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Abstract - We give a conceptually simple proof for 
the capacity of the exponential server queue. Our 
proof links the timing channel to the point-process 
channel with complete feedback. This point-process 
approach enables us to bound capacities of timing 
channels that arise in multiserver queues, queues in 
tandem, and other simple configurations. 

The capacity of the exponential server queue with service 
rate p packets per second is e- ’p  nats per second [l]. The 
capacity of the point-process channel with maximum input 
intensity p points per second, and no background intensity, is 
also e-’p nats per second (cf.[2],[3]). Furthermore, in both 
channels, the capacity does not increase in the presence of 
complete feedback. In [l], the connection between both chan- 
nels in the presence of complete feedback was discussed briefly. 
In [4], this connection was further explored. It was shown 
that any strategy on the exponential server channel can be 
mapped to an equivalent strategy that uses feedback on the 
point-process channel. This observation implies that the ca- 
pacity of the exponential server channel is upperbounded by 
the capacity of the point-process channel with complete feed- 
back, i.e., e- ’p  nats per second. 

n o m  [I], we know that e- ’p  nats per second is indeed 
achievable on the exponential server queue. In other words, 
although the exponential server queue is only a particular case 
of a point-process channel with feedback, it attains the point- 
process channel capacity. In this paper, we provide insight on 
why there is no loss in capacity. 

To see the connection between the queue and the point- 
process channel, fix a sequence of arrivals denoted by the 
counting process x = ( x t  : t E [O,T]). Let (K : t E [&TI) 
be the corresponding counting process of departures from the 
single-server queue of service rate p packets per second. Then 
the state process (Qt = x t  - Yt : t E [0, TI) indicates the num- 
ber of packets in the queue as a function of time. Furthermore, 
the departure process (K : t E [O,T]) is a self-exciting Pois- 
son process with rate A = (At = pl{Qt- > 0) : t E (O,T]). 
Indeed, if Qt- = 0, no packet can depart a t  time t (E (O,T]) 
and the instantaneous rate of the departure process is 0. If 
Qt- > 0, at least one packet is in the system at  t - .  Due to the 
memoryless property of exponential service times, the residual 
time for the next departure is exponentially distributed with 
mean l /p seconds, independent of the past, i.e., the instanta- 
neous rate of the departure process is p at  time t .  

It is well-known that the sample function density (which 
plays the role of probability density) given input 2, is p ( x ,  y), 
where 
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Furthermore, for i x  given probability measure on 
space, the normalized mutual information is 

1 l T  
-IT(X; T E’) = F E  1 dt [+(At) - + ( i t )  

where i t  = E [At1 (Ys : s E [0, t ) ) ] ,  for each t E 

the input 

1 (2) 

8,T], and 
$ ( U )  = ulogu,  (see [2], [3], [5]). We take d(0) = 0. Note that 
At is an estimate of the rate of the departure process given 
prior departures. 

We can show the existence of codes that have vanishing 
probability of error (as the observation interval T increases 
without bound) a t  rate e- ’p nats per second. Here, for 
brevity, we only argue that there is an input probability mea- 
sure such that the normalized mutual information equals the 
upperbound e-’p nats per second. The input measure should 
induce the following properties to  attain the upperbound. 

( a )  At = 0 or p. 

( b )  (1/T) J: d t  E [ A ~ I  = e - l p .  

(c) At should be independent of prior departures 
(Ys : s E [02 t ) ) ,  and E [ & ]  should be a constant over 
time, i.e., At = e-’p. 

Let the input probability measure be a Poisson process with 
rate e- ’p  packets per second. Let the queue be in equilibrium 
at  t = 0. We then have an M/M/1 queueing system. Property 
( a )  holds because At is p times an indicator function. Property 
( b )  follows from ergodicity of the state process and the fact 
that the queue is nonempty with probability e-’. Property ( c )  
holds by Burke’s theorem (for e.g., [5, V.Tl]); the state of the 
queue Qt is independent of prior departures (Ys : s E [0, t ) )  
and therefore so is At .  

The point-process approach via (I), (2) and the filtering 
techniques of [5] (to provide estimates of queue size) can be 
used to  find achievable rates of some simple networks of ex- 
ponential servers. In [6], lower bounds on the capacities of 
multiserver queues and two queues connected in tandem are 
provided. 

REFERENCES 
[l] V. Anantharam and S. Verdd, “Bits through queues”, IEEE 

Runs.  Inform. Theory, vol. IT-42, pp.4-18, Jan. 1996. 
[2] Y.M. Kabanov, “The capacity of a channel of the Poisson type, 

Theory Prob. Appl . ,  vol. 23, pp.143-147, 1978. 
[3] M.H.A. Davis, “Capacity and cutoff rate for Poisson-type chan- 

nels”, IEEE Runs.  Inform. Theory, vol. IT-26, pp.710-715, 
Nov. 1980. 

[4] R. Sundaresan and S. Verdd, “Robust decoding for timing chan- 
nels”, IEEE h n s .  Inform: Theory, col. IT-46, pp.405-419, 
Mar. 2000. 

[5] P. BrBmaud, Point Processes and Queues: Martingale Dynam- 
ics, Springer-Verlag, New York, 1981. 

[6] R. Sundaresan, Coded Communication over Timing Chan- 
nels, Doctoral dissertation, Princeton University, Princeton, 
NJ, Sept. 1999. 

50 
0-7803-5857-O/OO/$lO.OO 02000 IEEE. 


