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Abstract—To transmit information by timing arrivalsto asingle-  tractions, and comparisons. Since the exponential server has the
server queue, we consider using the exponential server channel's|east capacity, and its maximum-likelihood decoder uses simple
maximume-likelihood decoder. For any server with service times functions, we consider using this decoding strategy when the

that are stationary and ergodic with mean1/u seconds, we show . . . S ,
that the rate e~y nats per second (capacity of the exponential SETVICe times are not exponentially distributed. In this case, al-

server timing channel) is achievable using this decoder. We show though the above decoder is suboptimal, its simplicity and gen-
that a similar result holds for the timing channel with feedback. eral applicability are appealing.

We also show that if the server jams communication by adding an  |n this paper, we show that we can communicate reliably at
arbitrary amount of time to the nominal service time, then the rate a ratee—lu nats per second using the above decoding strategy

e 'uipa /(1 + p2) nats per second is achievable with random N o :
codes, where the nominal service times are stationary and ergodic when the distribution of service times, known to the encoder, is

with mean 1/p, seconds, and the arithmetic mean of the delays Stationary and ergodic with medyi;: seconds. In other words,
added by the server does not exceeld/ 11, seconds. Thisis a model the decoder need not know the true distribution of the service
of an arbitrarily varying channel where the current delay and the  times to achieve ! nats per second.
current input can affect future outputs. We also show the counter- - congider the following definition of the cost of transmission.
part of these results for single-server discrete-time queues. .
o _ _ Suppose that the decoder has to make decisions based only on
Index Terms—Arbitrarily varying channel, channels with  departures that occur within a certain time window. If the cost
feedback, mismatched decoder, point-process channel, robustg yransmission is the length of the time window of observa-
decoding, single-server queue, timing channels. . . .
tion, then we show that we can communicate reliably &t
nats per second. The service times are stationary and ergodic
|. INTRODUCTION with mean1/p seconds. Under this new definition of the cost
of transmission, we also show that';: nats per second is the
largest rate achievable on the exponential server channel. We
ggp this by mapping any strategy on the timing channel to an
gquivalent strategy with complete feedback on the point-process

ONSIDER the problem of transmitting informa-
tion through the epochs at which packets arrive at
single-server queue [1]. All packets are identical and inform
tion is contained only in the times of arrival of these packet
The service times cause delays that corrupt the input inforrﬁ%l"’“fmel [2]'. .
tion. If the service times are independent and exponentiall Dlscrete_-Ume queues were studied in [3] a_nd [4]. The max-
distributed with mean /.« seconds, the capacity of this Channé{%um-llkehhood decoder for the server with independent and

is ¢—; nats per second when the cost of transmission gg:_ometncally distributed service times is simple. We argue that

the expected time for the last packet to exit the system [ .smgh_thls glecoger, :L]e g??a}g'?{ of tr}e geqmetmc se.rvetr ct:_hannel
Furthermore, if the service times are independent and idedg acnievable when the distribution of sérvice imes 1S stationary

cally distributed (i.i.d.) with mear/; seconds, but are notand ergodic with meai/; slots. If the cost of transmission is

exponentially distributed, then we can communicate reliably %t&e length of the observation window, then we show the con-

a ratec'y nats per second [1]. Thus among all servers withe ' >¢ for the geometrl_c server channel by mapping any commu-
ication strategy on this timing channel to an equivalent strategy

i.i.d. service times of meaty/;: seconds, the exponential serve™ lete feedback bi | h I
has the least capacity. These results in [1] assume that both'fig) COMPIEle Teedback on a binary memaryless channet.

encoder and the decoder know the distribution of the service !m|ng mformathn can b.e trgnsmnted covertly by trans-
times. mitting innocuous information in the contents of packets,

When the service times are independent and exponentié’ﬁ ich may be subject to eavesdropping. Since service times

distributed, the corresponding maximume-likelihood decoder §&"UPt information encoded in the arrival epochs of packets,

easy toimplement. Given the sequence of times at which pack\é{fs consider the followingamming strategyemployed by the

depart from the queue, the decoder finds the codeword that agrver to hamper covert communication. Every packet suffers

plains the sequence of departures with the smallest sum of Saep_elay (_ext_ra seryice time) in add_itiorj to the nominal service

vice times. To do this, the decoder needs only additions, sq ne (whichis statmna_ry and _ergodlc with mebf _sec_ond_s).
these delays are without limits, then communication in the

timing channel can be jammed completely at the expense

Manuscript received July 28, 1998; revised June 18, 1999. This work was s¢- information throughput in packet contents. We. therefore
ported in part by the National Science Foundation under Grant NCR-9523805 . h h ith . f th del ! b I '
002. The material in this paper was presented in part at the 1998 InternatiorfzfUIre that the arithmetic mean of these delays be smaller

Symposium on Information Theory, Cambridge, MA, August 1998. than1/u. seconds. We call the resulting channel jaemed
The authors are with the Department of Electrical Engineering, Princetﬁming channelThis channel is similar to the arbitrarily varying

University, Princeton, NJ 08544 USA. . . . T .
Communicated by I. Csiszar, Associate Editor for Shannon Theory. channel (AVC) introduced in [5]. An important distinction
Publisher Item Identifier S 0018-9448(00)01360-2. between the jammed timing channel and the memoryless AVC

0018-9448/00$10.00 © 2000 IEEE



406 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

([5]-[8] and references therein) is that in the jammed timindistribution and the Gaussian distribution are similar mutual
channel current input and delay can affect future outputs.  information saddle points [16].

We prove an achievability result in the situation where the A similar result is known for a convex and compact family
jammer does not know the true codebook in use, but knows olyof DMC's. For an input distribution” and a DMCW, let
adistribution from which the codebook is selected. In particulaf{ 2, W) denote the mutual information. L&* andW™* € ©
the ratec ™1 11 12/ (111 + 112) Nats per second is achievable withattain the saddle point of the mutual information functional, i.e.,
random codes on the jammed timing channel. When the nominal
service times are independent and exponentially distributed, weiax min I(P, W) = min max [(P, W) = I(P", W™).
argue that the rate™! i1 p1o /(11 + p2) nats per second is also
the largest achievable with random codes, giving us a reducti®appose now that the channel is characterizeddbg ©. Then
in capacity by a factopis /(1 + p12). I(P*, W*) is achievable over the DM@ using a maximum-

We now briefly survey previous works relevant to our studyikelihood decoder for the DMC with stochastic matix* [17]

The use of the exponential server’s maximume-likelihood désee also [18, Sec. IV-B-4]).

coder when the service times are not exponentially distributedThe jammed timing channel is similar in spirit to the Gaussian

is an instance of decoder mismatch. In the context of discretebitrarily varying channel (Gaussian AVC) [8], [19], in which
memoryless channels (DMC), suppose that the communicatefammer changes the mean of the Gaussian noise subject to a
system operates under a channel with transition probabilipgpwer constraint. Theorem 3 in Section Il is related to results
matrix W(-|-). The decoder performs maximum-likelihoodn [19] for random codes in the Gaussian AVC. The capacity of
decoding assuming that the DMC is characterizedVify|-), the Gaussian AVC, when the jammer knows the codebook, is
i.e., for a received sequengé, it chooses the codeword* known [8]. We do not know if an analogous result holds on the
that maximizesV’ (y"|z™), wheren is the number of uses of jammed timing channel, when the jammer knows the codebook.
the channel. Reference [9] showed that using the mismatcHedhe discrete-time case, however, we can apply the “elimina-

decoder, we can communicate reliably at a rate tion” technique of [6] to get a nonrandom coding strategy if a
certain amount of information can be transmitted by the packet
B {1 V(y|X)} ) contents. Only a negligible fraction of packet contents need be
sup 0g ———
Px Qv (Y) used.

The rest of the paper is organized as follows. Section Il
whereQy is the marginal distribution of the output under thétates the basic definitions and results. Section II-A covers
mismatch channdl” and the input distributio®y . The expec- the mismatched decoding problems for the continuous-time
tation in (1) is with respect to the joint distribution under th&ingle-server queue. Section II-B studies the jammed timing
true channel¥ and the input distributiod”x . This result was channel. Section II-C discusses the signaling channel, or the
extended to discrete channels with memory in [10]. Since the#®ing channel with feedback. Section 1I-D describes the
results have not been proved for channels with memory that h&ligcrete-time single-server queue. Section II-E shows the con-
continuous inputs and outputs, we first show the achievabiliggrses for the exponential and the geometric server channels.
of (1) for such channels and then apply this result to the timirgction II-F collects several observations on our results. The
channel. The proof, though different from the proofs in [9] anBroofs are in Section IIl.

