the system. The mismatch channel is then the
channel induced by the process of independent and

-distributed service times. Fix . Using (15), we

see that the mismatch transition probability function is
the probability mass function (pmf) on given by

for every . Let the pmf on the input alphabet be

For , let

(16)

where

The function satisfies for every
; the expectation is with respect to . Given

a codebook with codewords, the decoder is the function
defined in (13) with as in (16).

Theorem 5: Let the discrete-time queue be work-conserving
and initially empty. Let the server follow a first-in-first-out
service discipline with stationary and ergodic nominal service
times of mean slots. The following statements then hold.

a) The rate nats per slot is
achievable using the (discrete-time) decoding rule in (13).

b) The rate nats per slot is
achievable with window-codes using the decoding rule in
(13).

c) On the jammed timing channel, the rate
nats per slot, where ,

is achievable with random window-codes using the de-
coding rule in (13).

On the discrete-time jammed timing channel, if each packet
carries a nonzero amount of information, we can apply theelim-
ination technique of [6] to get a nonrandom communication
strategy that has rate nats per slot.
The first step in this technique israndom code reduction[11,
Lemma 6.8], which we now describe.

Given a codebook and the decoder , let
be the probability of error when the state sequence is

and the transmitted message is, where . In the rest
of this subsection, let the definition of -random
window-code be analogous to that in Definition 3 with the
condition on the average probability of error replaced by

i.e., a condition on the maximum probability of error.
We can easily modify the proof to show the following exten-

sion to Theorem 5 c). On the jammed timing channel, for every
, there exists a sequence of -random

window-codes that satisfies

i)

for all sufficiently large ;
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ii)

for every , and
iii) .
Now suppose that the error probabilities need not vanish.

Fix . On the discrete-time channel, the cardinality of
is upper-bounded by . We

can therefore apply random code reduction [11, Lemma 6.8] to
get the following. Given and , for all sufficiently
large , we can find a set of codebooks ,
where each codebook has parameters , the set of
codebooks satisfies

(17)

and

If each packet carries nats of information, ,
then we can employ the elimination technique of [6] as fol-
lows. Fix . Let the set of equiprobable messages be

. Given a message from
this set, choose the codebook. Transmit on the jammed
timing channel using codebook. Convey the codebook index

to the receiver using the first nats (of the nats)
of packet contents. We thus use only a negligible fraction,

, of the packet contents. Theaverageproba-
bility of error over equiprobable codewords is smaller than
for this (nonrandom) communication strategy because of (17).

E. Converses

In this subsection we state converse results for the contin-
uous-time (resp., discrete-time) queue with independent and
exponentially (resp., geometrically) distributed service times.
Converses to Theorems 1, 4, and 5 a) were shown in [1] and [3].

Theorem 6: For the continuous-time system, let the queue be
work-conserving and initially empty. Furthermore, let the nom-
inal service times be independent and exponentially distributed
with mean seconds.

a) The largest rate achievable with window-codes is
nats per second.

b) On the jammed timing channel, the largest rate achievable
with random window-codes is nats
per second.

Similarly, for the discrete-time system, let the nominal service
times be independent and -distributed with mean

slots.

c) The largest rate achievable with window-codes is
nats per slot.

d) On the jammed timing channel, the largest rate achievable
with random window-codes is
nats per slot, where .

Proofs of a) and b) are in Section III. The key idea in the proof
of a) is to map any window-code on the timing channel to an

equivalent strategy with complete feedback on the point-process
channel. We now prove c). We omit the proof of d) because it is
analogous to the proof of b).

Proof of c): The service times are independent and have
the distribution. The key idea here is to map any
window-code on the timing channel to a strategy with complete
feedback on a binary memoryless channel.

Fix . Suppose that the codebook is designed to
transmit messages. Each message maps to a codeword

of interarrival times that satisfies

The decoder observes departures until slot. Let denote
the indicator function of an event. Let the output be the binary-
valued vector given by

Departure in slot (18)

Clearly, because and each packet requires at
least one slot of service.

Fix a codeword . Let be the
cumulative arrival process;

denotes the number of arrivals in the firstslots. Analogously,
the cumulative departure process is , where

is the number of departures in the firstslots,
. The number of packets that remain in the system

at the end of the th slot is .
If , the queue is empty at the end of theth slot,

and hence no packet exits in the st slot. If ,
a packet is served in the st slot. Using the memoryless
property of geometric service times, this packet departs in the

st slot with probability , or stays in the system with
probability , independent of the past.

