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Abstract — We present a method to guess the realiza-
tion of an arbitrarily varying source. Let TU be the type
of the unknown state sequence. Our method results in a
guessing moment that is withinKn (TU ) + O(log n/n) of
the minimum attainable guessing moment with full knowl-
edge of source statistics,i.e., with knowledge of the se-
quence of statessn. The quantity Kn (TU ) + O(log n/n)
can be interpreted as the penalty one pays for not know-
ing the sequence of statessn of the source. Kn (TU ) by
itself is the penalty one pays for guessing with the addi-
tional knowledge that the state sequence belongs to type
TU . Conversely, given any guessing strategy, for every type
TU , there is a state sequence belonging to this type whose
corresponding source forces a guessing moment penalty of
at leastKn (TU )−O(log n/n).

I. GUESSING UNDER SOURCE MISMATCH

Let X be a random variable on a finite setXwith probability
mass function (PMF) given by(P (x) : x ∈ X). Consider the
problem of guessing the realization of this random variableX
by asking questions of the form “IsX equal tox?”, stepping
through the elements ofX, until the answer is “Yes” ([1], [2]).

Massey [1] and Arikan [2] considered guessing strategies,
i.e., sequences of guesses, and sought to lowerbound the mini-
mum expected number of guesses. For a given guessing strat-
egyG, let G(x) denote the number of guesses required when
X = x. The strategy that minimizes the expected num-
ber of guesses,E [G(X)], proceeds in the decreasing order
of source probabilities. Let us denote this optimum guess-
ing order that depends on the source PMFP by GP . Arikan
[2] showed that the exponent of the minimum value,i.e.,
log [minG E [G(X)]] = log [E [GP (X)]], satisfies

H1/2(P )− log(1 + ln |X|) ≤ log [E [GP (X)]] ≤ H1/2(P ),

whereHα(P ) is the Ŕenyi entropy of orderα > 0.
For ρ > 0, Arikan [2] also considered minimization of

(E[G(X)ρ])1/ρ over all guessing strategiesG; GP minimizes
this value, and the exponent of the minimum value satisfies [2]

Hα(P )− log(1 + ln |X|) ≤ 1
ρ

log [E [GP (X)ρ]] ≤ Hα(P ),

(1)
whereα = 1/(1 + ρ). Throughout this paper,ρ > 0, α =
1/(1 + ρ), and thereforeα ∈ (0, 1).

Suppose now that we do not know the true PMFP , but
guessed assuming a PMFQ, whereQ 6= P . Let this lead
to a guessing strategyGQ. ThusGQ is not matched to the
source. We might therefore anticipate that1

ρ log [E [GQ(X)ρ]]
is larger. Analogously, for any arbitrary guessing strategyG,
we may think of an associated PMFQG for whichG is the op-
timum guessing strategy. IfQG 6= P , G may not be matched
to the source. Settingα = 1/(1 + ρ), we claim (without going
into details) that for any guessing strategyG, the redundancy
defined by

R(G) ∆=
1
ρ

log [E [G(X)ρ]]− 1
ρ

log [E [GP (X)ρ]]

satisfies

R(G) ≥ Lα(P,QG)− log (1 + ln |X|) ,

whereQG is a particular distribution obtained fromG.
While the above is true only for some specific PMFs, we

actually have the following for any PMFQ:

R(G) ≤ Lα(P,Q) + log (1 + ln |X|) .

The quantityLα(P, Q) is given by

Lα(P, Q)

∆=
α

1− α
log


∑

x∈X
P (x)

[∑

a∈X

(
Q(a)
Q(x)

)α
] 1−α

α




− Hα(P ) (2)

is therefore a measure of the redundancy (to withinlog(1 +
ln |X|)) of the logarithm of theρth guessing moment, when
themismatchedPMFQ is used to obtain the guessing strategy.
It can be shown thatLα(P, Q) ≥ 0, and equality is achieved if
and only ifP = Q [7].

To understand the nature ofLα(P,Q), let

P ′(·) ∆=
P (·)α

∑
a∈X P (a)α

, Q′(·) ∆=
Q(·)α

∑
a∈XQ(a)α

. (3)

In these definitions, the dependence of the primed PMFs on
α is understood and suppressed.P 7→ P ′ andQ 7→ Q′ are
one-to-one mappings.



Straightforward algebra results in

Lα(P, Q) =
1
ρ

log [If (P ′||Q′)] , (4)

whereIf (R||S) is thef -divergence withf(x) = x1+ρ (see for
e.g., [4]) given by

If (R||S) =
∑

x∈X
S(x)f

(
R(x)
S(x)

)
. (5)

Furthermore, we haveLα(P, Q) = ∞ if and only if
Support(P ) 6⊂ Support(Q). (Note thatα ∈ (0, 1)).

We emphasize thatLα(P, Q) is not a convex function of
P or of Q. Moreover, unlikef -divergences,Lα(P, Q) does
not satisfy the data processing inequality. However,Lα(P,Q)
does satisfy a Pythagorean-type inequality and behaves like
“squared-distance”. This property was explored in detail in
[7].