[10], is a simple extension of the proof of [11, Lemma 6.9].
Although rates possibly larger than (1) are achievable with Il. DEFINITIONS AND RESULTS
mismatched decoding ([12]-[14] and references thereiny, continuous-Time Single-Server Queue

achievability of a rate that is analogous to (1) is enough to show__ ) , . )
the results in this paper. This subsection deals with mismatched decoding for the con-

This paper extends the parallelism found in [1] betweéip_uous-time single-server queue Without_ feedback. T_he d_efi-
the exponential server timing channel and the discrete-tifAlions of the relevant quantities are as in [1], but written in
additive white Gaussian noise channel with an input pow@Hr notation. LetR., = [0, 00), 24 = {0,1,---} andV =
constraint. Consider the additive noise channel. Faises of 11+ 2 ==~} We assume that the following conditions hold.

the channel, each codeword is a point/® having power ¢ The queue is work-conserving, i.e., if a packet departs
smaller thannP. It is well known that for any stationary, after service and another one is in the queue, then the
ergodic, zero-mean noise process with varianée the rate server begins to serve the packet in the queue.

(1/2) log[1 + P/0?] nats per channel use is achievable using * The queue is initially empty, and the server follows a
the minimum Euclidean distance criterion for decoding. A first-in-first-out service discipline.

version of this result is the direct part of [15, Theorem 1]. A * The sequenceSy: k € ) of service times is a stationary
stronger version of the direct part wheh < P is given in [8]. and ergodic process with meayi: seconds.

The minimum Euclidean distance criterion for decoding is the For eachn € V, the input to the queuing system is a vector
maximum-likelihood decoding when the noise is independen® = (z1, ---, ) Of n nonnegative interarrival times, such
and has the Gaussian distribution; the capacity in this casdhat thekth arrival occurs at tim{jff:1 zi, k=1,---,n.The
(1/2) log [1 + P/o?] nats per channel use. The timing channelecoder observes® = (vo, ¥1, -, ¥n ), Wherey, = 0, and
counterparts of this result are Theorems 1 and 2 in Section4}, is the time between thé — 1)st and thekth departures,

As in [1], the analogy is rooted in the fact that the exponenti&l = 1, ---, n.
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For eachn. € N/, the input alphabet i®R”}, and the output Yj has the exponential density,_x (uo) underQy-x» [1],
alphabet isRi“. The o-algebras associated with the alphafor everyn € V. In contrast,Y, = 0 under Py« x~, for every
bets are the product Borel-algebras. LetE C R’}fl bea neN.

Borel set and:™ € R}. A transition probability functior{20, Let = denote the Lebesgue measure (the argument will indi-
p. 315], Py« x+, from the input space to the output space, isate the appropriate space). kixe A. Using (2) and (3), and

a mapping(z", E) — Py~ x=(E|2z™) having the following the density for exponentially distributed service tim@s;.| x~
measurability properties: a) for eaeft € R’;, the mapping can be written as

E — Py.x(E|z™) is a probability measure on the output

space and b) for each Borel s8tc R':+*, the mapping:™ — dQyn xn (y"|2") = dm(y"™ )p(z", y") 4)

Py x»(E|2™) is measurable with respect to the input space. A . .
channelis a sequence (parameterizediyof transition proba- 10F veryz™ € Ri, where

bility functions from the input space to the output space. n

Fix n € N. Let s, be the service time of thith packet, p(z", y™) EN eu—x (10) H eu(yr — w), XN <pu (5
k=1, .-, n. The observablg™ can be described as follows. Ee1
Let w;, be the amount of time for which the server is idle be- o . .
tween the(k — 1)st departure and theth arrival, i.e., Let the distributionPx~ on the input space be given by

dPxn (") =dr(z™) [] ex(z), X <p  (6)
k=1

k k-1
wk:max{O,Za:i—Zyi}, k=1,---,n. (2
=1 =0

This is the distribution of the first arrivals induced by the
Poisson arrival process with raté. Let Qx~ y~ denote the
)joint distribution under the input distributiaRx - (cf. (6)) and

Qy»x» (cf. (4)). The joint distributionQx~ y~ can then be
written unambiguously as

y —{0’ £=0, @)
Yk — n n n n n n
Ak, k=1n dQxn yn (2", y") = dPxn (") dr(y")p(z", y")  (7)

The stationary and ergodic procéss. : k € A), (2) and (3) due to Fubini's Theorem [22, Theorem 18.3, p. 238]. OQst-
induce the true chann(aPyn|Xn: n e /\/) , Which is a sequence denote the marginal distribution &f* = (Yo, ---, ¥,,) under
of transition probability functions from the input space to th€) . . Let Px» x Qy~ denote the joint distribution under
output space. which the random variableX™ andY™ are independent, and
have marginal distributionBx~ andQy-, respectively.

As a consequence of (7), we have that

Thus if thekth arrival occurs before thig: — 1)st departure, the
idling time wy, is 0. The interdeparture times are then given b

Definition 1: An (n, M, T, €)-codeconsists of a codebook
of M codewords and a decoder. Each codeword is a vector of
nonnegative interarrival timds:, - --, «,,). The decoder, after
observing then departures, selects the correct codeword with

probability greater thai — =, under equiprobable codewordng, Corollary 5.3.1, p. 112], and th@}y» < my+. A version

and Py y«. Thenth departure occurs on the average (Uundejf the Radon—Nikodym derivativéQ x y+ /d(Px» x Qy)
equiprobable codewords ai-| ) no later thari”. The rate s the functionf given by

of the code is(log M)/T. Rate R is achievableif, for every
~ > 0, there exists a sequence(ef, M,,, T,,, ¢, )-codes that Flam o) = {p(a:", ) /m(y), if m(y™) >0 ®)

QX”,Y” < PXn X Qyn

satisfieqlog M,,)/T,, > R — ~ for all sufficiently largen, and 1, if m(y") =20

lim,, o €, = 0.
where

We now describe the mismatch chan(@ly-»|x-: n € N)
according to which the decoder performs maximum-likelihood m(y™) a dPxn (z™)p(z", y™), y" € Ri"’l, 9)
decoding. Let a synchronizing zeroth packet be semta6 and R%
interpretyy as the amount of unfinished workzat 0, including . .
the service time of the zeroth packet (i.e., the time at whicWe can easily verify that
the zeroth packet departs from the system). Let the number of ny _ n n
packets in the queue at= 0 have the equilibrium distribution Qv (y") = dmly")m(y"). (10)
thatis associated with af /M /1 queue [21, pp. 48—-49] having Clearly, the functionf (cf. (8)) satisfies
input rate\’ < . packets per second. The mismatch channel is

then the channel induced by the proceéSg: 4 € N) that is dP Py £ ) = EF(XT ") = 1 11

independent and exponentially distributed with méan sec- R o (@) (" y) USSR (11)
onds. It will soon be clear that the decoding strategy does not

depend on the parametgr for everyy™ € R’}fl. The output of an\/ /M /1 system with

Let e,(x) denote the exponential density functiorinput rate\’ < p is a Poisson process with raké (see, for
pe * x € Ry, having meanl/p. The random variable e.g., [21, Fact 2.8.2, p. 60]). Consequently, un@&t- y-, the
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random vectotY, ---, Y,,) is a vector of independent and ex{0, 7”]. Departures if0, T7”] therefore constitute a set of suffi-
ponentially distributed random variables with megt\’ sec- cient statistics for determining the input codeword. This is not
onds, i.e., surprising because of the memoryless property of exponential
" service times.
dQy,. v, (Y1s -+ Yn) = drlys, - Yn) ex (yr)- Now suppose that the decoder observes only the departures
' kl;[l that occur inf0, 7’|, whereT is known to the encoder. Clearly,

(12) it is useless to have arrivals after tirde This motivates the
We will use (10), (11) and (12) in the proof of our results.  following definition.
We now describe the mismatched decoder. The decoder. _ .. . .
makes a decision based gr(cf. (8)) as follows. Let the code- Definition 2: An (n, M, T’ ¢)-window-codeconsists of
book be{, -+, z}, wherez; € R fori = 1, -+, M. acodebook ofM codewo_rds_and a_deco_der. Each codeword
The decodet); :Ri-f—l — {0, 1, ---, M} maps the observed is a vector qfn nonnegative interarrival time&ey, - - -, g_cn).
interdeparture timeg” to The nth arrival of every co_deword occurs before tinfe
The decoder, after observing departures [in 7], selects
A, if max;=; f(z;, y") < f(zi, y™) the correct codeword with probability greater than- ¢,
¢r(y") = {07 if no such: exists. (3) " under equiprobable codewords ad,.x.. The rate of
the window-code iglog M)/T. Rate R is achievable with
window-codedf, for every v > 0, there exists a sequence of
(n, M,,, T,,, e,,)-window-codes that satisfies

We interpret the outpui as an error in decoding.

