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putations before proceeding one step forward in the correct path. The
difficulty with analyzing the performance of the sequential decoding
technique for communication systems with memory is the following.
When comparing two paths that are the same up to a certain node, the
choice of one or the other depends on the branches common to both

Sequential Decoding for the Exponential Server Timing pathsin away that is typically difficult to handle. For memoryless chan-
nels, however, the metric that determines this choice can be selected so

Channel that the choice does not depend on the common branches.
Rajesh SundaresaStudent Member, IEEEnd We can also get over this difficulty for timing channels. We show
Sergio Verd( Fellow, IEEE that the firstmbranches can be summed up by one quantity that lends

itself to a simple analysis. Our proof is based on the proof in [2] for
multiple-access channels, restricted to single-user channels. Burke’s
Abstract—We show the existence of a good tree code with a sequential output theorem for ad{ /M /1 queue plays an important role in deter-
decoder for the exponential server timing channel. The expected number mining a suitable metric. The main contributions of this work are the
of computations before moving one step ahead is upper-bounded by afinite 1, ice of this metric, and a simple analytical artifice (used earlier in [8]
number. The rate of information transfer for this code is . /(2e) nats per . . . .
second, i.e., one half of the capacity. The cutoff rate for the exponential in a different context) that shows how the elegant technique in [2] can
server queue is therefore at leastt /(2e) nats per second. be modified to prove the existence of a good tree code for this system
Index Terms—Computation, decoding metric, sequential decoder, single- with m(.emory: . . .
server queue, timing channel, tree codes. Section Il introduces the problem in the appropriate notation and
states the result. Section Il contains the proof. We conclude with a
brief discussion in Section IV.
I. INTRODUCTION

Sequential decoding of convolutional codes and tree codes ([1]-[5], Il. TREE CODES FORSINGLE-SERVER QUEUE

etc.) is a useful decoding technique wherein the average number ogefore describing the tree code and our result, we briefly describe
computations performed is linear in block length as compared t0 g channel. The queue is initially empty. The encoder inputs a certain
exponential number of computations for the maximum-likelihood dgnonzero) number of packets at time= 0. The last packet input at
coder. A vast majority of the literature on sequential decoding deajfe + = 0 is called thezerothpacket. Letyo be the time at which the
with memoryless channels. A few papers, (for example, [6], [7]) extengroth packet exits the queue after service. The quantity therefore
the sequential decoding technique to a class of channels with memeggg amount of unfinished work at tinte= 0. Depending on the mes-
namely, finite-state channels. In this work we show that the sequentigye to be transmitted, the encoder then sends the first packet at time
decoding technique can be used on timing channels (for example, [8]seconds, the second packet at timeafter the first packet, and so
and [9]). Interestingly, this timing channel is a channel with memoryn Thuys the interarrival times of packets afe s, - - - . The receiver
and cannot be described within the class of finite-state channels. gpserves the interdeparture times, y». - - -, following the departure
Specifically, we want to transmit information reliably through & the zeroth packet. L&t = [0, ). Lete,(s) = ue ", s € R
single-server queue [8], [9], at rates belbalf the capacity, but with The conditional probability density of the outpsit = (y1. -+, y»)
manageable decoding complexity. In [8]-[10], a decoding techniq@ﬁ,enl,n andyo is
for block codes was described where the number of computations is "
exponential in2, the number of packets. By imposing a tree structure Fuly™ 2™, yo) = H en(yi — w;) 1)
on the codes and using the sequential decoding technique, we save ’
on computations at the expense of the rate at which informationv\il%ere
reliably transmitted. This work is perhaps a first step in the direction
of finding good codes for communication over timing channels. i i1
There are many versions of the sequential decoding technique. The Wy = max {0, Z Ti— Z ?lj} (2)
basic idea behind the Fano algorithm [3] is to move forward in the de- J=1 j=0