II. A FINITE FAMILY OF SOURCES

Suppose now that(Pθ : θ ∈ Θ) is a one-parameter family of
sources on the finite alphabet setX. The family is of finite size,
i.e., |Θ| < ∞. (In recent work, we have been able to extend
some of the results of this section to families of infinite sizes
with some mild regularity conditions on the family [8]. This
however is beyond the scope of this paper). The true source
is one from the family, but is otherwise unknown. A guessing
strategy for the above family of sources can be devised as fol-
lows. LetGθ be the guessing order whenPθ is known to be the
source. (Note thatGθ is short form for the more cumbersome
GPθ

). Now merge these|Θ| guessing lists as follows:

• First order the elements inΘ and call themθ1, · · · , θ|Θ|.

• Seti = 1.

• List elements ofX in the following order:ith element of
Gθ1 , then theith element ofGθ2 , and so on, skipping an
element if it is already in the list, until theith element of
Gθ|Θ| is reached.

• Once done with allith elements, incrementi, and con-
tinue, until all elements are listed.

An important property of this list is thatG(x) ≤ |Θ|Gθ(x),
for every x ∈ X and for everyθ ∈ Θ. Note that this is a
strategy that does not depend on the parameterθ. We therefore
have the following result. Define the penalty function for an
arbitrary guessing functionG as follows:

R(θ, G) ∆=
1
ρ

log [Eθ [G(X)ρ]]− 1
ρ

log [Eθ [Gθ(X)ρ]] ,

whereEθ is expectation with respect toPθ.

Proposition 1 For the finite family(Pθ : θ ∈ Θ), the guessing
strategyG obtained by merging the individual guessing lists
suffers a maximum penalty which is upperbounded by

max
θ∈Θ

R(θ,G) ≤ log |Θ|+ log(1 + ln |X|).

Now suppose that we wish to do better for this family of
sources. One approach is to find aQ∗ that comes close to

K = inf
Q

max
θ∈Θ

Lα(Pθ, Q), (6)

where the infimum is over all PMFs onX. We can think of
K in (6) as playing the geometric role of minimumradiusen-
closing all pointsPθ in the family, measured from thecenter
Q∗. This minimum radius is termed the “Lα-radius” of the
family (Pθ : θ ∈ Θ), because “squared-distances” are given
by Lα(·, ·). We caution thatLα(·, ·) is not adistancefunction
or ametricin the strict sense. Indeed, it is not symmetric in the
two arguments.

From (4) and the monotone increasing property oflog(·), the
problem in (6) is straightforwardly transformed into the prob-
lem of finding the “If -radius” and “If -center” of the family
(P ′θ : θ ∈ Θ), i.e.,

K ′ = inf
Q′

max
θ∈Θ

If (P ′θ, Q
′). (7)

See [4] for a solution to the problem, and also [5] and [6] for
related problems. The problem transformation is done by using
the mappingPθ 7→ P ′θ and the relationship in (4).

Results of [5], [4] and[6] show that the “inf” in (6) can be
replaced by a “min”, and therefore

K ′ = min
Q′

max
θ∈Θ

If (P ′θ, Q
′). (8)

The minimizingQ∗ can be found from the inverse mapping of
Q∗ 7→ Q′∗ whereQ′∗ is the “If -center” of the family(P ′θ :
θ ∈ Θ). Furthermore, [7] indicates that this minimizingQ∗ is
a mixture of the sources that make up the family,i.e.,

Q∗ =
∑

θ∈Θ

w(θ)Pθ.

This property is a consequence of the Pythagorean-type in-
equality satisfied byLα(P,Q). It can also be seen from the
results in the following section. Thus the “inf” in 6 can also be
replaced by “min”.

Returning to the problem of finding a guessing strategy for
the family of sources, we can guess in the decreasing order of
probabilities given by the PMFQ∗, which then leads to the
following result.

Proposition 2 For the finite family(Pθ : θ ∈ Θ), let Q∗ be
the Lα-center, andK the Lα-radius. LetGQ∗ be the guess-
ing strategy obtained by guessing in the decreasing order of



probabilities ofQ∗. Then the maximum penalty suffered by the
strategy is upperbounded by the following:

max
θ∈Θ

R(θ,GQ∗) ≤ K + log (1 + ln |X|) .

Furthermore, for any guessing strategyG, we have

max
θ∈Θ

R(θ, G) ≥ K − log (1 + ln |X|) .

III. N ECESSARY AND SUFFICIENT CONDITIONS FOR

FINDING THE CENTER AND RADIUS

The needed results from [4] for findingIf -center andIf -
radius are first reproduced. These can then be easily trans-
formed to find theLα-center andLα-radius.

Csiszar [4] shows that

K ′ = min
Q′

max
θ∈Θ

If (P ′θ, Q
′) = max

v
min
Q′

∑

θ∈Θ

v(θ)If (P ′θ, Q
′).

