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Abstract — We present a method to guess the realiza- Suppose now that we do not know the true PMAF but
tion of an arbitrarily varying source. Let Ty be the type guessed assuming a PMF, where@ # P. Let this lead
of the unknown state sequence. Our method results in a to a guessing strateg§/. ThusGg is not matched to the
guessing moment that is withinK,, (Tyy) + O(logn/n) of  source. We might therefore anticipate t%dbg [E [Go(X)"])
the minimum attainable guessing moment with full knowl- is larger. Analogously, for any arbitrary guessing stratégy
edge of source statisticsj.e., with knowledge of the se- we may think of an associated PMJ; for which G is the op-
guence of statess™. The quantity K,, (Tyy) + O(logn/n)  timum guessing strategy. ¢ # P, G may not be matched
can be interpreted as the penalty one pays for not know- to the source. Setting = 1/(1 + p), we claim (without going
ing the sequence of states™ of the source. K, (Tyy) by into details) that for any guessing strate@y the redundancy
itself is the penalty one pays for guessing with the addi- defined by
tional knowledge that the state sequence belongs to type

i i 1 1
Ty. Conve_rsely, given any guessing strategy, f_or every type R(G) a4z log [E [G(X)?]] — - log [E [Gp(X)]]
Ty, there is a state sequence belonging to this type whose P P
corresponding source forces a guessing moment penalty of tisi
atleastK, (Ty) — O(logn/n). sausties

|. GUESSING UNDER SOURCE MISMATCH R(G) > Lo(P,Q¢) —log (1 +1n|X]),

Let X be a random variable on a finite Sétvith probability  whereQ; is a particular distribution obtained fro6.
mass function (PMF) given byP’(z) : = € X). Considerthe  while the above is true only for some specific PMFs, we
problem of guessing the realization of this random variable actually have the following for any PM®:
by asking questions of the form “I& equal tox?”, stepping
through the elements &, until the answer is “Yes” ([1], [2]). R(G) < Lo(P,Q) +1log (1 +In|X]|).
Massey [1] and Arikan [2] considered guessing strategies,
i.e., sequences of guesses, and sought to lowerbound the miniThe quantityL,, (P, Q) is given by
mum expected number of guesses. For a given guessing strat-
egy G, let G(z) denote the number of guesses required when L, (P, Q)

X = z. The strategy that minimizes the expected num- PR =

ber of guessesE [G(X)], proceeds in the decreasing order & _ @ S P@) |3 <Q(G)>

of source probabilities. Let us denote this optimum guess- 1-« sex = Q(z)

ing order that depends on the source PRy Gp. Arikan — HL(P) @

[2] showed that the exponent of the minimum value,

log [ming E[G(X)]] = log [E[Gp(X)]], satisfies is therefore a measure of the redundancy (to withig(1 +

In |X])) of the logarithm of thepth guessing moment, when
H2(P) = log(1 + In[X]) < log [F[Gr (X))} < Hi/2(P), the‘rrl?s)matchecPE/lFQ is used?(o) obq[ain thegguessing strategy.
whereH,, (P) is the Renyi entropy of ordery > 0. It can be shown thak,, (P, Q) > 0, and equality is achieved if
For p > 0, Arikan [2] also considered minimization of and only if P = Q [7].
(E[G(X)?])"” over all guessing strategi€ G p minimizes 10 understand the nature 6f,(P, @), let
this value, and the exponent of the minimum value satisfies [2]

P( )% Y
1 P'() = S Pl (])D(a)a, Q)& S G@e Q(é(a)a. A3)
Hq(P) —log(1+In[X]) < —log [E[Gp(X)”]] < Ha(P), aex aex
p
D) In these definitions, the dependence of the primed PMFs on
wherea = 1/(1 + p). Throughout this papep > 0, « = « is understood and suppressell.— P’ andQ — Q' are

1/(1 + p), and thereforex € (0, 1). one-to-one mappings.



Straightforward algebra results in Proposition 1 For the finite family( Py : 6 € ©), the guessing
) strategyG obtained by merging the individual guessing lists
Lo(P,Q) = = log [I;(P'||Q")] . 4) suffers a maximum penalty which is upperbounded by

max R(6,G) < log|O| + log(1 + In|X]).
wherel(R||S) is the f-divergence withy (z) = z'** (see for ve®

e.g. [4]) given by Now suppose that we wish to do better for this family of

R(z) sources. One approach is to find)a that comes close to
(R18) = 5@ (50 © o )
rex = infmax a(Py, Q), (6)
Furthermore, we havel, (P, Q) = oo if and only if where the infimum is over all PMFs ai. We can think of