The timing channel therefore behaves like a binary memory-
less Z-channel, , with and . The in-
puts to the Z-channel are , and ,

. The output sequence is given
by (18).

Any window-code on the timing channel is therefore equiva-
lent to the above strategy with complete feedback on the mem-
oryless Z-channel. Complete feedback is necessary because the

st input, , depends on the past departures (outputs)
through .

The capacity of the timing channel (for window-codes) is
therefore upper-bounded by the capacity of the memoryless
Z-channel with complete feedback. Feedback does not increase
the capacity of the memoryless Z-channel; the upper bound is,
therefore,

This completes the proof.
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We can, in fact, say more about the converse. For window-
codes with rate above

nats per slot, the probability of error goes to. This follows from
the strong converse for DMC’s with feedback [11 p. 2.5.16(c)].

F. Discussion

Theorems 1 and 2 show that the exponential server channel’s
maximum-likelihood decoder (cf. (8) and (13)) is a robust
decoder. Suppose that the service times are stationary and er-
godic with mean seconds. When the cost of transmission
is the expected departure time of the last packet, the rate
nats per second isachievableusing the decoder (Theorem
1). A window-codeis one where the decoder makes a decision
based on departures in a certain time window, and all arrivals
fall within this time window. The decoder does not have
to look beyond the time window to make a decision. The rate

nats per second isachievable with window-codesusing
the decoder (Theorem 2). Furthermore, when the service
times are independent and exponentially distributed, this rate is
the largest achievable with window-codes (Theorem 6 a)]. We
prove this result by mapping any window-code on the timing
channel to an equivalent strategy with complete feedback on the
point-process channel. Using feedback on the timing channel to
avoid queuing, the rate nats per second isachievable with
feedbackusing the decoder (Theorem 4). The mutual infor-
mation saddle-point inequality plays a crucial role in the proof
of our achievability results under mismatch.

On the jammed timing channel, the jammer (server) includes
an arbitrary amount of delay to the service time of each packet.
This is done to diminish the transmission capabilities of the
timing channel. The total delay for all thepackets cannot ex-
ceed seconds. The nominal service times are stationary
and ergodic with mean seconds. Let

. The rate nats per second isachievable with random
window-codesusing the decoder (Theorem 3). Furthermore,
when the service times are independent and exponentially dis-
tributed, nats per second is the largest rate achievable with
random window-codes (Theorem 6 b)).

Analogous results hold for the discrete-time single-server
queuing system (Theorems 5 and 6 c), d)). Furthermore, if
each packet carries a nonzero amount of information, there is
a nonrandom communication strategy to transmit information
reliably on the jammed timing channel (cf. discussion following
Theorem 5). This strategy uses only a negligible fraction of
packet contents. We do not know if a similar result holds for
the continuous-time system. Suppose that the jammer is now
aware of the codebook in use, and there is no side channel
available. We do not know the (deterministic-code) capacity of
such a jammed timing channel.

We conclude this section with the following observation. We
can map any window-code on the timing channel to an equiv-
alent strategy with complete feedback on the point-process
channel (binary memoryless Z-channel in the discrete-time
case). Theorem 2 (resp., Theorem 5 b)) therefore gives us an
alternative capacity achieving strategy with complete feedback

on the point-process channel (resp., Z-channel). Furthermore,
it is well known that the capacities of the point-process channel
and the discrete memoryless channel do not increase with
feedback. This fact gives a simple explanation of why the
capacity of the exponential server (resp., geometric server)
channel does not increase with feedback.

III. PROOFS

In this section we prove Theorems 1–4 and 6 a) and b). We
begin with a simple extension of [11, Lemma 6.9]. We provide
the proof because of some minor variations in the statement of
the lemma and its applicability to standard measurable spaces.
A standard measurable spaceis a measurable space that
is isomorphic to , where is a Borel subset of and

is the Borel -algebra on .
Let and be two standard measurable spaces.

Let be a transition probability function from to
. Let be a probability measure on . and

induce a joint probability measure [22, P. 18.25 (b),
p. 247], and a marginal probability measure [22, P. 18.25 (d),
p. 247], on the appropriate spaces.

Let be a codebook of codewords,
for . Let be a measurable

function that represents the constraint on the inputs. For a fixed
, we require that for every . Fix a set

. Let be a measurable function. Let
denote the mapping

if and
if or if no such exists in

In other words, when , the decoder looks for a unique
codeword that maximizes . Given a codebook, the en-
coder and the decoder are thus fixed. An error occurs whenever
the decoder declares a symbol that is different from the trans-
mitted symbol. Let denote the probability
of error when the codebook is and the transmitted message
is .

