
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000 705

[13] R. Urbanke and A. D. Wyner, “Packetizing for the erasure broadcast
channel with an Internet application,” inInt. Conf. Combinatorics, In-
formation Theory and Statistics, 1997, p. 93.

[14] J. Körner and A. Sgarro, “Universally attainable error exponents for
broadcast channels with degraded message sets,”IEEE Trans. Inform.
Theory, vol. IT-26, pp. 670–679, Nov. 1980.

[15] G. Poltyrev, “Random coding bounds for some broadcast channels,”
Probl. Pered. Inform., vol. 19, no. 1, pp. 9–20, 1983.

[16] R. G. Gallager, Information Theory and Reliable Communica-
tion. New York: Wiley, 1967.

Sequential Decoding for the Exponential Server Timing
Channel

Rajesh Sundaresan, Student Member, IEEE,and
Sergio Verdú, Fellow, IEEE

Abstract—We show the existence of a good tree code with a sequential
decoder for the exponential server timing channel. The expected number
of computations before moving one step ahead is upper-bounded by a finite
number. The rate of information transfer for this code is (2) nats per
second, i.e., one half of the capacity. The cutoff rate for the exponential
server queue is therefore at least (2) nats per second.

Index Terms—Computation, decoding metric, sequential decoder, single-
server queue, timing channel, tree codes.

I. INTRODUCTION

Sequential decoding of convolutional codes and tree codes ([1]–[5],
etc.) is a useful decoding technique wherein the average number of
computations performed is linear in block length as compared to an
exponential number of computations for the maximum-likelihood de-
coder. A vast majority of the literature on sequential decoding deals
with memoryless channels. A few papers, (for example, [6], [7]) extend
the sequential decoding technique to a class of channels with memory,
namely, finite-state channels. In this work we show that the sequential
decoding technique can be used on timing channels (for example, [8]
and [9]). Interestingly, this timing channel is a channel with memory
and cannot be described within the class of finite-state channels.

Specifically, we want to transmit information reliably through a
single-server queue [8], [9], at rates belowhalf the capacity, but with
manageable decoding complexity. In [8]–[10], a decoding technique
for block codes was described where the number of computations is
exponential inn, the number of packets. By imposing a tree structure
on the codes and using the sequential decoding technique, we save
on computations at the expense of the rate at which information is
reliably transmitted. This work is perhaps a first step in the direction
of finding good codes for communication over timing channels.

There are many versions of the sequential decoding technique. The
basic idea behind the Fano algorithm [3] is to move forward in the de-

Manuscript received December 21, 1998; revised Septepmber 23, 1999. This
work was supported in part by the National Science Foundation under Grant
NCR-9523805 002.

The authors are with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA.

Communicated by T. E. Fuja, Associate Editor At Large.
Publisher Item Identifier S 0018-9448(00)01690-4.

coding tree so long as we seem to be (based on a metric) on the right
track. Once the metric falls below a certain threshold, we backtrack
and explore other paths, possibly changing the value of the threshold
to account for the changed circumstances. The stack algorithm [4], [5],
extends the node with the highest metric at each stage, until the end of
the tree is reached. There is a relation between the number of compu-
tations in both these algorithms.

We are interested in finding bounds on the average number of com-
putations before proceeding one step forward in the correct path. The
difficulty with analyzing the performance of the sequential decoding
technique for communication systems with memory is the following.
When comparing two paths that are the same up to a certain node, the
choice of one or the other depends on the branches common to both
paths in a way that is typically difficult to handle. For memoryless chan-
nels, however, the metric that determines this choice can be selected so
that the choice does not depend on the common branches.

We can also get over this difficulty for timing channels. We show
that the firstmbranches can be summed up by one quantity that lends
itself to a simple analysis. Our proof is based on the proof in [2] for
multiple-access channels, restricted to single-user channels. Burke’s
output theorem for anM=M=1 queue plays an important role in deter-
mining a suitable metric. The main contributions of this work are the
choice of this metric, and a simple analytical artifice (used earlier in [8]
in a different context) that shows how the elegant technique in [2] can
be modified to prove the existence of a good tree code for this system
with memory.