From Lemma 2 in Section llljn(y™) = 0 if and only if
Yo +y1 = 0, in which casep;(y™) = 0. Butm(¥Y™) = 0
with zero probability unde€)y. Whenm(y™) > 0, which is (log M,,)/T,,>R—~
the case almost always, the decodertries to pick the unique
codeword that maximizeg(-, 4™) (cf. (5)). This is the same for all sufficiently largen, andlim,, ., €, =0.

as picking the unique codeword (among the compatible Ones)I'hus the term “window-code” refers to a code whose decoder

that_m|n|m|zes th_e sum of service t'r.n@k:l (s, — wg), OF, observes only those departures that occur in the wirl@o@];
equivalently, maximizes the sum of idling times of the SEI'VElhe cost of transmission for the window-codefisseconds. In
> r—; wx. When the decoder cannot find such a unique cod

4 it declares Th v funcii redt I(((?c')ntrast, the code in Definition 1 has a decoder that observes
word, itdeclares, an error. fhe onlyfunctionsrequiredto ma \I then departures; the cost of transmission in that case is the

:E'S dictﬁ'on ?re a:ddltlons, §ubtra§tlons, and tcl())mparllso?sd expected time of theth departure, i.e., the expected time the
ough these functions are Simpje,_, wy must be evaluated o4 4qr yats to gather the output data.

for every codeword before a decision is made. Since the number
of codewords is exponential in time, the number of operationsTheorem 2: Let the queue be work-conserving and initially
performed to decode is exponential in time. empty. Let the server follow a first-in-first-out service discipline

with stationary and ergodic service times of mégn seconds.

Theorem 1:Let the queue be work-conserving and initiallyrhe ratec ' nats per second is then achievable with window-
empty. Let the server follow a first-in-first-out service disciplin%odes using the decoding rule in (13)

with stationary and ergodic service times of mégdp seconds.
The ratec ™! nats per second is then achievable using the ds- jJammed Timing Channel—Random Codes

coding rule in (13).
g (13) We now consider the jammed timing channel where the

The result [1, Theorem 7] on the achievabilityof' ;. nats  server acts as an adversary. The queue is initially empty, and
per second fori.i.d. service times is a special case of Theoremte server follows a first-in-first-out service discipline. The
To transmit reliably at ' nats per second on such a channeprocess(S; : k € ') of nominal service times is stationary
maximum-likelihood decoding is not required; the decogler and ergodic with meam/;; seconds. Fixa € A. The server
is sufficient. This decoder is therefore robust to the diStributiC{]’ammer) includes a delay af. seconds to the service time of
of service times. The decoder’s robustness, however, does tetkth packetk =1, -- -, n. We callz = (21, -+, 22) € RY
imply that a single sequence of codes works for all stationaflye state sequencebecause it determines the state of the
and ergodic distributions of the service times. Furthermore, Thshannel. The resulting service time for i packet isSy, + 2
orem 1 does not give rates at which the probability of error goggcondsi = 1, -- -, n. If no constraints are imposed on the
to zero. The term “robust” should therefore be interpreted withate sequence, communication in the timing channel can be
caution. We only argue that, knowing the true channel, a §ammed completely at the expense of information throughput
quence of good codes with decoder and rate close to~'x in packet contents. We impose the following constraint. For a

nats per second can be selected. code withn packets, we allow only those state sequences that
Suppose that the codebook is such that for every codewosgtisfy

the last arrival occurs befote= T”. Then the decodef; need
not observe departures beyone= 7”. This is because of the / 1
’ ) e S I(z) doa<—
following. Suppose thay™ satisfiesy ., _, y» > 1”. Given any P’ s
candidate codeword, the server is not idle bey@hdi.e., the -
quantity that is required to make a decisidn,;_, wx, can be i.e., atotal delay of at most/;:> seconds is allowed for all the
evaluated upon observation of departures in the time wind@ackets. Each state sequerdaduces a transition probability

e
S|
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function from the input space to the output space, denoted dydebook ofM codewords and a decoder. Each message is an
Wn(z). We need communication strategies that perform welkvector(zy, - - -, z,,) of positive real numbers. The first arrival
for every state sequeneethat satisfies(z) < 1/pus. occurs att = z;. The kth componentgy, is the amount of
The problem of finding achievable rates for deterministitme the encoder will wait after thg — 1)st departure, before
codes, i.e., when the codebook is known to the jammer, appesesding thekth arrival,k = 2, - - -, n. The last packet exits on
to be nontrivial. Instead of fixing a single good (deterministiche average befor€. The encoder thus makes use of feedback
codebook, we allow communication strategies with randoto avoid queuing and to control completely the idling times of
codes. The encoder chooses the codebook that is usedtli@rserver. Feedback however is not used to choose the waiting
transmission from a set of possible codebooks. The decotieresz;. The rate of the feedback code(lsg M )/T nats per
knows this selection. The jammer, however, is ignorant skcond. The decoder, after observing the interdeparture times
the selected codebook. Its partial knowledge is modeled by/a= (41, - - -, ¥.), makes the correct decision with probability
distribution on the set of codebooks. Such a code is usualéyger thanl — « when averaged over equiprobable codewords.
called in the AVC literature, somewhat deceptivelyaadom RateR is achievable with feedback for every~ > 0, there
code exists a sequence 6h, M, T,, €,)-feedback codes that sat-
Given a selected codeboekthe decoder ig; (cf. (8) and isfies(log M,,)/T,, > R — ~ for all sufficiently largen, and
(13)). For the codebook the average probability of error (overlim,, ., £, = 0.

equiprobable codewords) is denoted B (e, ¢y, W™ (z)) The decoder chooses the codeword that explains the received
when the state sequencezis sequence of departures with the minimum sum of service times.
Let C be a random variable taking values in the family of alFor a candidate codewordl,= (x1, -- -, x,), let
codebooks that havi codewords, and such that théh arrival N
in each codeword occurs befdfe The parameter&, M, T ny A .
of the random variabl€ will be clear fro?n the cong(t. The f)ol- =, y") = z_: (v = zx)
lowing definition is an extension of window-codes and achiev- =t
ability with window-codes (Definition 2) for the jammed timingwhere
channel. .
. LCER A
Definition 3: An (n, M, T, ¢)-random window-code&on- 400, if <0,

sists of a probability distribution fo€, and a decodep that

depends on the codebook realization. Each realizatis set  Given the codebookz, - - -, ), }, the decodep, mapsy™ to
of M codewords. Each codeword is a vectomofionnegative

interarrival times. Thenth arrival of every codeword occurs ¢, (") 2 {

before timel". The decoder, knowing the codebook realization

¢, makes a decision after observing departurefirf’]. The
average probability of error satisfidg[P.(C, ¢, W™ (2))] < =
for every z with I(z) < 1/u.. Rate R is achievable with Theorem 4: Let the queue be work-conserving and initially
random window-coded, for every v > 0, there exists a empty. Letthe server follow a first-in-first-out service discipline
sequence of(n, M, T, €,)-random window-codes that with stationary and ergodic service times of mé#p seconds.
satisfies(log M,,)/T,, > R — ~ for all sufficiently largen, and The ratec—! . nats per second is then achievable with feedback
lim,, oo £, = O. using the decoding rule in (14).

i if d(z;, y™) < min;»; d(z;, y™)

0, if no such: exists (14)

where an outpud is interpreted as an error in decoding.

Theorem 3:0n the jammed timing channel, the rate We remark that Theorem 4 is notimplied by previous results
e~Yu1pe /(1 + p2) nats per second is achievable with randorin mismatched decoding. In particular, we cannot apply [12,

window-codes using the decoding rule in (13). Theorem 2] because it precludes input distributions with infinite
differential entropy. For the input distribution that we choose,
C. Signaling Channel differential entropy does not exist. This input distribution is the

In a telephone signaling channel [1], the encoder knows eX2€ that attains the mutual information saddle point [16, The-

actly when the packet is removed from service, i.e., comple?€m 1].
feedback is available. The encoder can make use of this infor-
mation to avoid queuing altogether, and the resulting channeHs
a simple additive noise channel. In this subsection, we describe the discrete-time single-server
On this channel, the rate~!; nats per second is clearlyqueuing system [3], [4], and state the counterparts of Theorems
achievable in the presence of complete feedback. Indeed, 1he, and 3. The proofs are omitted because they are analogous
encoder can ignore feedback completely, and use a code sghe continuous-time case.
gested by Theorem 1. Making use of feedback, however, leads$n the discrete-time model, arrivals and departures occur only
to another decoder that achiewes;: nats per second. It will at integer-valued epochs, called slots. At most one packet ar-
be clear from the following definition that feedback is used onlgives and at most one packet departs in each slot. Unserved
to avoid queuing. packets are stored in a queue. The queue is work-conserving,
The sequence of service times is stationary and ergodic withd the server follows a first-in-first-out service discipline. The
meanl /u seconds. Arfn, M, T, ¢)-feedback codeonsists of sequencéS;, : k € A') of nominal service times is ak-valued,

