

A measure of discrimination and its geometric properties

Rajesh Sundaresan¹
 Qualcomm Inc.
 3480 Granada Avenue 270,
 Santa Clara, CA 95051, USA
 e-mail: rajeshs@qualcomm.com

Abstract — We study a measure of discrimination that arises in the context of redundancy in guessing the realization of a random variable. This discrimination measure satisfies a Pythagorean-type inequality. The analog of this inequality for Kullback-Leibler divergence is well-known.

Let P and Q be two probability mass functions (PMFs) on a finite set \mathcal{X} . The measure of discrimination that we consider here is $L_\alpha(P, Q)$ defined as

$$\frac{\alpha}{1-\alpha} \log \left(\sum_{x \in \mathcal{X}} P(x) \left[\sum_{a \in \mathcal{X}} \left(\frac{Q(a)}{Q(x)} \right)^\alpha \right]^{\frac{1-\alpha}{\alpha}} \right) - H_\alpha(P), \quad (1)$$

where $\alpha > 0$, and $H_\alpha(P)$ is the Rényi entropy of order $\alpha > 0$. For $\alpha \in (0, 1)$, $L_\alpha(P, Q)$ can be interpreted as follows.

Let X be a random variable on the finite set \mathcal{X} with probability mass function (PMF) given by $(P(x) : x \in \mathcal{X})$. We wish to guess the realization of this random variable X by asking questions of the form “Is X equal to x ?", stepping through the elements of \mathcal{X} , until the answer is “Yes” ([1], [2]). For a given guessing strategy G , let $G(x)$ denote the number of guesses required when $X = x$. The strategy that minimizes the expected number of guesses $E[G(X)]$, or more generally $\|G(X)\|_\rho = (E[G(X)^\rho])^{1/\rho}$ for $\rho > 0$, proceeds in the decreasing order of source probabilities.

Let $\alpha = 1/(1+\rho)$. The minimum value of $\log \|G(X)\|_\rho$ is within $\log(1 + \ln |\mathcal{X}|)$ of the second term in (1), i.e., $H_\alpha(P)$. If however guessing is done according to some suboptimal guessing function G , the value of $\log \|G(X)\|_\rho$ lies within $\log(1 + \ln |\mathcal{X}|)$ of the first term in (1), where Q is the PMF such that $Q(\cdot) \propto G(\cdot)^{-(1+\rho)}$.

$L_\alpha(P, Q)$ is therefore a measure of the *redundancy* in $\log \|G(X)\|_\rho$ as a result of a PMF mismatch. $L_\alpha(P, Q) \geq 0$ and equals 0 if and only if $P = Q$. $L_\alpha(P, Q)$ does not satisfy many interesting properties that hold for the Kullback-Leibler divergence; for e.g., $L_\alpha(P, Q)$ does not satisfy the data processing inequality. However, $L_\alpha(P, Q)$ and the Kullback-Leibler divergence do share a Pythagorean-type inequality property. To see this, we proceed along the lines of [3].

Given a PMF R on the finite set \mathcal{X} , the set of PMFs on \mathcal{X}

$$B(R, r) \triangleq \{P : L_\alpha(P, R) < r\}, \quad 0 < r \leq \infty,$$

is called an L_α -sphere (or ball) with center R and radius r . If \mathcal{E} is a closed and convex set of PMFs on \mathcal{X} intersecting $B(R, \infty)$, a PMF $Q \in \mathcal{E}$ satisfying

$$L_\alpha(Q, R) = \min_{P \in \mathcal{E}} L_\alpha(P, R)$$

¹This work was supported in part by the National Science Foundation under Grant NCR-9523805 002

exists and is called the L_α -projection of R on \mathcal{E} .

The following are generalizations of [3, Lemma 2.1, Theorem 2.2] where $L_\alpha(P, Q)$ plays the role of squared Euclidean distance (analogous to the Kullback-Leibler divergence).

Theorem 1 *Let $\alpha \in (0, 1) \cup (1, \infty)$ and \mathcal{X} a finite set.*

(a) *If $L_\alpha(P, Q)$ and $L_\alpha(Q, R)$ are finite, the segment joining P and Q does not intersect the L_α -sphere $B(R, r)$ with radius $r = L_\alpha(Q, R)$, i.e.,*

$$L_\alpha(P_\lambda, R) \geq L_\alpha(Q, R),$$

for each

$$P_\lambda = \lambda P + (1 - \lambda)Q, \quad 0 \leq \lambda \leq 1,$$

if and only if

$$L_\alpha(P, R) \geq L_\alpha(P, Q) + L_\alpha(Q, R).$$

(b) *(Tangent hyperplane) If $L_\alpha(Q, R)$ and $L_\alpha(P, R)$ are finite and*

$$Q = \lambda P + (1 - \lambda)S, \quad 0 < \lambda < 1, \quad (2)$$

the segment joining P and S does not intersect $B(R, r)$ (with $r = L_\alpha(Q, R)$) if and only if

$$L_\alpha(P, R) = L_\alpha(P, Q) + L_\alpha(Q, R).$$

We call Q an algebraic innerpoint of \mathcal{E} if for every $P \in \mathcal{E}$ there exist λ and S satisfying (2). Theorem 1 then leads to the following result on L_α -projection.

Theorem 2 (Projection Theorem) *Let $\alpha \in (0, 1) \cup (1, \infty)$, \mathcal{X} a finite set, and \mathcal{E} a closed and convex set of PMFs on \mathcal{X} . Let $R \notin \mathcal{E}$. A PMF $Q \in \mathcal{E} \cap B(R, \infty)$ is the L_α -projection of R on the convex set \mathcal{E} if and only if every $P \in \mathcal{E} \cap B(R, \infty)$ satisfies*

$$L_\alpha(P, R) \geq L_\alpha(P, Q) + L_\alpha(Q, R). \quad (3)$$

If the L_α -projection Q is an algebraic inner point of \mathcal{E} , then every $P \in \mathcal{E} \cap B(R, \infty)$ satisfies (3) with equality.

The uniqueness of the L_α -projection on \mathcal{E} follows straightforwardly from Theorem 2 and the fact that $L_\alpha(Q_1, Q_2) = 0$ implies $Q_1 = Q_2$.

REFERENCES

- [1] J.L.Massey, “Guessing and entropy,” in *Proc. 1994 IEEE Int. Symp. on Information Theory* (Trondheim, Norway, 1994), p. 204.
- [2] E.Arikan, “An inequality on guessing and its application to sequential decoding,” *IEEE Trans. Inform. Theory*, vol. IT-42, pp. 99-105, Jan. 1996.
- [3] I.Csiszar, “I-divergence geometry of probability distributions and minimization problems,” *The Annals of Probability*, vol. 3, pp. 146-158, 1975.