=1

is the server’s idling time before serving tith packet.
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packets input at time = 0 including the zeroth packet. We denote bylin addition to these packets, the zeroth packet is sent. Thus the zeroth

u' = (u1,ua2,--+,u:) the path leading from the root node to ttth  packet sees the queue in steady state upon arrival. Let the arrivals there-
level. The code corresponding to the source sequehds given by after form a Poisson process of rateThe zeroth packet departs the
Nt (u') € RY', where queue at tim@%, whose probability density is,,_». Furthermore, at
Nt/ ot 1 1 9 . the moment of its departure, the queue is in equilibrium. The output
e () = (e (0h) e (00) seva () o (uf) starting from timel}, is then a Poisson process of ratfl1 Fact 2.8.2,

is the sequence of interarrival times of tNe packets for message se-p. 60]. In other words,
quence:’. Furthermore, we denote the entire codeword corresponding

n

to the source sequenaeb niyvn oy
a y . E[fuy" X", Yo)] = [ extwo) (6)
:l:(u) = (.T] (ul) ', TN (Ul) s TN 41 (U‘) 7) . =1
The source sequence fromto [ is defined to be where the expectation is with respect¥d’ andY,. X" is a random

vector of i.i.d. exponential random variables with mégn seconds,

L y y - 7).
o = (s U, ) Y, is independent o™, and is exponentially distributed with mean

Similarly, we define 1/(¢ — A). The right-hand side of (6) is the normalizing denominator
NI . " . within the log function in (5).
ENmt1 (u ) = (IN"““ (@™ (u )) : The decoder follows the stack algorithm. From a stack containing
The set of all paths i that diverge fromu at themth level is called Some paths ig, the decoder selects a path with the largest metric, ex-
the mth incorrect subtree for the path i.e., tends it to the next level id/ possible ways, and stores thé new
. L . paths in the stack. A sorting is done as soon as the new paths are added.
U (u) = {0 = (w1, 1, s 1, = 2)3 A 7 U} The stack algorithm terminates for a tree code with finite depth as soon

Let g be a tree code. We characterize the source as follows. Tthe last level of the tree reaches the stack top. As mentioned in [1],
source sequendé = (U,.,Us, - - -) is an independent and identically We shall consider only infinite trees because the average complexity of
distributed (i.i.d.) sequence of random variables where each souf€sluential decoding is most cleanly formalized and conservatively es-
letter U; is uniformly distributed on the sef0,1,---, M — 1}. The timated in the framework of infinite trees. For finite trees, we also need
tree codey then transmits information at a rafe nats per unit time, to evaluate the probability of error, which occurs when the last level of
where the tree to reach the stack top is not the correct message sequence. The

. proof in Section Il applies to finite tree codes with simple modifica-
R=tim 28 (3) tions.
(=5 5 {i YL} Using (1), the first term in the right-hand side of (5) can be expanded
=0 as

if the limit exists. All logarithms in this work are taken to be natural
logarithms. The quantity [Z;V:to Y:| is the average time to receive log Juw (y" 2", y0)

the Nt packets, when the tree codegyisThis rate can also be written as I

R= <M>/<lim E
N t—oo

The quantityr = (log M)/N depends only on the structure of the )
tree, and is a measure of the number nats of information transmitted —0o0, otherwise
per packet.

We now define the metric. This metric depends on the quantity
Fix0 < A < p/2 = p'. We take

ex(y:)
=1

Nt
1 7 n
ﬁZOYL:|> nlog & —(p' = X)Xy + 'Y wi,
i= _ =1 i=1

if yi > wi.fori=1,---,n

(@)

wherew; is the idling time defined in (2).
We now make the following important observation. Suppose we
compare two paths of lengthsandi, respectively, that are identical
r (ut|ym yNt> =M (x”f (uf) o, y“’f> (4) for tr_we firstm — 1 nodes and diverge _at theth node. Thg past up to
the firstrn — 1 nodes can be summarized by one quantity

where
N(m—1) N(m—1)
Ay le™ . gm,fl = Yi — L.
M(2"yo,y") = log M —nr(l+e). (5) ; ;
IT ex(y:)
i=1