(9)
Furthermore, for any givenv, the minimizingQ′∗ is given by

Q′∗(x) = C

(∑

θ∈Θ

v(θ) [P ′θ(x)]1/α

)α

, ∀x ∈ X. (10)

C is a normalizing constant. Also,v∗ attains the maximum
in (9) if and only if

If (P ′θ, Q
′∗) ≤ K ′, ∀θ ∈ Θ, (11)

where equality holds wheneverv(θ) > 0.
We make one remark and close this section. By using the

inverse of the mappingP 7→ P ′ on the minimizingQ′∗, we
get that

Q∗ =
∑

θ∈Θ

w(θ)Pθ,

where

w(θ) = A
v(θ)[∑

a∈X Pθ(a)1/α
]α ,

whereA is a normalizing constant. This means that the opti-
mizing Q∗ is a mixture of the sources in the family, a result
that is obtained in a more geometric and intuitive setting in
[7]. Also note that if

∑
a∈X Pθ(a)1/α is independent ofθ, then

v = w.

IV. I NDEPENDENT AND IDENTICALLY DISTRIBUTED

SOURCES

Consider now the problem of guessing then-length realiza-
tion of an independent and identically distributed (iid) source.
Suppose that each component has a PMFP . Further suppose
that guessing is done assuming a mismatched joint PMF. The
results of the previous section are straightforwardly extended

to such a source. The guessing exponent is normalized byn,
and the additional terms go to 0 for largen, and are given by

1
n

log (1 + ln |X|n) = O(log n/n).

The results in the previous section on redundancy are for a
finite number of sources in the family. However, Arikan and
Merhav [3] show auniversalguessing strategy that works for
all iid sources with unknownP . Furthermore, the proof of their
result indicates that the redundancy suffered by their universal
guessing strategy is at mostO(log n/n), for any iid source.

In the next section, we look at a more general class of inde-
pendent, but not identically distributed set of sources.

V. A RBITRARILY VARYING SOURCES

Consider a finite state arbitrarily varying source (AVS) char-
acterised by the PMF

Psn(xn) =
n∏

i=1

Psi(xi),

wherexn is the source sequence to be guessed, andsn =
(s1, · · · , sn) is an unknown arbitrary sequence of states. Each
si takes values from a finite setS.

This is a fairly large class of sources for which we would like
to build a guessing strategy. We follow a hierarchical approach
to keep the redundancy at a minimum.

Let U be a rational PMF onS where the rationals have de-
nominatorn. The setTU is a subset ofSn whose elements have
an empirical PMF equal toU . We then say that a sequence be-
longing toTU has typeTU . The number of distinct types is
upperbounded by(n + 1)|S| because the occurrence of each
letter takes at mostn + 1 values.

Let us first assume thatsn belongs toTU for someU . The
following proposition, the main result of this paper, tells us
how to arrive at a guessing strategy that gives the minmax
penalty.

Proposition 3 The normalizedLα-radius Kn(TU ) for the
family of sources with state sequence belonging toTU is given
by

Kn(TU )

= min
Q

max
sn∈TU

1
n

Lα(Psn , Q) =
1
n

[Hα(Q∗)−Hα(Psn)] ,

where

Q∗ =
∑

sn∈TU

1
|TU |Psn

is the uniform mixture.

Proof Outline: We first observe that for everysn ∈ TU , the
quantity ∑

xn∈Xn

Psn(xn)α



does not depend on the specificsn. A simple permutation ar-
gument suffices to show this. This implies that the weightsw
that lead to theLα-center are the same as the weightsv that
lead to theIf -center, as observed in Section III.

Next, we check that the weightsw(sn) = v(sn) = 1/|TU |
satisfy the sufficient condition thatIf (P ′sn , Q′∗) is a constant
independent ofsn (given that it belongs toTU ). To see this, we
first write

If (P ′sn , Q′∗) =
∑

xn∈Xn

P ′sn(xn)1+ρQ′∗(xn)−ρ

=
∑

xn∈Xn Psn(xn)Q′∗(xn)−ρ

[∑
xn∈Xn Psn(xn)1/(1+ρ)

]1+ρ (12)

The quantityQ′∗(xn) is obtained from (10) and is given by

Q′∗(xn) = C1

( ∑

sn∈TU

1
|TU | [P

′
θ(x

n)]1/α

)α

= C2

( ∑

sn∈TU

1
|TU |Pθ(xn)

)α

.

A permutation argument yields that this quantity depends on
xn only through the type of the sequencexn. We can then use
these facts to show that both the numerator and denominator
of (12) do not depend onsn, whensn ∈ TU . An evaluation
then leads to the proposition. Details are available in [8].¤

The above Proposition along with Proposition 2, indicates
that for every typeTU , and for any guessing strategyG, we
can find a state sequencesn for which

R(sn, G) ≥ Kn(TU )−O(log n/n).

We next consider the case when the type of the state se-
quence is not known. Within each type, we have found the
penalty for a guessing strategy that depends only on the type of
the state sequence. We then merge these lists according to the
strategy used to prove Proposition 1. Since there are at most
(n + 1)|S| types, this leads to an extra penalty ofO(log n/n).
We therefore have the following result.

Proposition 4 For the finite-state AVS, there is a guessing
strategy that does not depend on the state sequence, and whose
penalty for a source with state sequencesn belonging toTU is
upperbounded byKn(TU ) + O(log n/n).

Properties ofKn(TU ) are under investigation.
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