SupportP) ¢ Suppor(Q). (Notg thato: € (0, 1)). i K in (6) as playing the geometric role of minimwadius en-
We emphasize thak.(P, Q) is not a convex function of ¢,qing"all pointsP, in the family, measured from theenter
P or of Q. Moreover, unlikef-divergencesL. (P, Q) does -« This minimum radius is termed the.%-radius” of the
not salisfy the data processing inequality. Howe¥en . Q) — family (P, : ¢ € ©), because “squared-distances” are given
does satisfy a Pythagorean-type inequality and pehave§ I.igg La(-,-). We caution that (-, -) is not adistancefunction
‘squared-distance”. This property was explored in detail iy, 5 metricin the strict sense. Indeed, it is not symmetric in the
[71. two arguments.
From (4) and the monotone increasing propertpgf-), the
Il. A FINITE FAMILY OF SOURCES problem in (6) is straightforwardly transformed into the prob-

Suppose now thatP, : 6 € ©) is a one-parameter family of lem of finding the 7;-radius” and 7¢-center” of the family
sources on the finite alphabet &tThe family is of finite size, (I : 0 € ©),i.e,
i.e, |©] < oco. (In recent work, we have been able to extend
some of the results of this section to families of infinite sizes
with some mild regularity conditions on the family [8]. This
however is beyond the scope of this paper). The true sour6ee [4] for a solution to the problem, and also [5] and [6] for
is one from the family, but is otherwise unknown. A guessingelated problems. The problem transformation is done by using
strategy for the above family of sources can be devised as fohe mapping? — P, and the relationship in (4).
lows. LetGy be the guessing order whé is known to be the Results of [5], [4] and[6] show that the “inf” in (6) can be
source. (Note thatiy is short form for the more cumbersomereplaced by a “min”, and therefore
Gp,). Now merge thes| guessing lists as follows:

K' = infmaxI;(P),Q’). 7
inf max (P, Q") (@)

K' = minmax I;+(Py, Q"). (8)
e First order the elements & and call then®,, - - -, 0,g. Q" 6e6
o Seti — 1 The minimizing@* can be found from the inverse mapping of

Q* — Q™ whereQ" is the “I;-center” of the family(P; :
f 6 € O). Furthermore, [7] indicates that this minimizidy is

o List elements oK in the following order:ith element o . "
a mixture of the sources that make up the faniiby,

Gy, , then theith element of7y,, and so on, skipping an

element if it is already in the list, until thih element of .

Gy, is reached. Q"= Z w(0)Fy.
(2SC]

e Once done with alith elements, increment and con-

) . . This property is a consequence of the Pythagorean-type in-
tinue, until all elements are listed. property 9 ymhag yp

equality satisfied by, (P, @). It can also be seen from the

An important property of this list is tha®(z) < |O|Gq(x), results in the following section. Thus the “inf” in 6 can also be

for everyx € X and for everyd € ©. Note that this is a replaced -by “min”. o ,
strategy that does not depend on the parantetéfe therefore Returning to the problem of finding a guessing strategy for

have the following result. Define the penalty function for arjihe fami!y of spurces, we can guess iq the decreasing order of
arbitrary guessing functio as follows: probabilities given by the PMIE)*, which then leads to the

following result.

Ng! 1
R(0,G) = ;k’g [Ep [G(X)"]] - ;k’g [Eo [Go(X)71], Proposition 2 For the finite family(P, : 0 € ©), let Q* be
the L,-center, andK the L,-radius. LetG- be the guess-

whereFEy is expectation with respect t6;. ing strategy obtained by guessing in the decreasing order of



probabilities of@*. Then the maximum penalty suffered by théo such a source. The guessing exponent is nhormalized by

strategy is upperbounded by the following: and the additional terms go to O for largeand are given by
1 n
Ieneag)(R(@, Go+) < K +log(1+In|X]). - log (1 +1In|X]™) = O(logn/n).
Furthermore, for any guessing strategy we have The results in the previous section on redundancy are for a
finite number of sources in the family. However, Arikan and
max R(0,G) > K —log (1 +1In|X]). Merhav [3] show auniversalguessing strategy that works for

alliid sources with unknowi¥. Furthermore, the proof of their
result indicates that the redundancy suffered by their universal
I1l1. N ECESSARY AND SUFFICIENT CONDITIONS FOR guessing strategy is at maStlogn/n), for any iid source.
FINDING THE CENTER AND RADIUS In the next section, we look at a more general class of inde-

- nden not identically distri f sources.
The needed results from [4] for findink-center andl- pendent, but notidentically distributed set of sources

radius are first reproduced. These can then be easily trans- V. ARBITRARILY VARYING SOURCES
formed to find thel,-center and.,-radius.