This quantityg.,—1 is the amount of unfinished work at the instant
The bias termr (1 + ¢) in (5) is to make a fair comparison betweerwhen thelV (m—1)st packet arrives. To decide which of the two paths is
paths of different lengthg (-|-, -) in (5) is similar to the metric in [2]. placed higher on the stack, we can simply treatthe-1)st node as the
Note the dependence on the quantityrather than:. This is because root node withy,._; playing the role ofy,. The terms in (7) common
the quantityy/f,. (|-, -) which determines the metric [2, eq. (4.4)] nor-to both paths are the same up to the — 1)st node. Furthermore, the
malizes tof,./ (-|-, ). w;'s for branches from node: and beyond are unchanged with
The functionM in (5) is further related to [2, eq. (4.4)] due to thein place ofy,. This is because, fdf > N (1 — 1), we can rewrite (2)
following special case of Burke’s output theorem [11]. Ret n'. Let as
the number of packei§, at timet = 0, excluding the zeroth packet, \ -

be distributed according to .
Z Ty — Z Yi — Ym—1

. wy = max ¢ 0,
Pr{Qo =k} = (1 — /\//l,') (1 — /\//l,/) R ke Z4. i=N(m—1)+1 i=N(m—1)+1
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Thus the path metric depends on the common nodes only through theet
unfinished work at the instant of the arrival of the last common packet. NL
This observation is summarized by 1 Z "

NL ="

T (“’J"y(]’ ]/Nj) =T (um—1 lvo. yN(m—]))
v v denote the average time for a packet to exit, given the input message is
+T (ufn|g7m_1, yﬁigm71)+l> (8) w*, and the output stream ig"L. Let Ty (g) = ET.(g. U*, YV,
Consider the random variable, (G). The queue is in equilibrium at
if j > m. Of course]l for the root node is taken to lfe Comparing time ¢ = 0, and the arrivals thereafter are Poisson with fatdy

T (u’|yo.y™7) andT (u'lyo,y™"'), wherel, j > m, and when the Burke’s output theorem, the departures are also Poisson withrate
two source sequences have identical initiat 1 branches, is therefore Hence, for event. > 1

equivalent to comparing

Ti(g,u". yN") =

ETi(G) =1/) 9)

T (ufnwm,l. y%fm_w_i_]) and T (u£n|gm,1, y%ém—1)+1) . o o o
where the expectation in (9) is with respect to the distribuGbn
Let C,.(g.u,y) denote the number of nodesiin, (u) that reach From the argument in Section |, while finding the expected number
the top of the stack for a given tree cogland a received sequenge Of computations in thenth incorrect subtree, the past upso — 1
This is precisely the number of computations made initieincorrect nodes can be summarized by one quantity., . Equilibrium att = 0
subtree. Let and Poisson arrivals thereafter ensures thabthe. — 1)st packet (the
last common packet to the paths under consideration) sees the queue
Cn(g) = E[C(g,U,Y)] in equilibrium upon arrivalY;,,_, therefore has the same distribution
asYy. Consequently, the random variabl€s, (G), m > 1, are iden-
be the average number of computations (averaged over the sourceiggly distributed. Recall that
guence and output of the channel). The random variables over which
the expectation is taken are indicated in upper case letters. For each D(G) = (Ci(G)+---+ CL(G))/L.

L>1,let . .
In Section 11I-B we show the following result.