Lemma 1: Let and be standard alphabet
spaces. Let and . Let be a probability
measure on that satisfies

(19)

Let be a measurable function that satisfies

(20)

for every . Let . There exists a random variable
that takes values in the set of codebooks withcodewords

of block length , such that for any realizationof this random
variable, for every . Furthermore, for every

, every
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Proof: Let

and

From (19), . Let be the restriction of
to . Let be the probability measure on
given by

(21)

Fix . Each codebook is an -tuple of elements from
. Let the codebook random variable

have the product distribution

(22)

on , where is the product Borel -algebra on
. Each codeword is therefore drawn independently from

according to . Clearly, for any realization of the codebook
random variable, for every .

Consider an auxiliary threshold decoder that declaresas the
transmitted message only if, for the received , is the
only codeword that satisfies . Otherwise, this aux-
iliary decoder declares, an error. Whenever this auxiliary de-
coder declares a nonzero symbol, it agrees with the output of the
decoder . The auxiliary decoder therefore performs worse
than .

The error probability given that messageis transmitted, av-
eraged over the random selection of the codebook, is the same
for all . We therefore assume without loss of
generality that the message is transmitted. For a fixed
codebook , we are interested in the probability of
error when is transmitted. The error event depends on the
entire codebook. Let . It can be verified that the map-
ping defined by is a tran-
sition probability function from to . It rep-
resents the probability of an eventgiven that the codebook is

and is transmitted.
For any set that is measurable relative to the

product -algebra on , let

(23)

i.e., probability of the event given that message is
transmitted, averaged over the random selection of codebooks.

If the auxiliary decoder makes an error, then one of the fol-
lowing events should have occurred:

i) ;
ii) , for some ; or
iii) .

It is therefore sufficient to upper-bound the probabilities of these
events.

Using (19), (21)–(23), we can upper-bound the probability of
event i) by

To upper-bound the probability of event ii), observe that

for some

In the above chain of inequalities, follows from the union
bound for probabilities, from (22) and (23), from (19) and
(21), from Fubini’s theorem and [22, P. 18.25 (d), p. 247],

from the fact , and from
Fubini’s theorem and (20).

Under maximum-likelihood decoding,

step would then be unnecessary, and the last equality would
follow immediately after . Under mismatched decoding, (20)
is sufficient to obtain the last equality.

The probability of event iii) is upper-bounded by

This completes the proof of the lemma.

Fix . We apply Lemma 1 to the timing channel with
and . Let play the role of . Let

. Fix . Let be as defined in (6).
is the transition probability function from the input

space to the output space that is induced by a stationary and
ergodic process of service times, and (2) and (3). Let
denote the joint distribution under and . Let
denote the marginal of under .

Fix . A codebook is an -tuple of elements from
. Let the function that denotes the input constraint in

Lemma 1 be
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where . We require that for
every in the codebook. By the weak law of large numbers for
i.i.d. random variables, we have that for every

(24)

for all sufficiently large .
The function in (8) satisfies for every

. We deal with two decoders. The decision setfor
the decoder will be either

or . When , the entire output set, we denote the
corresponding decoder by after omitting the subscript .

Corollary 1: Fix and . Fix so that
. There exists a random variable

that takes values in the set of codebooks withcodewords,
such that for any realizationof this random variable,

for every . Furthermore, for every

a)

and with

b)

Proof: The corollary follows from Lemma 1 after aver-
aging the probability of error over the equiprobable code-
words.

Since the function depends on the quantity (cf. (9)), we
need the following lemma to evaluate

Lemma 2: Let . For , the function
satisfies if and only if .

Proof: Fix so that and
. Let

Fix . Then and
. These two conditions and (5) imply

that , where

Observe that . Moreover, for any

where

Furthermore,

After substitution of these quantities in (9), we get

Conversely, if , then either or ,
and thus

This completes the proof of the lemma.

We now show that under a mild condition on the process of
service times the quantity goes to
zero as if is chosen judiciously.