Section II introduces the problem in the appropriate notation and
states the result. Section III contains the proof. We conclude with a
brief discussion in Section IV.

II. TREE CODES FORSINGLE-SERVER QUEUE

Before describing the tree code and our result, we briefly describe
the channel. The queue is initially empty. The encoder inputs a certain
(nonzero) number of packets at timet = 0: The last packet input at
time t = 0 is called thezerothpacket. Lety0 be the time at which the
zeroth packet exits the queue after service. The quantityy0 is therefore
the amount of unfinished work at timet = 0: Depending on the mes-
sage to be transmitted, the encoder then sends the first packet at time
x1 seconds, the second packet at timex2 after the first packet, and so
on. Thus the interarrival times of packets arex1; x2; � � � : The receiver
observes the interdeparture times,y1; y2; � � � ; following the departure
of the zeroth packet. LetR+ = [0;1): Let e�(s) = �e��s, s 2 R+:
The conditional probability density of the outputyn = (y1; � � � ; yn)
givenxn andy0 is

f�(y
njxn; y0) =

n

i=1

e�(yi � wi) (1)

where

wi = max 0;

i

j=1

xj �

i�1

j=0

yj (2)

is the server’s idling time before serving theith packet.
We now describe the tree code. We follow the notation in [2] with

a few modifications. At each instant of timet, the source generates a
letterut 2 f0; 1; � � � ;M � 1g; and the sequenceuuu = (u1; u2; � � �)
is encoded by a tree codeggg: The treeggg is such thatM edges leave
each node of the code tree. Each edge is labeled by anN -tuple of
nonnegative real numbers. The root node is labeled by the number of

S0018–9448/00$10.00 © 2000 IEEE

706 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

packets input at timet = 0 including the zeroth packet. We denote by
ut = (u1; u2; � � � ; ut) the path leading from the root node to thetth
level. The code corresponding to the source sequenceut is given by
xNt ut 2 RNt

+ , where

xNt ut = x1 u1 ; � � � ; xN u1 ; xN+1 u2 ; � � � ; xNt ut

is the sequence of interarrival times of theNt packets for message se-
quenceut: Furthermore, we denote the entire codeword corresponding
to the source sequenceuuu by

xxx(uuu) = x1 u1 ; � � � ; xN u1 ; xN+1 u2 ; � � � :

The source sequence fromm to l is defined to be

ulm = (um; um+1; � � � ; ul):

Similarly, we define

xNl
Nm+1 ul = xNm+1 um+1 ; � � � ; xNl ul :

The set of all paths inggg that diverge fromuuu at themth level is called
themth incorrect subtree for the pathuuu, i.e.,

Um(uuu) = fûuu = (u1; � � � ; um�1; ûm; ûm+1; � � �): ûm 6= umg:

Let ggg be a tree code. We characterize the source as follows. The
source sequenceUUU = (U1; U2; � � �) is an independent and identically
distributed (i.i.d.) sequence of random variables where each source
letterUt is uniformly distributed on the setf0; 1; � � � ;M � 1g: The
tree codeggg then transmits information at a rateR nats per unit time,
where

R = lim
t!1

logM t

E
Nt

i=0

Yi

(3)

if the limit exists. All logarithms in this work are taken to be natural
logarithms. The quantityE Nt

i=0 Yi is the average time to receive
theNt packets, when the tree code isggg: This rate can also be written as

R =
logM

N
lim
t!1

E
1

Nt

Nt

i=0

Yi :

The quantityr = (logM)=N depends only on the structure of the
tree, and is a measure of the number nats of information transmitted
per packet.

