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Abstract — We give a conceptually simple proof for
the capacity of the exponential server queue. Our
proof links the timing channel to the point-process
channel with complete feedback. This point-process
approach enables us to bound capacities of timing
channels that arise in multiserver queues, queues in
tandem, and other simple configurations.

The capacity of the exponential server queue with service
rate o packets per second is e~'u nats per second {1]. The
capacity of the point-process channel with maximum input
intensity p points per second, and no background intensity, is
also e~'u nats per second (cf.[2],[3]). Furthermore, in both
channels, the capacity does not increase in the presence of
complete feedback. In [1], the connection between both chan-
nels in the presence of complete feedback was discussed briefly.
In {4], this connection was further explored. It was shown
that any strategy on the exponential server channel can be

mapped to an equivalent strategy that uses feedback on the’

point-process channel. This observation implies that the ca-
pacity of the exponential server channel is upperbounded by
the capacity of the point-process channel with complete feed-
back, i.e., e” !y nats per second.

From [1], we know that e~'u nats per second is indeed
achievable on the exponential server queue. In other words,
although the exponential server queue is only a particular case
of a point-process channel with feedback, it attains the point-
process channel capacity. In this paper, we provide insight on
why there is no loss in capacity.

To see the connection between the queue and the point-
process channel, fix a sequence of arrivals denoted by the
counting process ¢ = (z¢ : ¢ € [0,T]). Let (Y: : ¢t € [0,T])
be the corresponding counting process of departures from the
single-server queue of service rate p packets per second. Then
the state process (Q: = z; — Y; : t € [0, T}]) indicates the num-
ber of packets in the queue as a function of time. Furthermore,
the departure process (Y; : t € [0,T]) is a self-exciting Pois-
son process with rate A = (A; = pl{Q:~ > 0} : t € (0,T)).
Indeed, if Q:— = 0, no packet can depart at time ¢ (€ (0, T])
and the instantaneous rate of the departure process is 0. If
Q- > 0, at least one packet is in the system at t—. Due to the
memoryless property of exponential service times, the residual
time for the next departure is exponentially distributed with
mean 1/p seconds, independent of the past, i.e., the instanta-
neous rate of the departure process is p at time ¢.

It is well-known that the sample function density (which
plays the role of probability density) given input z, is p(z,y),
where

T
p(z,y) £ exp {/ [log(Ae) dy: — Ae dt]} . (1)
0
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Furthermore, for a given probability measure on the input
space, the normalized mutual information is

- ,
%mx;m: %E/O at [p)~¢(A)], @

where A: = E[Xe| (Y, : s €[0,t))], for each t € [0,T}, and
o(u) = ulogu, (see [2}, [3], [5]). We take ¢(0) = 0. Note that
A is an estimate of the rate of the departure process given
prior departures.

We can show the existence of codes that have vanishing
probability of error (as the observation interval T increases
without bound) at rate e~!y nats per second. Here, for
brevity, we only argue that there is an input probability mea-
sure such that the normalized mutual information equals the
upperbound e ™! nats per second. The input measure should
induce the following properties to attain the upperbound.

(a) At =0or p.

® 1) [ dt E]=ep

(¢) At should be independent of prior departures
(Y; : s €[0,t)), and E[A¢] should be a constant over
time, i.e., A=e M.

Let the input probability measure be a Poisson process with
rate e~ !y packets per second. Let the queue be in equilibrium
at t = 0. We then have an M/M/1 queueing system. Property
(a) holds because A; is u times an indicator function. Property
(b) follows from ergodicity of the state process and the fact
that the queue is nonempty with probability e ~!. Property (c)
holds by Burke’s theorem (for e.g., [5, V.T1]); the state of the
queue @: is independent of prior departures (Y; : s € [0,t))
and therefore so is A;.

The point-process approach via (1), (2) and the filtering
techniques of [5] (to provide estimates of queue size) can be
used to find achievable rates of some simple networks of ex-
ponential servers. In [6], lower bounds on the capacities of
multiserver queues and two queues connected in tandem are
provided.
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