Lemma 3: Let the process of service times (not
necessarily stationary or ergodic) satisfy for every , the
condition

(25)

Then for every

(26)
Proof: Observe that under for every

Let

and

for every

i.e., the set of all pairs such that is a possible se-
quence of interdeparture times (with ) when the se-
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quence of interarrival times is . From (2) and (3), we have
. We therefore have from (8) that

(27)

From Lemma 2, (2), and (3), we have that

and, therefore,

We now upper-bound the term in (27). Let and
. From (10) and (12) we can write

where the function is the conditional density of given
under . Using (5), we get

(28)

where [1, Lemma 3] is the normalized infor-
mation density of the relevant quantities, under . Observe
that

and that

the sum of service times [3] (cf. (3)). Using these facts and (28),
we get that

Using the above inclusions, the term in (27) is upper-bounded
by

(29)

where the last term follows after a change of variables. As
for every , the first term in

(29) goes to by [1, Lemma 3]. In fact, from the proof of [1,
Lemma 3], this term equals for all sufficiently large . The
second term in (29) goes toby the weak law of large numbers
for i.i.d. random variables. The third term in (29) goes toby
the assumption of the lemma.

We are now ready to prove Theorems 2 and 3.

Proof of Theorem 2:Let the assumptions preceding Corol-
lary 1 hold. Fix arbitrary . Let .
We now apply Corollary 1 a). Since the process is
stationary and ergodic, it satisfies (25) by the ergodic theorem
(see for example, [21, Theorem 7.3.3, pp. 236–237], and, there-
fore, (26) holds by Lemma 3. Choosing so that

ensures that . We can, therefore,
find a sequence , such that

for every , and .
Consequently, for each , there is a codebook realiza-

tion that satisfies

Furthermore, every codeword satisfies
. The decoder observes only those departures that occur

in the time window . We therefore have a sequence of
-window-codes that satisfies

for every , and . Setting and
, we get
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for every . This means that the rate nats per second
is achievable with window-codes (becausewas arbitrary).

Proof of Theorem 3:Fix arbitrary . The process
of nominal service times is stationary and ergodic.

Consider and satisfying . Let
be the corresponding transition probability function. Set

. Since , for every , we
can write

(30)
With in place of in the proof of Lemma 3, and
by using (30), we obtain

(31)

Observe that and depend in general on the
state sequence. For sufficiently large , however, the term

does not depend onbecause
of the following. Indeed, for every, . In this
case, we can extend the proof of [1, Lemma 1] to get

for every . The quantity , which
can be taken as , is independent of .
Furthermore, for a fixed , the two remaining terms in (31) do
not depend on if ; they go to as .

Choose and the sequence as in the
proof of Theorem 2. From Corollary 1 a), we can find a sequence

, such that for all sufficiently large

for every with , and . We have
therefore obtained a sequence of -random
window-codes. The sequence also satisfies

for every .

Proving Theorem 1 requires more work. We need to find an
upper bound on the expected time of departure of theth packet.
We first prove the following lemma.

Lemma 4: Let the single-server queue be work-conserving
and initially empty. Let the server follow a first-in-first-out

service discipline with stationary and ergodic service times
of mean seconds. Let the queue be driven by a Poisson
process of rate . Then

in probability.
Proof: Let be the process of independent

and exponentially distributed interarrival times, and
the stationary and ergodic process of service times. Let
denote the probability of an event with respect to the joint

process. Let be the waiting time of the th packet. Observe
that

(32)

Since , we have that for any

as . On the other hand, using (32) and the union bound
for probabilities, we get

(33)

The last two terms on the right side of (33) go toas .
We now upper-bound the first term in (33).

It can be shown that is a stationary and
ergodic process. converges in distribution to a finite random
variable that satisfies because [21,
Theorem 7.4.5, p. 241]. Observe that

if is a point of continuity of the cumulative distribution func-
tion (cdf) of . A cdf can have only a countable number of dis-
continuities. Fix arbitrary . Choose large
enough so that and is a point of continuity
of the cdf of . Then, for all sufficiently large

This proves the lemma.
Proof of Theorem 1:Let the assumptions preceding Corol-

lary 1 hold. Fix . Let

and . Let
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Consider the decoder . Clearly, this decoder cannot out-
perform . The process is stationary and ergodic
with mean seconds; it therefore satisfies (25), and thus (26)
holds by Lemma 3. Choosing so that

ensures that

Since for every and
, we can apply Lemma 4 to get

From Corollary 1 b), we can find a sequence , such
that

for every , and .
Fix . We can find a codebook such that

Furthermore, every codeword satisfies
. By removing the worst codewords, rela-

beling the remaining codewords fromthrough , and
denoting the resulting codebook as , we get

for . In particular, this implies that

(34)

for every . The next lemma shows that the expected
time of the th departure given each codeword is smaller than

for all sufficiently large .