Discrete-Time Single-Server
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stationary and ergodic process with médn; slots,0< ; <1.  see that the mismatch transition probability functi@p. | x- is

Each packet requires at least one slot of service. the probability mass function (pmf) o™+ given by
For eachn € W, the input is a vector ofr interar- "
rival times, 2 = (z1,---,2,). The decod.er obsgrves Qyrx»(¥"2") = gu—x (¥0) H 9, (yn — wy)
yn = (yOa Y, o, yn)v Whereyo = 1, andyk is the time k=1
(in slots) between thgk — 1)st and thekth departures, " ” . ”
k=1 .. 1 We sely = 1 because:, > 1ands, > 1, i.e., for everyz™ € A Let the pmf on the input alphahaf™ be
the first slot does not give any information about the transmitted N n ,
message. The input alphabetNg® and the output alphabet is Pyo(a™) =[] gx(an), 0 <N <pr < L.
N7t The o-algebras associated with the alphabets are the k=1
collection of all the corresponding subsets. For (z™, ) € N™ x N1, let
Fix n € WN. Given the sequence of service times A
(s1,---,s,) € N7, the interdeparture times ip" = [, y") = Qyrix- (Y™ [2") /m(y™) (16)
(y07 Yi, -y yn) are where
1 k=20 mly™ A P n ni..n n n+1
=1 y") = X (2") - Qynixn (Y™ |2™), " € N
" {Hwk Sk 15 m") E;V (") - Qyuixn (y"]2")
where The function f satisfies Ef(X", y*) = 1 for every
y"* € AN™TL; the expectation is with respect #y-. Given
k k-1 a codebook withA/ codewords, the decoder is the function
wy, = max 0, rp— ) Y ¢gp N — {0, 1, ..., M} defined in (13) withf as in (16).
j=1 =0

Theorem 5: Let the discrete-time queue be work-conserving
is the server's idling time before serving théh packet. The and initially empty. Let the server follow a first-in-first-out
stationary and ergodic proceéS; : k € A) and (15) induce service discipline with stationary and ergodic hominal service

the true channe|Py-.xn: n € N). times of mear /., slots. The following statements then hold.
The definitions of (n, M, T, )-code, achievability, a) The ratelog[1 + pu1(1 — p1)E—#)/m] nats per slot is
(n, M, T, e)-window-code and achievability with window- achievable using the (discrete-time) decoding rule in (13).
codes are analogous to those in Definitions 1 and 2. b) The ratelog[1 + i1 (1 — g )(*~#2)/m] nats per slot is
Fix n € A. For the jammed timing channel (discrete time), achievable with window-codes using the decoding rule in
the state sequence= (z1, ---, z,) € 2% satisfies the con- (13).
straint ¢) On the jammed timing channel, the rdte [1 + 1(1 —
. p)E=1/1] nats per slot, wherg = i pi2/ (1 + p12),
A is achievable with random window-codes using the de-
i=z) = <kz=:1 Z"‘) /n SAwz, g2 >0, coding rule in (13).

. . . . On the discrete-time jammed timing channel, if each packet
As in the continuous-time case, eacimduces a transition prob- . . X
carries a nonzero amount of information, we can appltime-

ability function " (z) from the input space to the output SPaCE; ation technique of [6] to get a nonrandom communication
The definitions of(n, M, T, £)-random window-code and q 9

; — A=)/ p
achievability with random window-codes are analogous to tho?%rzt(;?; gzgr}ﬁir:;ﬂ?sc[rlm%ﬁ ((alianlé())m o dt]a ?:;iggtillot'
" \Ilgviﬁrr::)t\llerc]ieicribe the mismatch chan(&l in e N) Lemma 6.8], which we now describe.
anﬂ . H .
based on which the decoder performs maximum-likelihood dﬁ}leen a codeboole and the decodegy, let P ;(¢, ¢y,

coding. We say that a random variafehas theGeo™ () dis- (2)) be the probabmty of error when th‘e state sequenee is
tribution. 0 < A < 1. if and the transmitted messagé,isvherel < i < M. In the rest

of this subsection, let the definition @¢h, M, T, ¢)-random
window-code be analogous to that in Definition 3 with the

T _ é _ z—1
P{X =a} =ga(2) =M1 -1, veN. condition on the average probability of error replaced by

Let a synchronizing zeroth packet be sent at 0 and inter- max  E[P. i(C, ¢5, W'(2))] < e

prety, as the amount of unfinished work at= 0, including 1<isMn

the service time of the zeroth packet. Let the number of packéts, a condition on the maximum probability of error.

in the queue at = 0 have the equilibrium distribution that We can easily modify the proof to show the following exten-
is associated with the queue havifigo™ (X')-distributed ar- sion to Theorem 5 c). On the jammed timing channel, for every
rivals, 0 < X < p1 < 1, and Geo™ (i )-distributed ser- > 0, there exists a sequence @f, M,,, T,, ¢,)-random
vice times. This queuing system is the discrete-time counteyindow-codes that satisfies

part of theM /M /1 system. The mismatch channel is then the i) (log Myn)/T, > log[1+ (1 — M)(l_”)/”] —
channelinduced by the procds;: k£ € V') ofindependentand

Geo™ (1 )-distributed service times. Fix € A. Using (15), we for all sufficiently largen;
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i) max max  E[P. i(C, ¢, W (2))] < en equivalent strategy with complete feedback on the point-process
z (z)<1/p2 1SISMy channel. We now prove c). We omit the proof of d) because it is
for everyn € A/, and analogous to the proof of b).

i) lit,—co £n = O. Proof of ¢): The service times are independent and have

Now suppose that the error probabilities need not vanish® Geo™(p) distribution. The key idea here is to map any
Fix n € N. On the discrete-time channel, the cardinality o‘ff‘"nggw'lf()de Og_the timing ch?nnel tr? astrlategy with complete
(W™ (2): 1(z) < 1/p12} is upper-bounded b§l + n/ys)". We 1e€dback on a binary memoryless channel.

can therefore apply random code reduction [11, Lemma 6.8] toFiX " 1\5 N SupposeEthetl]t the codebook is designgd tod
get the following. Givere > 0 and~ > 0, for all sufficiently transmit M, messages. Each message maps to a codewor

largen, we can find a set af? codebookge; : j = 1, ---, n2}, (FLi 7775 %) € N™ of interarrival times that satisfies
where each codebook has parametersi/,, 7;,), the set of n
codebooks satisfies >k < T

k=1

1
max max —

S YD ; P i(ej, ¢, W'(2)) <€ (17)  The decoder observes departures until jatLet 1{-} denote

the indicator function of an event. Let the output be the binary-
and valued vectofvy, - - -, vr, ) given by

log M, v, = 1{Departure in slok}, k=1,---,T,. (18)

> log [14 (1 — p)*#/#] — .

. . . Clearly,v; = 0 becauser; > 1 and each packet requires at
If each packet carrie€’y nats of information,Cy > 0, east one slot of service.

then we can employ the elimination technique of [6] as fol- Fix a codewordzy, -- -, xn). Let (Ay: 1 < k < T2,) be the
lows. Fixn € A, Let the set of equiprobable messages b i oo oo plrE)ces73' " M= "

{1, ---, 7%} x {1, ---, M,,}. Given a messagé¢j, i) from

this set, choose the codeboek Transmiti on the jammed k

timing channel using codeboal. Convey the codebook index A = Z Wey + -+ 2, <k} 1<k<T,
4 to the receiver using the fir& log n nats (of thenCy nats) i=1

of packet contents. We thus use only a negligible fractio
(2 log n)/(nCy), of the packet contents. Treverageproba-

bility of error over equiprobable codewords is smaller tkan
for this (nonrandom) communication strategy because of (17?

H’enotes the number of arrivals in the fiksslots. Analogously,
the cumulative departure procesgi3;: 1 < k < T,,), where
k= Ele v; is the number of departures in the fifsslots,

< k < 1,,. The number of packets that remain in the system
E. Converses at the end of théth slotisA;, — Dy, 1 < k < T,.