2 Cilg) + L + CL(g). Proposition 1: If (1 + <) < log(p'/A), there is a finitelX' such
that EC, (G) < K.
D,.(g) is, therefore, a measure of the average number of computations . . .
required to move one step ahead on the correct path [1]. Stationarity and the ergodic theorem [12, p. 374] imply that, as
L — oo, bothTr,(G) and Dr,(G) converge almost surely to random

Theorem 1: For everys > 0, there exists a tree cogeand a con- variablesT’ (G) and D(G), respectively, such thatT'(G) = 1/,
stant4 < oo such that the rate of information transferfisnats per and ED(G) = EC,(G) < K. Furthermore, becausé (G) has a
second wherd?(1 4 6) > 1/(2¢),andDr(g) < A foreveryL > 1. finite expectation, dominated convergence theorem implies that

Dy.(g)

. 1
lll. PROOF E Lliléo WYO(G)} =0.
A. Main Steps )
. ) Hence, with
Our proof technique to show the existence of a good tree code with
sequential decoding is the well-known random coding technique. Atree TG =T (G)+ Jim (Yo(G)/(NL))

is characterized by the number of packets at timxe0, and the labels

for all the branches. A suitable distribution on these quantities induces getET(G) = 1/A.

a distribution on the set of infinite trees (using extension theorems inFrom Chebyshev’s inequality and the union bound on probabilities,
probability theory). We state some bounds over this ensemble of trees obtain

and thence argue the existence of a good tree. We then prove the stated _ _ _
{{T(G) S 1+“}U{D(G) S 21‘({+“)}} < 1+z/2

bounds in the following subsection. r S 17
Chooses > 0sothat(148) > (1+¢)*. Fix A = e 'y = p/(2e). g N -
Fix M and N so thatr = (log M) /N satisfies which implies that
r(1+4¢e) <log(p'/A) =1<r(l+2)°. P {{T(G‘) < 1‘;\‘5}0 {D(G) < 2K(1+¢) }} > 15/2 > 0.
- - € ~1+e¢

Each realizatiory is a tree of infinite depth having/ branches per
node, the root node is labeled by a positive inte@er+ 1, and every
branch of the tree is labeled by ahtuple inRY . Qo +1 is the number
of arrivals (including the zeroth packet) at tihe- 0. The distribution
G on the set of infinite trees is described as follovis. is selected
independent of the other branch labelings according to the distribution
and, thereforesup{Dr,(g)A: L > 1} < A for some finiteA. More-
over, because(1 + <)* > 1, we get

Hence, there exists a tree coglesuch thatl’'(g) < (1 + ¢)/X and
D(g) < 2K(1+4=)/=.
Following the argument in [1], we then get

limsup Dr(g9) <2K(1+:2)/e

Pr{Qo=Fk}=(1-XNp\/w*  forke z,.

Furthermore, eactV-tuple is i.i.d., and such that each component of R(1+2)° =r(1+2)°/T(g) > Mr(1+2)% > pu/(2e).
the N-tuple is independent and has dengity This induces a distri- -
butionG on the set of infinite trees. This concludes the proof of the Theorem. O
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B. Expected Number of Computations Over the Tree Ensemble  where (12) follows fron(p'yo)”e*”'yo/z! < 1foreveryz € Z4 and

In this subsection, we prove Proposition 1. Fix the first incorre&® € R+ Let
subtred(; (). The number of computations in this subtree is upper- P! P! P! p!
bounded by (cf. [2, eq. (3.1)]) YNIXT Yoo TY NI Yoy TY X0, 40 Ty

denote the conditional densities BF'’ given the indicated random
C1(9~“?/)SZZ Z g

; _ . variables. We then have the following sequence of inequalities:
120 j>1 a7 €l (u)

{0 (@) 1 (™)) B e (415 0)

