

Point Process Channel and Capacity of The Exponential Server Queue

Rajesh Sundaresan¹
 Qualcomm Inc., 385 Reed St.,
 Santa Clara, CA 95051 USA
 e-mail: rajeshs@qualcomm.com

Abstract — We give a conceptually simple proof for the capacity of the exponential server queue. Our proof links the timing channel to the point-process channel with complete feedback. This point-process approach enables us to bound capacities of timing channels that arise in multiserver queues, queues in tandem, and other simple configurations.

The capacity of the exponential server queue with service rate μ packets per second is $e^{-1}\mu$ nats per second [1]. The capacity of the point-process channel with maximum input intensity μ points per second, and no background intensity, is also $e^{-1}\mu$ nats per second (cf.[2],[3]). Furthermore, in both channels, the capacity does not increase in the presence of complete feedback. In [1], the connection between both channels in the presence of complete feedback was discussed briefly. In [4], this connection was further explored. It was shown that any strategy on the exponential server channel can be mapped to an equivalent strategy that uses feedback on the point-process channel. This observation implies that the capacity of the exponential server channel is upperbounded by the capacity of the point-process channel with complete feedback, i.e., $e^{-1}\mu$ nats per second.

From [1], we know that $e^{-1}\mu$ nats per second is indeed achievable on the exponential server queue. In other words, although the exponential server queue is only a particular case of a point-process channel with feedback, it attains the point-process channel capacity. In this paper, we provide insight on why there is no loss in capacity.

To see the connection between the queue and the point-process channel, fix a sequence of arrivals denoted by the counting process $x = (x_t : t \in [0, T])$. Let $(Y_t : t \in [0, T])$ be the corresponding counting process of departures from the single-server queue of service rate μ packets per second. Then the state process $(Q_t = x_t - Y_t : t \in [0, T])$ indicates the number of packets in the queue as a function of time. Furthermore, the departure process $(Y_t : t \in [0, T])$ is a self-exciting Poisson process with rate $\lambda = (\lambda_t = \mu \mathbb{1}\{Q_{t-} > 0\} : t \in (0, T])$. Indeed, if $Q_{t-} = 0$, no packet can depart at time t ($\in (0, T]$) and the instantaneous rate of the departure process is 0. If $Q_{t-} > 0$, at least one packet is in the system at $t-$. Due to the memoryless property of exponential service times, the residual time for the next departure is exponentially distributed with mean $1/\mu$ seconds, independent of the past, i.e., the instantaneous rate of the departure process is μ at time t .

It is well-known that the sample function density (which plays the role of probability density) given input x , is $p(x, y)$, where

$$p(x, y) \triangleq \exp \left\{ \int_0^T [\log(\lambda_t) dy_t - \lambda_t dt] \right\}. \quad (1)$$

¹This work was supported in part by the National Science Foundation under Grant NCR-9523805 002

Furthermore, for a given probability measure on the input space, the normalized mutual information is

$$\frac{1}{T} I_T(X; Y) = \frac{1}{T} E \int_0^T dt [\phi(\lambda_t) - \phi(\hat{\lambda}_t)], \quad (2)$$

where $\hat{\lambda}_t = E[\lambda_t | (Y_s : s \in [0, t))]$, for each $t \in [0, T]$, and $\phi(u) = u \log u$, (see [2], [3], [5]). We take $\phi(0) = 0$. Note that $\hat{\lambda}_t$ is an estimate of the rate of the departure process given prior departures.

We can show the existence of codes that have vanishing probability of error (as the observation interval T increases without bound) at rate $e^{-1}\mu$ nats per second. Here, for brevity, we only argue that there is an input probability measure such that the normalized mutual information equals the upperbound $e^{-1}\mu$ nats per second. The input measure should induce the following properties to attain the upperbound.

- (a) $\lambda_t = 0$ or μ .
- (b) $(1/T) \int_0^T dt E[\lambda_t] = e^{-1}\mu$.
- (c) λ_t should be independent of prior departures $(Y_s : s \in [0, t))$, and $E[\lambda_t]$ should be a constant over time, i.e., $\lambda_t = e^{-1}\mu$.

Let the input probability measure be a Poisson process with rate $e^{-1}\mu$ packets per second. Let the queue be in equilibrium at $t = 0$. We then have an $M/M/1$ queueing system. Property (a) holds because λ_t is μ times an indicator function. Property (b) follows from ergodicity of the state process and the fact that the queue is nonempty with probability e^{-1} . Property (c) holds by Burke's theorem (for e.g., [5, V.T1]); the state of the queue Q_t is independent of prior departures $(Y_s : s \in [0, t))$ and therefore so is λ_t .

The point-process approach via (1), (2) and the filtering techniques of [5] (to provide estimates of queue size) can be used to find achievable rates of some simple networks of exponential servers. In [6], lower bounds on the capacities of multiserver queues and two queues connected in tandem are provided.

REFERENCES

- [1] V. Anantharam and S. Verdú, "Bits through queues", *IEEE Trans. Inform. Theory*, vol. IT-42, pp.4-18, Jan. 1996.
- [2] Y.M. Kabanov, "The capacity of a channel of the Poisson type", *Theory Prob. Appl.*, vol. 23, pp.143-147, 1978.
- [3] M.H.A. Davis, "Capacity and cutoff rate for Poisson-type channels", *IEEE Trans. Inform. Theory*, vol. IT-26, pp.710-715, Nov. 1980.
- [4] R. Sundaresan and S. Verdú, "Robust decoding for timing channels", *IEEE Trans. Inform. Theory*, vol. IT-46, pp.405-419, Mar. 2000.
- [5] P. Brémaud, *Point Processes and Queues: Martingale Dynamics*, Springer-Verlag, New York, 1981.
- [6] R. Sundaresan, *Coded Communication over Timing Channels*, Doctoral dissertation, Princeton University, Princeton, NJ, Sept. 1999.