. . . If A — Dy, = 0, the queue is empty at the end of #&té slot,
In this subsection we state converse results for the contifi 4 hence no packet exits in thie+ 1)st slot. If Ax — Dy, > 0

uous-time (resp., discrete-time) queue with independent anghacyet is served in thd + 1)st slot. Using the memoryless

exponentially (resp., geometrically) distributed service time roperty of geometric service times, this packet departs in the
Converses to Theorems 1, 4, and 5 a) were shown in [1] and

"+ 1)st slot with probabilityu:;, or stays in the system with
Theorem 6: For the continuous-time system, let the queue g@obability 1 — 4.1, independent of the past.

work-conserving and initially empty. Furthermore, let the nom- The timing channel therefore behaves like a binary memory-

inal service times be independent and exponentially distribut@$s Z-channely’, with W (1[1) = iy andW (1]0) = 0. Thein-

with meanl/p, seconds. puts to the Z-channel atg = 0, anduy+1 = 1{Ax—Dx > 0},
a) The largest rate achievable with window-codes i&u,  * =1, ---» Tn—1. The output sequence(s,, - - -, vz, ) given
nats per second. by (18).

b) Onthe jammed timing channel, the largest rate achievable®"Y Window-code on the timing channel is therefore equiva-
with random window-codes is~*ju 2 /(11 + p12) nats lent to the above strategy with complete feedback on the mem-

per second. oryless Z-channel. Complete feedback is necessary because the
Similarly, for the discrete-time system, let the nominal servi " r(J)rulg)r?gnpUt,UHh depends on the past departures (outputs)
k-

times be independent an@eo™ (4, )-distributed with mean

1/, slots. The capacity of the timing channel (for window-codes) is

The | hievabl ith wind d therefore upper-bounded by the capacity of the memoryless
©) e largest rate achievable with window-codes i .hannelwith complete feedback. Feedback does not increase

log [1+ 11 (1 — pa) (7)1 mats per slot. the capacity of the memoryless Z-channel; the upper bound is
d) Onthe jammed timing channel, the largest rate aChievatﬁlneeref(?re y y ' PP ’

with random window-codes &g [1+ (1 — p)t=#)/#]

nats per slot, wherg = uia/ (i +pa). Jmax [(ppn) = ph(pn)] = log [L+ pu (1 — pu) 70/,
Proofs of a) and b) are in Section Ill. The key idea in the proof ==

of a) is to map any window-code on the timing channel to aphis completes the proof. O
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We can, in fact, say more about the converse. For windown the point-process channel (resp., Z-channel). Furthermore,

codes with rate above it is well known that the capacities of the point-process channel
and the discrete memoryless channel do not increase with
log [1 + pa(1 — pag) - #0)/im] feedback. This fact gives a simple explanation of why the

capacity of the exponential server (resp., geometric server)
nats per slot, the probability of error goed.td his follows from  channel does not increase with feedback.

the strong converse for DMC'’s with feedback [11 p. 2.5.16(c)].
lll. PROOFS

F. Discussion . .
In this section we prove Theorems 1-4 and 6 a) and b). We

Theorem.s 1.and 2 show that the exponential server chann%lé%in with a simple extension of [11, Lemma 6.9]. We provide
maximum-likelihood decodep, (cf. (8) and (13)) is a robust y,o"or00f because of some minor variations in the statement of
decoder. Suppose that the service times are stationary andtﬁé'lemma and its applicability to standard measurable spaces.

godic with meanl /; seconqls. When the cost of transmissioR «tandard measurable spaia measurable spagd, A) that
is the expected departure time of the last packet, thecrate is isomorphic tq F, ), whereF is a Borel subset dp, 1] and
nats per second iachievableusing the decodep; (Theorem Fis the Borela—afgebra onF’ ’

1). A window-codeas one where the decoder makes a decision Let (A, A) and(B, B) be two standard measurable spaces
based on departures in a certain time window, and all arrivalg, p ' be a transition probability function fromd, A) to '
fall within this time window. The decodep; does not have B?XLet Py be a probability measure qt, A) fl"x and
to look beyond the time window to make a decision. The ra Y7|X induce ajoint probability measuig; y- [Zé, P.18.25 (b),

¢~ 1 nats per second igchievable with window-codassing ; "
. p. 247], and a marginal probability measuie [22, P. 18.25 (d),
the decoderp; (Theorem 2). Furthermore, when the servic . 247], on the appropriate spaces.

times are independent and exponentially distributed, this rate i o , — {21, ---, 2} be a codebook ofif codewords

the largest achievable with window-codes (Theorem 6 a)]. V%g € Afori=1,---, M.Letg: A — R, be a measurable

prove this result by mapping any window-code on the UMiNg nction that represents the constraint on the inputs. For a fixed

channel to an equivalent strategy with complete feedback on ?}qee R, we require thay(z) < I for everyz € e. Fix a set
point-process channel. Using feedback on the timing channebtioe B+'Letf~A % B — R. be a measurable fimction Let
avoid queuing, the rate~! . nats per second echievable with . B _ {0' 1., M} dJ(ranote the mapping '

feedbaclusing the decodep, (Theorem 4). The mutual infor- 5
mation sa(_jdle-p(_)int inequality play_s a crucial role in the proof a [, ifyeH and maxju f(z;, v) < f(zi, v)
of our achievability results under mismatch. ¢ru(Y)= 0, if y¢ H orif no suchz; exists ine.

On the jammed timing channel, the jammer (server) includes :
an arbitrary amount of delay to the service time of each packet.other words, wherny € H, the decoder looks for a unique
This is done to diminish the transmission capabilities of theodeword that maximizeg(-, y). Given a codebook, the en-
timing channel. The total delay for all thepackets cannot ex- coder and the decoder are thus fixed. An error occurs whenever
ceedn/u2 seconds. The nominal service times are stationattye decoder declares a symbol that is different from the trans-
and ergodic with mean/;:; seconds. Lefr = pyp2/(p1 +  mitted symbol. Let. (¢, ¢y, i, Py|x) denote the probability
p2). The ratee=!y nats per second achievable with random of error when the codebook ie and the transmitted message
window-codesising the decodef; (Theorem 3). Furthermore, is 4.
W_hen the_slerwce times are mdependent and expor_1ent|ally qlsi_emma 1: Let (A, A) and (B, B) be standard alphabet
tributed,e~* 14 nats per second is the largest rate achievable with S
random window-codes (Theorem 6 b)). spaces. Lef’ € R, andé € _(0, 1). Let Px be a probability

Analogous results hold for the discrete-time single—servcrer}easure orfd, A) that satisfies
gueuing system (Theorems 5 and 6 c), d)). Furthermore, if
each packet carries a nonzero amount of information, there is PxiglX) <} >1-8. (19)
a nonrandom communication strategy to transmit informatiqn, fiAx B — R,
reliably on the jammed timing channel (cf. discussion following
Theorem 5). This strategy uses only a negligible fraction of Ef(X,y)=1 (20)
packet contents. We do not know if a similar result holds for

the continuous-time system. Suppose that the jammer is n@3¥ everyy € B. Let H € B. There exists a random variable
aware of the codebook in use, and there is no side changethat takes values in the set of codebooks withcodewords
available. We do not know the (deterministic-code) capacity ef block lengthi, such that for any realizationof this random

such a jammed timing channel. variable,g(x) < I for everyz € e. Furthermore, for every
We conclude this section with the following observation. Wg ~ ¢, every: {1, -, M}

can map any window-code on the timing channel to an equiv-

alent strategy with complete feedback on the point-process,, ,, (C. by 11, Pyiy) < Px y{f(X,Y) < B}
channel (binary memoryless Z-channel in the discrete-time™~ “**"’ FAH SR = 1-9¢6

case). Theorem 2 (resp., Theorem 5 b)) therefore gives us an M Py{Y ¢ H}
alternative capacity achieving strategy with complete feedback + B(1—6)2 1—6

be a measurable function that satisfies
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Proof: Let Using (19), (21)—(23), we can upper-bound the probability of
event i) by
Ar ={z € A: g(z) < T'}
and Pr{f(X1,Y) <8} < Px y{f(X,Y) <B}/(1-9).
Ar ={GNAr: G € A}. To upper-bound the probability of event ii), observe that

From (19),Px {Ar} > 1— 6. Let P;i" be the restriction oPy Pr{f(X,,Y) > 3, for somej # 1}
to (Ar, Ar). Let P% be the probability measure @y, Ar)

a)
given by <M -Pr{f(Xs, Y) > p}
) b) / /
APl (z) = #A@;, x € Ar. (21) ArxAr x(w1)dPx (e2)
X 144I0
Fix M € N. Each codebook is af/-tuple of elements from '/B APy x(yle) 1 f (@2, 9) > B}
Ar. Let the codebook random variab® = (Xq, -+, Xu) o M
have the product distribution < (e /A ) dPx (x1)dPx (x2)
Axcs
dPe(xy, -+, xp) = dP5 (x1)dPi(22) - - - dP%(xp) (22) / APy x (ylz)1{ f(x2, ) > B}
B
on (AM AM), where A} is the product Boreb-algebra on o M
AM . Each codeword is therefore drawn independently frm =00 /A dPx () /B dPy (y)1{f(z2, y) > B}
according taP% . Clearly, for any realizatiom of the codebook o M F@, y)
random variableg(z) < I for everyz € c. < Y / dPx (x2) / dPy (y) 237 Y
Consider an auxiliary threshold decoder that declaessthe 1—8)* Ja B £
transmitted message only if, for the received H, z; is the D _ M dPy (y)
L . . 3(1 — §)2 Yy
only codeword that satisfie§ z;, v) > 3. Otherwise, this aux- B( 5/[) B

iliary decoder declare®, an error. Whenever this auxiliary de- _ )
coder declares a nonzero symbol, it agrees with the outputofthe (1 — 6)?2

decodersy, ;7. The auxiliary decoder therefore performs WOISE the above chain of inequalities) follows from the union

thand)f H- [
: L . . bound for probabilitiesh) from (22) and (23)¢) from (19) and
The error probability given that messagie transmitted, av- ,d) from Fubini's theorem and [22, P. 18.25 (d), p. 247],