We now define the metric. This metric depends on the quantityr:
Fix 0 < � < �=2 = �0: We take

� utjy0; y
Nt = M xNt ut jy0; y

Nt (4)

where

M(xnjy0; y
n)

�
= log

f� (ynjxn; y0)
n

i=1

e�(yi)
� nr(1 + "): (5)

The bias termnr(1 + ") in (5) is to make a fair comparison between
paths of different lengths.M(�j�; �) in (5) is similar to the metric in [2].
Note the dependence on the quantity�0 rather than�. This is because
the quantity f�(�j�; �) which determines the metric [2, eq. (4.4)] nor-
malizes tof� (�j�; �):

The functionM in (5) is further related to [2, eq. (4.4)] due to the
following special case of Burke’s output theorem [11]. Let� < �0: Let
the number of packetsQ0 at timet = 0, excluding the zeroth packet,
be distributed according to

Pr fQ0 = kg = 1� �=�0 1� �=�0
k
; k 2 Z+:

In addition to these packets, the zeroth packet is sent. Thus the zeroth
packet sees the queue in steady state upon arrival. Let the arrivals there-
after form a Poisson process of rate�. The zeroth packet departs the
queue at timeY0, whose probability density ise� ��: Furthermore, at
the moment of its departure, the queue is in equilibrium. The output
starting from timeY0 is then a Poisson process of rate� [11 Fact 2.8.2,
p. 60]. In other words,

E [f� (ynjXn; Y0)] =

n

i=1

e�(yi) (6)

where the expectation is with respect toXn andY0: Xn is a random
vector of i.i.d. exponential random variables with mean1=� seconds,
Y0 is independent ofXn, and is exponentially distributed with mean
1=(�0� �): The right-hand side of (6) is the normalizing denominator
within the log function in (5).

The decoder follows the stack algorithm. From a stack containing
some paths inggg, the decoder selects a path with the largest metric, ex-
tends it to the next level inM possible ways, and stores theM new
paths in the stack. A sorting is done as soon as the new paths are added.
The stack algorithm terminates for a tree code with finite depth as soon
as the last level of the tree reaches the stack top. As mentioned in [1],
we shall consider only infinite trees because the average complexity of
sequential decoding is most cleanly formalized and conservatively es-
timated in the framework of infinite trees. For finite trees, we also need
to evaluate the probability of error, which occurs when the last level of
the tree to reach the stack top is not the correct message sequence. The
proof in Section III applies to finite tree codes with simple modifica-
tions.

Using (1), the first term in the right-hand side of (5) can be expanded
as

log
f� (ynjxn; y0)

n

i=1

e�(yi)

=
n log �

�
�(�0 � �)

n

i=1

yi + �0
n

i=1

wi;

if yi � wi; for i = 1; � � � ; n

�1; otherwise

(7)

wherewi is the idling time defined in (2).
We now make the following important observation. Suppose we

compare two paths of lengthsj and l, respectively, that are identical
for the firstm � 1 nodes and diverge at themth node. The past up to
the firstm� 1 nodes can be summarized by one quantity

~ym�1 =

N(m�1)

i=0

yi �

N(m�1)

i=1

xi:

This quantity~ym�1 is the amount of unfinished work at the instant
when theN(m�1)st packet arrives. To decide which of the two paths is
placed higher on the stack, we can simply treat the(m�1)st node as the
root node with~ym�1 playing the role ofy0: The terms in (7) common
to both paths are the same up to the(m� 1)st node. Furthermore, the
wi’s for branches from nodem and beyond are unchanged with~ym�1
in place ofy0: This is because, fork > N(m� 1), we can rewrite (2)
as

wk = max 0;

k

i=N(m�1)+1

xi �

k�1

i=N(m�1)+1

yi � ~ym�1 :

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000 707

Thus the path metric depends on the common nodes only through the
unfinished work at the instant of the arrival of the last common packet.
This observation is summarized by

� uj jy0; y
Nj =� um�1jy0; y

N(m�1)

+ � ujmj~ym�1; y
Nj

N(m�1)+1 (8)

if j � m: Of course,� for the root node is taken to be0. Comparing
� uj jy0; y

Nj and� uljy0; y
Nl , wherel; j � m; and when the

two source sequences have identical initialm�1 branches, is therefore
equivalent to comparing

� ujmj~ym�1; y
Nj

N(m�1)+1 and � ulmj~ym�1; y
Nl
N(m�1)+1 :