Lemma 5: Fix . Let
satisfy . Let be a sequence of
codebooks that satisfies for each , the condition (34) and
the condition for every . Then for
all sufficiently large

for every .
Proof: Fix a so that . Let

Let denote the complement of the set, and the in-
dicator function of . From (34), for
every .

Let be the service time of theth packet. For a , let

For every , every , we have

(35)

Observe that is independent of and of be-
cause the process is stationary and independent of
the arrivals. Furthermore,

Using the monotone convergence theorem, we can choose a
large enough so that . Pick large enough so
that . Using (35), we therefore have
that for all sufficiently large

Since for every , we get

Since we can assume

under , it follows that

Therefore, for every

This completes the proof of the lemma.

Continuing with the proof of Theorem 1, for all sufficiently
large , the expected time of theth departure is not greater
than (cf. Lemma 5). We therefore have a sequence of

-codes that satisfies

for all sufficiently large , and . This proves
that the rate nats/s is achievable.

Proof of Theorem 4:Fix . Consider
an . We apply Lemma 1 with . Ob-
serve that , . Let denote
the transition probability function from the input space to the
output space. Choose as in the proof of Theorem 2. Let
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. We require that
for every codeword . Since the mean service time is sec-
onds, it follows that the expected time of theth departure is
not greater than .

Let be the mixture of a point mass and an exponential
distribution given by

Note that is the input distribution that attains the mutual in-
formation saddle point [1, Theorem 3], [16, Theorem 1]. Let

be the distribution under which is a
vector of i.i.d. random variables with distribution . Observe
that if the service times are independent and exponentially dis-
tributed with mean secomds, then the outputs are indepen-
dent and exponentially distributed with mean seconds. Let

(36)

This function satisfies for every .
Let . Observe that the decoder (cf. (13)) with as
in (36) is the same as the decoder(cf. (14)).

Let be the joint distribution under and .
We only need to consider that satisfy

, . For such an ,

From this and the stationarity and ergodicity of
we get

The rest of the proof is similar to that of Theorem 2.

Proof of Theorem 6 a):Fix . There are mes-
sages. Each message corresponds to a sequence of interarrival
times; the th arrival occurs before time . This sequence
maps to a (right-continuous with left limits) point process of
arrivals . is the number of arrivals in

. Analogously, the observed departures form
a (right-continuous with left limits) point process

, where is the number of departures in
. Let

For , let . For , fix an increasing se-
quence of rational numbers such that and let

The quantity represents the number of packets that
remain in the system at time , i.e., just prior to . Clearly

is -measurable for every and
is a left-continuous process. Let

Observe that is -measurable for every
and that is a left-continuous

process; it is therefore apredictableprocess [24, Definition 3,
p. 173].

Fix arbitrary . If , there is no
packet in the system at time , and therefore no packet can
depart at time; the intensity of the point process of departures
is at time . If , there is at least one packet in
the system at time . Due to the memoryless property of expo-
nential service times, the residual time for the next departure is
exponentially distributed with mean seconds, independent
of the past. In other words, when , the intensity
of the point process of departures also takes the valueat time
. The process of departures is therefore a point process with in-

tensity .
Any window-code on the timing channel is therefore equiva-

lent to the above strategy with complete feedback on the point-
process channel with maximum intensityand no background
intensity. Complete information about the past departures is nec-
essary to determine the intensity of the departures at time.
The capacity of the timing channel (for window-codes) is there-
fore upper-bounded by the capacity of the point-process channel
with complete feedback. From the corollary to [25, Theorem
19.10, pp. 318–320] and the proofs of converse in [2] and [26],
this upper bound is nats per second.

Proof of Theorem 6 b):The process of nom-
inal service times is a sequence of independent and exponen-
tially distributed random variables with mean seconds. Let

. Let . Suppose that there were
a sequence of -random window-codes that sat-
isfies for some , for all suffi-
ciently large , and . Then, for some and

(37)

Choose so that and ,
where

Let be the distribution given by

Note that has mean seconds. Further-
more, if is independent of and exponentially distributed
with mean seconds, then is exponentially distributed
with mean seconds.
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Let be a vector of i.i.d. random variables
with common distribution , independent of the codebook dis-
tribution and the nominal service times. We then have

where follows from (37). Let

From the weak law of large numbers, we get be-
cause . Observe that is also
the expected probability of error (expectation over the codebook
distribution) for the exponential server channel with mean ser-
vice time seconds. We can therefore find for this channel
a sequence of -window-codes with

for all sufficiently large , and . Since
nats per seconds is the largest rate achievable with window-
codes, we reach a contradiction.
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