21
eraged over the random selection of the codebook, is the sa(rgl?)
L . rom the factl{f(z2, ) > B} < f(z2, y)/F, andf) from
foralli = 1,---, M. We therefore assume without loss OEubini’s theorem and (20).

generality that the message= .1 is transmitted. For a tixed Under maximum-likelihood decoding,
codebookKzy, ---, zpr), we are interested in the probability of
error whenz; is transmitted. The error e\(gnt depends on the f=dPx y/d(Px x Py);
entire codebook. LeEl € 5. It can be verified that the map-
ping defined by((z1, - -+, ), E) — Py x(E|z1) is a tran- stepf) would then be unnecessary, and the last equality would
sition probability function from(A¥ | AM) to (B, B). It rep- tollow_ir_nmediately_afteke). Under m.ismatched decoding, (20)
resents the probability of an evehitgiven that the codebook is is sufficient to obtain the last equality.
(21, ---, zp) andzy is transmitted. The probability of event iii) is upper-bounded by

For any set” ¢ A¥ x B that is measurable relative to the
producto-algebra ond} x B, let PriY ¢ H} <Py {Y ¢ H}/(1-0)

=PAY ¢ H}/(1-6).

Pr{r} = / dPe(x1, « -, xa)

AM This completes the proof of the lemma. O
Fix n € M. We apply Lemma 1 to the timing channel with
. P, 1 F} (2
/B APy x (lr) W@, - y) € P} (23) A= RyandB = R’}fl. Let g™ play the role ofj3. Let

1 / H 1 1
i.e., probability of the evenf’ given that message = 1 is 0<A <.)‘ < . FiX (.5.6 (0, 1). Le.t.PX” be_as defined |n_(6).
. . »x» IS the transition probability function from the input
transmitted, averaged over the random selection of codebooﬁé/. o .
- pace to the output space that is induced by a stationary and
If the auxiliary decoder makes an error, then one of the forr g S
lowing events should have occurred: ergodic process of service times, and (2) and (3)./2et_y»
) denote the joint distribution undétx- and Py« x». Let Py
denote the marginal df * underPx» y-.
Fix M € N. A codebook is am/-tuple of elements from
R . Let the functiong that denotes the input constraint in
Lemma 1 be

) f(z,y) £ B
i)y f(z;,y) > p,forsomej # 1; or
iy v ¢ H.

Iet\i/set]t::refore sufficient to upper-bound the probabilities of these g(z™) a <Z xk) /n
. k=1
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wherez™ = (x4, -- -, ,,). We require thag(z™) < 1/X” for Observe that(y™) > 0. Moreover, for any:™ € S(y™)
everyz™ in the codebook. By the weak law of large numbers for
i.i.d. random variables, we have that for evérg (0, 1)

’ L) > " 0
Pxo{g(X™) <1/N'} > 1-6 24) z£[1 ex (x) Z v(y") >

for all sufficiently largen.

The functionf in (8) satisfiesE'[f(X™, y™)] = 1 for every
y" € R We deal with two decoders. The decision Hefor ny A e Y
the decodet; i will be either o(y™) = (X)" exp{=X(yo +y1)}-

{y" e R Z e < n/XN’

k=0

where

} Furthermore,

/ dr(z") = (yo + y1)" /n! > 0.
or R WhenH = R7H, the entire output set, we denote the S(y™)

corresponding decoder lgy; after omitting the subscript .

After substitution of these quantities in (9), we get
Corollary 1: Fixé € (0, 1) andM € N. Fixn € A so that

Pxw{g(X™) <1/X'} > 1— 6. There exists a random variable n
C that takes values in the set of codebooks wifttodewords, m(y"™) > / dr(z™) H ex (zp)p(z™, y")
such that for any realizationof this random variabley(z™) < S(™) k=1
1/X" for everyz™ € e. Furthermore, for everg > 0 > o(yuly” / dr(z™)

M -

1 S(y™)
a) EM ZPe,i(ov d)fv PY”|X”) > 0.
PX e f(XT V) < 87 M

Conversely, ifjo+y1 = 0, then eitherr; = 0 orp(z™, y™) =0,

1-¢ pr1 -8 and thus

and withH = {y" € R i yr < n/XN'}
M= i) = [P (@)pla”, ") s =0} = .
-

E Pez 7¢,H7P” ”)
b) Z S SymX This completes the proof of the lemma. O

PX” e (X YT < B M We now show that under a mild condition on the process of
1-6 pr(l = 6)? service times the quantitx- vy« {f(X", Y*) < 8"} goes to
Py { ¥ > n/)\,,} zero asn — oo if 3 is chosen judiciously.
+ k=0 ) Lemma 3: Let the proces§Sy.: k € N) of service times (not
1-46 necessarily stationary or ergodic) satisfy for evary- 0, the

Proof: The corollary follows from Lemma 1 after aver-condition
aging the probability of error over th&/ equiprobable code-

1 & 1

words. H lim Pgx {— S s>+ a} =0. (25)
Since the functiory depends on the quantity (cf. (9)), we e "= #

need the following lemma to evaluate

Then for everyy > 0
.F))(77.7Y’n{f‘(){n7 YTL) S [3”}.

n—oo

. 1 n yn H
Lemma 2: Let0 < X < p. Fory™ € R, the functionm im Py yn {g log f(X™, Y™) < log N ’V} =0.

satisfiesm(y™) = 0ifand only if yo + 41 = 0. (26)
Proof: Fix y* € R"“ so thatyy + y1 > 0 and Proof: Observe thatt, = 0 under Px~ y~ for every
> heo Yk < 00. Let n € N. Let
A n
T = n n; . < B y
S(y™) {a: eRY kz_lxk—y0+y1} T2 {(a:",y")ERixRi'i'l:yO:Oand

Fix ™ € S(y™). Then0 < w; = max{0, 21 — yo} < 3 and j
wry = 0, k = 2, ---, n. These two conditions and (5) imply Z (yr — x) > 0, foreveryj =1, ---, n}
thatp(z", y") = U(y"), where =1

ny & i.e., the set of all pairéz™, ™) such thaty™ is a possible se-
u(y™) = (p—N)u" exp S —p >k e P Y
W) = { Z } guence of interdeparture times (witla = 0) when the se-



SUNDARESAN AND VERDU: ROBUST DECODING FOR TIMING CHANNELS 415

quence of interarrival times ig"™. From (2) and (3), we have 1 & 1 ¥
U Z T <

Pxw y»{T} = 1. We therefore have from (8) that n N 3N
k=1
P {110~f(X"Y")<1o~ﬁ—} U 1§n: Sy X @ yyer
LR Pt U I VA P R VAR '

< Pxn yn{m(Y") =0; (X", Y") €T}
1. p(X",Y")
+P 77.7Y77. {n IOg m(Yn)

Y™ > 0(X™, YY) eT. (27 1. 1 «— 1
S BN EE R O s o)
k=1

From Lemma 2, (2), and (3), we have that 1 & 1~
+Pgn < — ZSk>——|——
[t o3

(29)

n Using the above inclusions, the term in (27) is upper-bounded
<log7-% by

{m(y") =0; (=", y") € T}
={yo+y1 =0;(z",y") € T} C{x1 =0}

where the last term follows after a change of variables. As
Pxn yn{Yy = 0} = 1 for everyn € N, the first term in
Pyn yo {m(Y™) = 0; (X", Y™) € T} < Py»{X, =0} = 0. (29) goes td) by [1, Lemma 3]. In fact, from the proof of [1,

' - Lemma 3], this term equalg for all sufficiently largen. The
We now upper-bound the term in (27). Let", y*) € 7" and Second term in (29) goes €oby the weak law of large numbers
m(y™) > 0. From (10) and (12) we can write for i.i.d. random variables. The third term in (29) goegtby
the assumption of the lemma. O

and, therefore,

m(y™) = H ex (Ux) - gyapya. v, (WolYLs -+ Un) We are now ready to prove Theorems 2 and 3.