Let Cm(ggg; uuu; yyy) denote the number of nodes inUm(uuu) that reach
the top of the stack for a given tree codeggg and a received sequenceyyy:
This is precisely the number of computations made in themth incorrect
subtree. Let

Cm(ggg) = E [Cm(ggg; UUU;YYY)]

be the average number of computations (averaged over the source se-
quence and output of the channel). The random variables over which
the expectation is taken are indicated in upper case letters. For each
L � 1, let

DL(ggg)
�
=
C1(ggg) + � � �+ CL(ggg)

L
:

DL(ggg) is, therefore, a measure of the average number of computations
required to move one step ahead on the correct path [1].

Theorem 1: For every� > 0, there exists a tree codeggg and a con-
stantA < 1 such that the rate of information transfer isR nats per
second whereR(1 + �) > �=(2e), andDL(ggg) � A for everyL � 1:

III. PROOF

A. Main Steps

Our proof technique to show the existence of a good tree code with
sequential decoding is the well-known random coding technique. A tree
is characterized by the number of packets at timet = 0, and the labels
for all the branches. A suitable distribution on these quantities induces
a distribution on the set of infinite trees (using extension theorems in
probability theory). We state some bounds over this ensemble of trees
and thence argue the existence of a good tree. We then prove the stated
bounds in the following subsection.

Choose" > 0 so that(1+�) > (1+")3: Fix � = e�1�0 = �=(2e):
Fix M andN so thatr = (logM)=N satisfies

r(1 + ") < log(�0=�) = 1 < r(1 + ")2:

Each realizationggg is a tree of infinite depth havingM branches per
node, the root node is labeled by a positive integerQ0 + 1, and every
branch of the tree is labeled by anN -tuple inRN

+ : Q0+1 is the number
of arrivals (including the zeroth packet) at timet = 0: The distribution
GGG on the set of infinite trees is described as follows.Q0 is selected
independent of the other branch labelings according to the distribution

Pr fQ0 = kg = (1� �=�)(�=�)k; for k 2 Z+:

Furthermore, eachN -tuple is i.i.d., and such that each component of
theN -tuple is independent and has densitye�: This induces a distri-
butionGGG on the set of infinite trees.

Let

TL(ggg; u
L; yNL) =

1

NL

NL

i=1

yi

denote the average time for a packet to exit, given the input message is
uL, and the output stream isyNL: Let TL(ggg) = ETL(ggg; U

L; Y NL):
Consider the random variableTL(GGG): The queue is in equilibrium at
time t = 0, and the arrivals thereafter are Poisson with rate�. By
Burke’s output theorem, the departures are also Poisson with rate�.
Hence, for everyL � 1

ETL(GGG) = 1=� (9)

where the expectation in (9) is with respect to the distributionGGG:
From the argument in Section I, while finding the expected number

of computations in themth incorrect subtree, the past up tom � 1
nodes can be summarized by one quantity~ym�1: Equilibrium att = 0
and Poisson arrivals thereafter ensures that theN(m�1)st packet (the
last common packet to the paths under consideration) sees the queue
in equilibrium upon arrival.~Ym�1 therefore has the same distribution
asY0: Consequently, the random variablesCm(GGG);m � 1; are iden-
tically distributed. Recall that

DL(GGG) = (C1(GGG) + � � �+ CL(GGG))=L:

In Section III-B we show the following result.

Proposition 1: If r(1 + ") < log(�0=�), there is a finiteK such
thatEC1(GGG) � K:

Stationarity and the ergodic theorem [12, p. 374] imply that, as
L ! 1, bothTL(GGG) andDL(GGG) converge almost surely to random
variablesT 0(GGG) andD(GGG), respectively, such thatET 0(GGG) = 1=�,
andED(GGG) = EC1(GGG) � K: Furthermore, becauseY0(GGG) has a
finite expectation, dominated convergence theorem implies that

E lim
L!1

1

NL
Y0(GGG) = 0:

Hence, with

T (GGG) = T 0(GGG) + lim
L!1

(Y0(GGG)=(NL))

we getET (GGG) = 1=�:
From Chebyshev’s inequality and the union bound on probabilities,

we obtain

P T (GGG) >
1 + "

�
[D(GGG) >

2K(1 + ")

"
�

1 + "=2

1 + "

which implies that

P T (GGG) �
1 + "

�
\ D(GGG) �

2K(1 + ")

"
�

"=2

1 + "
> 0:

Hence, there exists a tree codeggg such thatT (ggg) � (1 + ")=� and
D(ggg) � 2K(1 + ")=":

Following the argument in [1], we then get

lim supDL(ggg) � 2K(1 + ")="

and, therefore,supfDL(ggg)A :L � 1g < A for some finiteA: More-
over, becauser(1 + ")2 > 1; we get

R(1 + ")3 = r(1 + ")3=T (ggg) � �r(1 + ")2 > �=(2e):

This concludes the proof of the Theorem.

708 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000

B. Expected Number of Computations Over the Tree Ensemble

In this subsection, we prove Proposition 1. Fix the first incorrect
subtreeU1(uuu): The number of computations in this subtree is upper-
bounded by (cf. [2, eq. (3.1)])

C1(ggg; uuu; yyy) �
l�0 j�1 û 2U (uuu)

� exp � ûj jy0; y
Nj � � uljy0; y

Nl :

Our aim is to find the expected value of this upper bound over the code
ensemble and the output. Clearly, this average value does not depend
on the source sequence due to symmetry.

We now look at âuj in the first incorrect subtree. The distribution of
GGG is such that the choice ofx1(û1); � � � ; xNj(û

j); is independent of
the choice ofxxx(uuu): Consequently, taking the expectation with respect
to the choice ofx1(û1); � � � ; xNj(û

j); and denoting that expectation
by Ê[�] as in [2], we get

ÊC1(GGG;uuu; yyy) �
l�0 j�1

exp �� uljy0; y
Nl

�

û 2U (uuu)

Ê exp � ûj jy0; y
Nj : (10)

The last summation in (10) can be upper-bounded as follows. This
would have been straightforward if it were not for the memory rep-
resented byy0:

Lemma 1:

û 2U (uuu)

Ê exp � ûj jy0; y
Nj � e�Njr" �

e(� ��)y

(1� �=�0)
:

Proof: There areexpfjNrg nodes at depthj in the setU1(uuu):
The left-hand side is, therefore, equal to

ejNr � e�jNr(1+") � Ê
f� yNj jXNj; y0

Nj

i=1

e�(yi)

(11)

where the expectation̂E[�] is with respect toXNj , which represents
the branch labelings for a generic path in the first incorrect subtree.

We now introduce an auxiliary random variableZ which denotes the
number of packets in the system when the zeroth packet departs after
service. The conditional distribution ofZ givenY0 = y0 is

P 0ZjY (zjy0) =
(�y0)

ze��y

z!

for z 2 Z+: The marginal ofZ when the service times are independent
and have densitye� is given by

P 0Z(z) = 1�
�

�0
�

�0

z

for z 2 Z+: The prime indicates that the service times have density
e� : Observe that

P 0ZjY (zjy0) =P 0Z(z)
e(� ��)y

(1� �=�0)

(�0y0)
ze�� y

z!

�P 0Z(z)
e(� ��)y

(1� �=�0)
(12)

where (12) follows from(�0y0)ze�� y =z! � 1 for everyz 2 Z+ and
y0 2 R+: Let

P 0Y jX ;Y ; P 0Y jY ; P 0Y jY ;Z ; P
0
Y

denote the conditional densities ofY Nj given the indicated random
variables. We then have the following sequence of inequalities:

Ê f� yNj jXNj ; y0

= Ê P 0Y jX ;Y yNj jXNj ; y0

= P 0Y jY yNj jy0

=
z2Z

P 0ZjY (zjy0)P
0
Y jY ;Z yNj jy0; z

a)
=

z2Z

P 0ZjY (zjy0)P
0
Y jZ yNj jz

b)

�
z2Z

P 0Z(z)P
0
Y jZ yNj jz

e(� ��)y

(1� �=�0)

c)
= P 0Y yNj e(� ��)y

(1� �=�0)
;

=
e(� ��)y

(1� �=�0)

Nj

i=1

e�(yi) (13)

wherea) follows becauseY0 andY Nj are conditionally independent
givenZ, a consequence of the memoryless property of the interarrival
times;b) follows from (12); in equalityc), the dependence ony0 has
been successfully separated; equality (13) follows from (6).