Csiszar [4] shows that Consider a finite state arbitrarily varying source (AVS) char-

acterised by the PMF

K’ = minmax I(Py, Q") = maxmin Z v(0)I¢(Py,Q"). n
Q' 0€O v Q ico Psn (xn) — HPSi (xz)7
9) i1
Furthermore, for any given, the minimizingQ’* is given by )
where z™ is the source sequence to be guessed, €ing=

o (s1,- -, sn) is an unknown arbitrary sequence of states. Each
Q*(x)=C (Z v() [Pé(:c)]””‘) ,VzeX. (10) s, takes values from a finite sBt
6o This is a fairly large class of sources for which we would like
i . . i to build a guessing strategy. We follow a hierarchical approach
C is a normalizing constant. Alse;* attains the maximum . keep the redundancy at a minimum.
in (9) if and only if Let U be a rational PMF of§ where the rationals have de-
nominatorm. The sefl}; is a subset d¥” whose elements have
an empirical PMF equal t&'. We then say that a sequence be-
where equality holds whenevefd) > 0. longing to7y has type(T({S.| The number of distinct types is
: . : ug)perbounded byn + 1) because the occurrence of each
We make one remark and close this section. By using tr'
etter takes at most + 1 values.

. , y A o
inverse of the mapping> — P’ on the minimizingQ™, we Let us first assume that" belongs tdly; for someU. The

(P}, Q") < K', V0 € ©, (11)

get that . - : .
following proposition, the main result of this paper, tells us
Q" = Z w(0)Fy, how to arrive at a guessing strategy that gives the minmax
90 penalty.
where () Proposition 3 The normalizedL,-radius K, (1) for the
w(f) = ol family of sources with state sequence belongingtas given
[Zaex Pola)t/e] by

where A is a normalizing constant. This means that the opti-
-- i ; ; i K,(Ty)
mizing Q* is a mixture of the sources in the family, a result

. - . - - g - . . 1 1 .

that is obtained in a more geo;;r:ye'tn.c and intuitive setting in _ . o 2 Lo(Pon, Q) = = [Ha(Q) — Ho(Psn)],
[7]. Also note that ify |,y Pp(a)'/* isindependent of, then Q s"elun n

Vv =w.

where
. 1
IV. INDEPENDENT ANDIDENTICALLY DISTRIBUTED Q"= Z |T7U|PS"
SOURCES sneTy

Consider now the problem of guessing thdength realiza- is the uniform mixture.

tion of an independent and identically distributed (iid) source. proof Outline: We first observe that for every € Ty, the
Suppose that each component has a ARIF-urther suppose quantity
that guessing is done assuming a mismatched joint PMF. The Z Py (z™)®

results of the previous section are straightforwardly extended orexn



does not depend on the specifit. A simple permutation ar- [4]
gument suffices to show this. This implies that the weights
that lead to thel,-center are the same as the weightthat
lead to thel ;-center, as observed in Section lIl.

Next, we check that the weights(s™) = v(s") = 1/|Ty|
satisfy the sufficient condition thdl (P..., Q") is a constant
independent 0" (given that it belongs t@};). To see this, we [7]
first write

[5]

[6]

(P Q") = D, Pal@)*rQ @ e
zneXn

Toncxs Pr(Q @) 0
[Zw"GXn Pgn (l‘")l/(l-‘rp)] 1+p

The quantityQ’*(z™) is obtained from (10) and is given by

3 [Pé(x”)]””‘>

¢ (
snely
Pg ($n)> .

Cy ( >
sneTy

A permutation argument yields that this quantity depends on
z™ only through the type of the sequence. We can then use
these facts to show that both the numerator and denominator
of (12) do not depend o#g", whens™ € Ty. An evaluation
then leads to the proposition. Details are available in [8]]

1
/% x'ﬂ
@ o]
1
Tyl

The above Proposition along with Proposition 2, indicates
that for every typely, and for any guessing stratedy, we
can find a state sequenge for which

R(s",G) > K,,(Ty) — O(log n/n).

We next consider the case when the type of the state se-
quence is not known. Within each type, we have found the
penalty for a guessing strategy that depends only on the type of

I.Csiszar, “A class of measures of informativity of observation channels,”
Periodica Mathematica Hungaricaol. 2, pp. 191-213, 1972.

I-Csiszar, “Generalized cutoff rates an@mi®i's information measures”,
IEEE Trans. Inform. Theorwol. IT-41, pp. 26-34, Jan. 1995.

R.Sibson, “Information radiusZ. Wahrscheinlichkeitstheorie verw. Geb.
vol.14, pp. 149-160, 1969.

R.Sundaresan,“A measure of discrimination and its geometric properties”,
Proceedings of the 2002 IEEE International Symposium on Information
Theory p. 264, Lausanne, Switzerland, June 2002.

R.Sundaresan, “Guessing under source uncertainty”, manuscript under
preparation, December 2005.

the state sequence. We then merge these lists according to the

strategy used to prove Proposition 1. Since there are at most
(n + 1)I8! types, this leads to an extra penalty@flog n/n).
We therefore have the following result.

Proposition 4 For the finite-state AVS, there is a guessing

strategy that does not depend on the state sequence, and whose

penalty for a source with state sequentebelonging toly is
upperbounded by, (Ty) + O(logn/n).

Properties of(,, (T/) are under investigation.
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