k=1 Proof of Theorem 2:Let the assumptions preceding Corol-

where the functiony is the conditional density oy given & 1 hold. Fix arbitraryy > 0. Letlog 3 = log (1/\') — .
(Y1, -+, Yy,) underQy-. Using (5), we get We now apply Corollgry_l a)._S|_nce the procéss: & 6_/\/) is
stationary and ergodic, it satisfies (25) by the ergodic theorem

n

1 p(a™, ) u N n (see for example, [21, Theorem 7.3.3, pp. 236-237], and, there-
-~ log W = log S Z Yk — Z (y —wi)  fore, (26) holds by Lemma 3. Choosiid,, so that
k=1 k=1

1. . no_ R § N
v ) @) 0B N) =2 < (o Ma)/n <log (/X = 3/2

3=

) . o ensures thdtm,, ., M, /(8"(1-§)?) = 0. We can, therefore,
where(1/n)iv,; v, .., v, [1, Lemma 3] is the normalized infor- 4 4 sequencés, :n € A), such that
mation density of the relevant quantities, undgr... Observe

that .
n n EM ZPE’i(O’ ¢f, Pyanﬂ,)SEn
n =
Z Yk > Z Tk =
k=1 k=1

for everyn € N, andlim,, o, €, = 0.

and that Consequently, for each € N, there is a codebook realiza-
n n tion ¢ that satisfies
(yk - wk) = Z Sk 1 M.,
b=t b=t A Z P i(e, ¢y, Pynixn) < €n.

=1

the sum of service times [3] (cf. (3)). Using these facts and (28),

we get that Furthermore, every codeword® € e¢ satisfiesd ,_, zx <
n/X’. The decodep ; observes only those departures that occur

{l log 1’(“77’3) < log ﬂ/ —yim(y™) > 0;(z", ") € T} in the time window[0, n/)\"]. We therefore have a sequence of
n m(y™) A (n, M,,, n/X', e,)-window-codes that satisfies
A/ n u n
C —Zxk——Zsk log M, 7
{ Lt "= Y > X' log v 29\’

1.
— ey, (osy1, - yn) < =1 (2™, y") € T} for everyn € A, andlim,,_, ¢, = 0. Setting\’ = ¢~!;z and

N = e /(1 +7), we get

C liY—Y v, (Wo; v1, - U)>l 1 1
n 0; Y1, Y \H0y H1, y UYn ) Z 3 )\//(10g Mn)/TLzC_ N_3’VC_ N/(]-""Y)
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for everyn € N. This means that the rate* ;. nats per second service discipline with stationary and ergodic service times
is achievable with window-codes (becauseas arbitrary)..] of meanl/u seconds. Let the queue be driven by a Poisson

/
Proof of Theorem 3:Fix arbitrary~y > 0. The process process of rata” < y.. Then

(Sk : k € V) of nominal service times is stationary and ergodic. n
Considern € N andz € R satisfyingl(z) < 1/u,. Let (1/n) Z Y — 1/X
W™(z) be the corresponding transition probability function. Set k=1
1/ = _1/u1 + 1/p2. Sincel(z) < 1/p2, for everya > 0, we probability.
can write Proof: Let (X,,: n € N) be the process of independent
13 1 13 1 and exponentially distributed interarrival times, aiff),: n €
{; Z sk 4 21) > +oc} {; Z Sp > — +oc} N) the stationary and ergodic process of service times. Let
k=1 k=1 e P{-} denote the probability of an event with respect to the joint

(30)

rocess. Lef?,, be the waiting time of theth packet. Observe
With W™ (z) in place of Py« x~ in the proof of Lemma 3, and b g P

; : that
by using (30), we obtain . .
1 Yi=)> Xip+R,+ S, (32)
Py yn {; log f(X™",Y") < log % - ’Y} kz:: z;
1. y SinceR,, S, > 0, we have that for any > 0
< By {—'LYo;Yl, Yo 2 —}
" s 1 1 1 1
1 e . 1 v P{—ZYk<——’y}§P{—ZXk<——’y}—>O
+PX”{EZ‘X’“<Y_ﬁ} nkZl by nkZl N
k=1
1z 1 asn — co. On the other hand, using (32) and the union bound
+ Pgsn {— Sp>—+ l} (31) for probabilities, we get
n = w3

Observe thafx~ y-{-} and Py~ {-} depend in general on theP { Z Yy > + ’Y} < P{& > %} +P {& > %}
state sequence. For sufficiently largen, however, the term " "

Py {(1/n)ivy: vi, -, v, = v/3} does not depend onbecause .

of the following. Indeed, for every, Py~ {Y, > 0} = 0. In this { Z X > N + }
case, we can extend the proof of [1, Lemma 1] to get (33)

PyroA(1/n)ives vi, - ve 2 7/35 =0 The last two terms on the right side of (33) galtasn — oc.
We now upper-bound the first term in (33).

It can be shown tha{ X,,, S,):n € A) is a stationary and
ergodic processk,, converges in distribution to a finite random
variable¢ that satisfiesP{¢ < oo} = 1 because\’ < p [21,

for everyn > ngo(y, X', p). The quantityno(y, X', 1), which
can be taken as-(3/v) log (1 — X /u), is independent og.
Furthermore, for a fixed, the two remaining terms in (31) do

not depend om if /(2) < 1/u2; they go tob asn — co. Theorem 7.4.5, p. 241]. Observe that
ChooseX, A\, 3 and the sequend@/,: n € N) as in the
proof of Theorem 2. From Corollary 1 a), we can find a sequence lim P{R, <C}=P{¢$<C)}
(en: n € N), such that for all sufficiently large noeo ' ' '
M if C is a point of continuity of the cumulative distribution func-
E— Z P i(C, ¢s, W (2)) < €n tion (cdf) of ¢. A cdf can have only a countable number of dis-

continuities. Fix arbitrarye > 0. ChooseC' € (0, co) large
enough so thaP{¢ > C} < e andC is a point of continuity
for everyz with I(2) < 1/ps, andlim,,_,, €, = 0. We have of the cdf of¢. Then, for all sufficiently large:
therefore obtained a sequence(ef M,,, n/\", €, )-random

window-codes. The sequence also satisfies P{R, > ny/3} <K P{R, > C} < P{¢p > C} +¢e < 2e.
N log M, S o1y, _ 3ol 0 This proves the lemma. U
no a K 1+ Proof of Theorem 1:Let the assumptions preceding Corol-

lary 1 hold. Fix~ > 0. Let
for everyn € V.

. —1 n o -1 _ -1
Proving Theorem 1 requires more work. We need to find an No=ep, A =ep/(L+9), A=e" p/(1+27)

upper bound on the expected time of departure ohthgoacket. PO N
We first prove the following lemma. andlog 3 = log (u/X') — . Let

Lemma 4: Let the single-server queue be work-conserving H = {y" e Ri“ . Z e < n/)\”} )

and initially empty. Let the server follow a first-in-first-out prd
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Consider the decodef;, . Clearly, this decoder cannot out- Let.S;. be the service time of thith packet. For & > 0, let
performe¢ . The proces$Sy: k € N) is stationary and ergodic

A
with meanl /. seconds; it therefore satisfies (25), and thus (26) Gr ={s1 € Ry:si > Ch
holds by Lemma 3. Choosind/,, so that For everyz™ € ¢/(n), everyk = 1, - -, n, we have
log (1/X') = 2y < (log My)/n <log (pu/X) —37/2 E[ 2"] = E[Si1p, 1a, 2" + E[SklF, 1o; |2"]
ensures that < E[Skle|x"] + CPyoxn{Falz"}. (35)
lim M, /(f"(1—6)%) = 0. Observe thatz[Si1g, |2™] is i_ndepe_ndent of" _and ofk be-
cause the process;, : & € AV) is stationary and independent of
SincePy {Y, = 0} = 1 foreveryn € A" and1/)\’ = 1/X' + the arrivals. Furthermore,
e/, we can apply Lemma 4 to get E[S] = E[S1a] + E[S1e] = 1/p < 0.
,}E}})o Pyo{Y" ¢ H} = 0. Using the monotone convergence theorem, we can cho6se a

large enough so that[S14] < »/3. Pickn large enough so

From Corollary 1 b), we can find a sequerfeg : 1 € A7), such thatmax {1/\", C} -&,, < /3. Using (35), we therefore have

that that for all sufficiently largen
M,
Z P..i(C, ¢5 1, Pyojxn) < ?" L[ < 21/3.
Since)",_, zr < n/)\ for everyz™ € ¢(n), we get
for everyn € A, andlim,,_.o, €, = 0. "
Fix n € M. We can find a codebooi(n) such that E <l Z (zx + 5k)> g, x"] <en/N +2w/3< b
n
k=1
1 i P, i(e(n), ¢ P, ) < En Since we can assume
M, £ e, i\C\Tt), Qf H, L'yn|xn) > 5 N .
Furthermore, every codeword € ¢(n) satisfiesy ,_, z1 < Z Y s kz i+ 5k)

n/A’. By removing theM,, — | M,,/2| worst codewords, rela-
beling the remaining codewords fromthrough|M,, /2|, and underPy. x{-|z"}, it follows that

denoting the resulting codebook éién), we get n
<(1/”) > Yk) 1r,
k=0

Pﬁ,i(c/(n)a d)f, Hs PY”|X”) S En

x"] <.