Substitution of (13) in (11) yields the lemma.

We continue with the proof of Proposition 1. Observe that the
random variables in the right-hand side of (10) areY0 and(XXX(uuu); YYY):
Substitution of (5) and the result of Lemma 1 in (10), followed by the
expectation operation with respect toY0 and(XXX(uuu); YYY); yields

EC1(GGG;uuu;YYY) �
l�0 j�1

e�jNr"e�lNr(1+")

�
R

dy0 PY (y0)
e(� ��)y

(1� �=�0)

�
R

dyNl E f� yNljXNl; y0

Nl

i=1

e�(yi)

f� (yNljXNl; y0)

(14)

where the expectation in the innermost integral in (14) is with respect
to XNl: Observe that

E
f� yNljXNl; y0

f� (yNljXNl; y0)
=E f� yNljXNl; y0

4

�

Nl

�

Nl

i=1

e�(yi)
e(� ��)y

(1��=�0)

4

�

Nl

(15)

where (15) follows from (13). Furthermore, because2�0 = � and
PY (y0) = e���(y0), we obtain

R

dy0 PY (y0)
e2(� ��)y

(1� �=�0)2
=

(�=�� 1)

(1� �=�0)2
(16)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 2, MARCH 2000 709

and

R
dyNl

Nl

i=1

e�(yi)

2

=
R

dy �2e�2�y

Nl

= (�=2)Nl : (17)

Substitution of (15)–(17) in (14) yields

EC1(GGG;uuu;YYY) �
l�0 j�1

e�jNr" � (�=�� 1)

(1� �=�0)2

� exp lN r(1 + ")� log
�

2�
:

The summation overj is finite. The summation overl is finite because
r(1 + ") < log(�=(2�)): Consequently,EC1(GGG) � K, for some
finite K:

IV. DISCUSSION

We have shown that for every� > 0, there is a tree code such that the
rate of information transferR, using the sequential decoding technique,
satisfiesR(1 + �) > �=(2e) nats per second, and the average number
of computations to move one step forward in the correct direction is
upper-bounded by a finite number. The quantity�=(2e)nats per second
is one half of the capacity, and is a lower bound on the cutoff rate for
sequential decoding. Some open questions remain. For example, we do
not know the cutoff rate for this exponential server timing channel.

Although we have not dealt with discrete-time timing channels [9]
in this work, analogous results follow straightforwardly. However, we
do not know a closed-form expression for the rate achievable using se-
quential decoding with an analogous metric. For the geometric service
time distributionP (S = k) = �(1��)k�1; k � 1; the corresponding
achievable rate in nats per slot is

max
�2[0;1�p1��)

� log
1�p1� �

1 +
p
1� �

+ log
2� �

�
:

Let�� be the maximizing�. To remove the dependence onY0 as in the
continuous-time case (cf. (13)), �� should satisfy

(1� (�� ��)) � 2� �� + 1� �
2

< 1:

Although we have not proved that this holds for all� 2 (0; 1), numer-
ical evidence indicates that this is so.

In practice, we need trees with finite depth having extra terminating
branches. These tail branches ensure that the last few source symbols
can also be decoded correctly with high probability. While this causes
a loss in rate, the loss is negligible if the number of additional branches
is small in comparison to the block length of the code. In this case,
we can easily show that the number of computations in each incorrect
subtree is upper-bounded by a constant that is independent of the code
length. Furthermore, the probability of error, when one of the other
terminating leaves reaches the top of the stack, can be made small by
choosing a sufficiently long tail [4]. We omit proofs for the rationale
of these simple modifications.