Our aim is to find the expected value of this upper bound over the code =E [P)I/ Ni|XNi vy (yNj |X‘we yo)]
ensemble and the output. Clearly, this average value does not depend _p N
on the source sequence due to symmetry. = YNy, (y |y“)
We now look at &’ in the first incorrect subtree. The distribution of — i 4 Nj
) ; A = Pz1vo (2]yo) Py vs ,(y y-,3>
G is such that the choice afy (i), - -, zn;(ii?), is independent of GZZ+ 21 (2l0) Py vapy. 7 Jvo
the choice ofe(u). Consequently, taking the expectation with respect 2 ) ) v
to the choice ofei(at),---,xn;(a’), and denoting that expectation = Z P71y, (2ly0) Py ~j z (y' ! ~)
by E[-] as in [2], we get €24
N b) , , Ny 6(#,—>\)y0
ECi(Gu,p) < > Y exp{—r (u’lyo,y‘”)} < EZZ+ Pz(2)Pyxiz (y |> (1= /')
(>0 521
- ; - (' =)y
S E [exp {F (ﬁjlyo,y‘”)}} . (10) 2Pl (yw) K—
i ey (u) (1=X/p")
e(/l’*/\)yo Ny
The last summation in (10) can be upper-bounded as follows. This = m H ex(yi) (23)
would have been straightforward if it were not for the memory rep- ( R~

resented byjo. ri " .
Yo wherea) follows becaus&s andY ™’ are conditionally independent

Lemma 1: givenZ, a consequence of the memoryless property of the interarrival
(WMo times;b) follows from (12); in equality), the dependence ap has
Z E [exp {r (ﬁ‘j|y0’ yNi) }] < e Nire, (’7, been successfully separated; equality (13) follows from (6).
o3 T () (1= A/u) Substitution of (13) in (11) yields the lemma. O

We continue with the proof of Proposition 1. Observe that the
random variables in the right-hand side of (10) Bseand(X (u),Y).
Substitution of (5) and the result of Lemma 1 in (10), followed by the
expectation operation with respectifp and(X (u),Y), yields

N A1) EC(Gu.Y) <D e Nree i)
H ex(yi) (>0 j>1

=t o1’ =)o
where the expectatioR[] is with respect taX¥/, which represents /R+ dyo Py (yo) (1=X/p')
the branch labelings for a generic path in the first incorrect subtree.

We now introduce an auxiliary random varialilavhich denotes the .

number of packets in the system when the zeroth packet departs after / dy™" E | fu (le|XN’., yg)
service. The conditional distribution &f givenY, = yo is RN

Proof: There areexp{jNr} nodes at depth in the set/; (u).
The left-hand side is, therefore, equal to

. NiivNj
ejl\/‘r i 6—]1\‘7'(1-‘,—5) i E f}l, (:U . ]|‘X 1791/0)

Nl
IT ex(y:)
=1

Fur (7 TXN o)

, o Ve e~ Mo (14)
Py, (zlyo) = %

where the expectation in the innermost integral in (14) is with respect
forz € Z,. The marginal o when the service times are independeniy X!, Observe that
I\ N1
=E [fm (y’\rllXN'., ?/0)] <i)
I

and have density,, is given by ;
fu (ylVl|X1\ [‘/ yO)
N1 el =Nwa g\
for = € Z4. The prime indicates that the service times have density < H ex(yi) (I=X\/u') (15)

Fur (VXN o)

A A\
re=(1-2) ()
=1 ;
e,r. Observe that

where (15) follows from (13). Furthermore, becaigé = u and

(1" =) 1Nz —p .
et vo (ﬂ Z/O) e o PVO (:ll()) = EH,,\(yo), we obtain

Pyivy(2lyo) = P4 (2)

(1—=X\/u") z!
e’ =Nvo ' e’ =Nvo (n/A-1)
n dyo Py, - 16
ST 12 f, Pt = = 09
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and existing systems, information can be piggy-backed through timing in
. NI 2 . N1 the above tree-code form only if the system is lightly loaded. Moreover,
/ dy™! (H 6,\(3/,7)) (/ dy Aze“y> unlike convolutional codes, we need to store the labels for the entire tree
R i=1 Ry at the decoder. Despite these drawbacks, this work is a positive step
= ()\/Q)Nl . (17) inthe direction of finding good codes for communication over timing
channels.

Substitution of (15117) in (14) yields

: —jnve (/A =1)
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