fori =1, ---, | M,/2]. In particular, this implies that Therefore, for every™ € ¢ (n)
1 o 1 o
PYan'n { Z Yk > — )\// } S En (34) — Z Yk|$n =F <— Z Yk> 1Fn x"]
" k=0 " k=0
for everyz™ € € (n). The next lemma shows that the expected E 1 - vil.1 n
time of thenth departure given each codeword is smaller than + n kZ:O b il
n/ A for all sufficiently largen. <v+1/\
Lemma5:Fix 0 < A < X < X < p. Let(e,:n € N) <1/A.
satisfylim,, ... €, = 0. Let(¢(n): n € N) be a sequence of
codebooks that satisfies for eaete A, the condition (34) and This completes the proof of the lemma. U
the conditiond "} _, = < n/)\’ foreveryz™ € ¢(n). Then for o _ o
all sufficiently largen Continuing with the proof of Theorem 1, for all sufficiently

large n, the expected time of theth departure is not greater

" " thann/A (cf. Lemma 5). We therefore have a sequence of
(1/n) > Yalo ] <1/A (n, [M,/2], n/), e,)-codes that satisfies
for everyz™ € C’(TL) A (log |_Mn/2J) /7’L > (3_1N - 5’76_1N/(1 + 27)
Proof: Fixar > 0sothatl/\" +v < 1/A. Let for all sufficiently largen, andlim, ... ¢, = 0. This proves
n that the rate—! ;. nats/s is achievable. O
A n n+l .,
Fn = {U ERYT: Z Y > ”/)‘H} Proof of Theorem 4:Fix 0 < A < X < u. Consider
k=0

ann € N. We apply Lemma 1 withd = B = R’. Ob-
Let F;7 denote the complement of the s€t, and1x, the in- serve thats, = X3 + Si, k = 1, ---, n. Let Py x» denote
dicator function off;,. From (34),Py~ x~{Fn|2"} < e, for the transition probability function from the input space to the
everyz™ € ¢(n). output space. Choos#,, as in the proof of Theorem 2. Let
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g(z™) 2 (1/n) >"p_; xx. We require thay(z™) < 1/A—1/p The quantityv (¢, A, D) represents the number of packets that
for every codeword:”. Since the mean service timelig; sec- remain in the system at time-, i.e., just prior tot. Clearly
onds, it follows that the expected time of théh departure is »(t, 4, D) is F;>"-measurable for every € [0, Z,] and
not greater tham/\. (v(t, A, D):tel0, T,,]) is a left-continuous process. Let

Let Py be the mixture of a point mass and an exponential
distribution given by Alt, A, D) 2 pl{v(t, A, D) >0}, t € [0, T,.].
Observe that\(t, A, D) is F;*©-measurable for every ¢
[0, T;,] and that(A(t, A, D): t € [0, T,,]) is a left-continuous
process; it is therefore predictableprocess [24, Definition 3,

. 173].

Note thatPy is the input distribution that attains the mutual in—p Fix irbitraryt € [0, T,]. If A(t, A, D) = 0, there is no
formation saddle point [1, Theorem 3], [16, Theorem 1]. Lgiacket in the system at time-, and therefore no packet can
Px» be the distribution under whicK™ = (Xy, ---, X,,)isa depart at timg; the intensity of the point process of departures
vector of i.i.d. random variables with distributidy . Observe is( at timet. If A(¢, A, D) = p, there is at least one packet in
that if the service times are independent and exponentially dife system at time—. Due to the memoryless property of expo-
tributed with meari /. secomds, then the outputs are indepemential service times, the residual time for the next departure is
dent and exponentially distributed with mebf\’ seconds. Let exponentially distributed with meary . seconds, independent

Px{X =0} =X/n
A/

Px{X >z} = <1——> N, x> 0.
I3

Cu(yk - xk)

ex (yx) (36)

ey =]
k=1

This function satisfied” f(X", y™) = 1 for everyy™ € R.
Let H = R’;. Observe that the decodgy (cf. (13)) with f as
in (36) is the same as the decogey (cf. (14)).

Let Px~ y~ be the joint distribution undePy~ andPy-n|x».
We only need to considgr:™, y") € R} x R’ that satisfy
0<ap <wy,k=1,---,n. Forsucharfz", y"),

n Y
;xk_(ﬂ )

n

+

/

>/|7;
3=

Z Yk -
k=1

1 n n
glogf(w , y") = log

From this and the stationarity and ergodicity(¢X.,,, Y,, ):n >
1), we get
. 1 I
lim Px» yn» {— log f(X™, Y"™) <log Y fy} =0.
n—oo n

The rest of the proof is similar to that of Theorem 2. O

Proof of Theorem 6 a):Fix n € A. There areM,, mes-

of the past. In other words, whex{z, A, D) = p, the intensity

of the point process of departures also takes the valigime

t. The process of departures is therefore a point process with in-
tensity(A(t, 4, D):t € [0, T,.]).

Any window-code on the timing channel is therefore equiva-
lent to the above strategy with complete feedback on the point-
process channel with maximum intensityand no background
intensity. Complete information about the past departures is nec-
essary to determine the intensity of the departures at time
The capacity of the timing channel (for window-codes) is there-
fore upper-bounded by the capacity of the point-process channel
with complete feedback. From the corollary to [25, Theorem
19.10, pp. 318-320] and the proofs of converse in [2] and [26],
this upper bound is—*; nats per second. O

Proof of Theorem 6 b):The proces$S;. : k € A') of nom-
inal service times is a sequence of independent and exponen-
tially distributed random variables with me#&yy:; seconds. Let
po € (0, 00). Letp £ pap2 /(1 +p2). Suppose that there were
asequence dfv, M, T,, ,)-random window-codes that sat-
isfies for somex > 0, (log M,,)/T;, > e~ + « for all suffi-
ciently largen, andlim,, .., £, = 0. Then, for some> andC

sages. Each message corresponds to a sequence of interarrival

times; thenth arrival occurs before timé;,. This sequence
maps to a (right-continuous with left limits) point process of

arrivals (4;: ¢ € [0, T,,]). A; is the number of arrivals in

sup
z: U(2)<1/po

E[P(C, ¢, W"(2))] < en. @37

Choosey, so thatl/uh < 1/p2 ande™p > e7'y' — a/2,

[0, ], t € [0, T5,]. Analogously, the observed departures forfynere

a (right-continuous with left limits) point procedd;: t €
[0, T..]), whereD, is the number of departures [0, ¢], ¢t €
[0, 7] Let
F
FE

A, D
Fi

o(As:s €10, t])
o(D,;:s€][0,¢])
oA 7 FY

e e

(1L

Fort =0, let (0, A, D) 20. Fort > 0, fix an increasing se-
guence of rational numbe(s,, : n € ') such that, T¢, and let

v(t, A, D) 2 %11%1 (A.,— D, ).

A
1= paps /(e + pg).
Let P be the distribution given by

Px{Z =0} =4/ 111

W s
Px{Z>z}:<1——>c“Z, z
1

> 0.

Note thatZ has mean /uf, = 1/p/ — 1/ seconds. Further-
more, if S is independent o/ and exponentially distributed
with meanl /;.; seconds, thef+Z is exponentially distributed
with mean1/y’ seconds.
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LetZ = (Zy, ---, Z,) be avector of i.i.d. random variables [6]
with common distributio”;, independent of the codebook dis-
tribution and the nominal service times. We then have

[7]
E[P.(C, ¢, W'(Z))|< sup E[P(C, ¢, W'(2))]
2 W(2)<1/ o [8l
+ Pz{l(Z) > 1/ 12} 9]
et PA{U(Z) > 112}
[10]
wherea) follows from (37). Let
[11]
80 S en+ Pr{(Z) > 1/ 2}
[12]

From the weak law of large numbers, we bat,, ... 6,, =0 be-
causel /i < 1/ps. Observe thab [P, (C, ¢, W™ (Z))] is also

the expected probability of error (expectation over the codebook’
distribution) for the exponential server channel with mean serp14]
vice timel/u’ seconds. We can therefore find for this channel

a sequence dfn, M,,, T,,, 6, )-window-codes with [15]

(log Mn)/Tnzeflu’—i—a/Z [16]

for all sufficiently largen, andlim,,_... 6, = 0. Sincee™ !/ (7]

nats per seconds is the largest rate achievable with windowzs]
codes, we reach a contradiction. O

[19]
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