If all terminating leaves have the sameNt

i=1 xi, wheret is the max-
imum depth of the tree, then the state represented by~yt is the same
for all terminating leaves, given a sequence of received interdeparture
times. All states have therefore merged into a single one. Transmission
can then begin afresh, with a decision up to deptht not affecting future
decisions.

We finally remark that�, the net throughput in packets per second,
should be smaller than�=2 for the sequential decoding scheme to work
with finite per-branch computational complexity. Therefore, in already

existing systems, information can be piggy-backed through timing in
the above tree-code form only if the system is lightly loaded. Moreover,
unlike convolutional codes, we need to store the labels for the entire tree
at the decoder. Despite these drawbacks, this work is a positive step
in the direction of finding good codes for communication over timing
channels.

REFERENCES

[1] E. Arikan, “Sequential decoding for multiple access channels,”IEEE
Trans. Inform. Theory, vol. 34, pp. 246–259, Mar. 1988.

[2] V. B. Balakirsky, “An upper bound on the distribution of computation of
a sequential decoder for multiple-access channels,”IEEE Trans. Inform.
Theory, vol. 42, pp. 399–408, Mar. 1996.

[3] R. G. Gallager, Information Theory and Reliable Communica-
tion. New York: Wiley, 1968.

[4] F. Jelinek, “A fast sequential decoding algorithm using a stack,”IBM J.
Res. Develop., vol. 13, pp. 675–685, 1969.

[5] K. Zigangirov, “Some sequential decoding procedures,”Probl. Pered.
Inform., vol. 2, no. 4, pp. 13–25, 1966.

[6] A. Lapidoth and J. Ziv, “Universal sequential decoding,” inProc. 1998
IEEE Information Theory Workshop, Killarney, Ireland, June 1998.

[7] J. Ziv, “Universal decoding for finite-state channels,”IEEE Trans. In-
form. Theory, vol. IT-31, pp. 453–460, July 1985.

[8] V. Anantharam and S. Verdú, “Bits through queues,”IEEE Trans. In-
form. Theory, vol. 42, pp. 4–18, Jan. 1996.

[9] A. Bedekar and M. Azizog˜lu, “The information-theoretic capacity
of discrete-time queues,”IEEE Trans. Inform. Theory, vol. 44, pp.
446–461, Mar. 1998.

[10] R. Sundaresan and S. Verdú, “Robust decoding for timing channels,”
IEEE Trans. Inform. Theory, vol. 46, pp. 405–419, Mar. 2000.

[11] J. Walrand,An Introduction to Queueing Neworks. Englewood Cliffs,
NJ: Prentice-Hall, 1988.

[12] G. R. Grimmett and D. R. Stirzaker,Probability and Random Processes,
2nd ed. New York: Oxford Univ. Press, 1992.

Entropy Expressions for Multivariate Continuous
Distributions

Georges A. Darbellay and Igor Vajda, Senior Member, IEEE

Abstract—Analytical formulas for the entropy and the mutual informa-
tion of multivariate continuous probability distributions are presented.

Index Terms—Differential entropy, mutual information.

I. INTRODUCTION

The differential entropy of a random vectorXXX taking its values in
IRn with probability density functionp(xxx) is defined by

h(XXX) = �
IR

dxxx p(xxx) ln p(xxx)

Manuscript received April 22, 1998; revised November 3, 1999. This work
was supported by the Fonds National Suisse de la Recherche Scientifique under
Grant 8220–040089 and by the Grant Academy of the Czech Republic under
Grant 102/99/1137.

The authors are with the Institute of Information Theory and Automation,
Academy of Sciences of the Czech Republic, 182 08 Prague, Czech Republic
(E-mail: {dbe}{vajda}@utia.cas.cz.

Communicated by S. Shamai, Associate Editor for Shannon Theory.
Publisher Item Identifier S 0018-9448(00)01687-4.

0018–9448/00$10.00 © 2000 IEEE

