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Abstract—We study the problem of guessing the realization of asymptotically optimal (withinO((logn)/n)) for all finite-

a finite alphabet source, when the only knowledge available about a|phabet, memoryless sources. In our work, we are interested
the source is that it belongs to a (finite or infinite) family. We i, nderstanding this universality and why the maximum
identify good guessing strategies that minimize the supremum - o .
redundancy(over the family) due to mismatch, and identify this penalty is _W'th'_nO((IOg n)/n) Moreover, we would like to
min-sup value. study and identify good guessing strategies that work well over
richer classes of sources.

The quantity L,(P,Q) also arises in the context of re-
dundancy for Campbell's average exponential coding length
problem [4], [5]. In that case, the values that the parameter
I. INACCURACY AND REDUNDANCY IN GUESSING p takes are expanded tel < p <0 (resp,l < a < oo)

Let X be a finite alphabet set. L&t be the PMF of a random @nd0 < p < oo (resp.0 < « < 1). Our results below for
variableX taking values irk. We need to guess the realizatiorf-o (P> @) are valid for all thesev's.
of X. Formally, a guessing lisG is a one-to-one function Lo (P, Q) can be written in terms of some well-understood

Index Terms— f-divergence, guessing, mismatch, redundancy,
Rényi information divergence

G:X — {1,2,---,|X|} that indicates the order in which thedivergence quantities. Indeed,

guesses are m_ade: Naturally, knowing the PMFthe best Lo(P,Q) = Ds(P' | Q) )
strategy that minimizes the expected number of guesses goes 1

in the decreasing order aP-probabilities. Let us call such = ;bg (sign(p) - I;(P" | Q")),  (3)

a guessing lisGp. Arikan [1] showed the following general _ o
result that gave an operational meaning to tiemy entropy Wheres = 1/a =1+ p, Dg(R || S) is the Renyi divergence

H,(P) of ordera. of order 3 (see for example [6])]; is Csisar’s f-divergence
. . (see [7])
Theorem 1:(Arikan’s Guessing Theorem).et p > 0 and
X a finite alphabet set. Consider a sourceXowith PMF P. IR S) = Z S(x)f (f;(@) ’ 4)
Let a = 1/(1+ p). Then = (z)
H,(P) —log(1+ In|X]) f(z) = sign(p)-z' 7, and P’ is the tilted PMF obtained from
P and given b
< 1log (minE[G(X)”]) 9 y
< HalP) Sex Pla)°

U Itis known thatlim,_.1 Lo (P, Q) = D(P || Q), the Kullback-
Suppose that due to lack of exact knowledgePolve guess Leibler divergence.

in the decreasing order of probabilities of another PIJF
i.e., we guess in the order given l&y,. This situation leads I
to mismatchedyuessing. The penalty suffered in the guessing
moment, as a result of the mismatch, is given by [2]

. PROBLEM STATEMENT

Let T denote a family of PMFs on the finite alphabet set
X. The setT may be infinite in size. Associated witfi is

L.(P,Q) a family 7 of measurable subsets @ and thus(T,7) is
o] =2 a measurable space. We assume that for every X, the
A @ log Z P(z) Z (Q(“)> mapping P — P(z) is 7-measurable.
l-a = S\ Q) For a fixedp > 0, we seek a guessing strate@ythat works
_H,(P) 1) well for all P € T. More precisely, the redundancy denoted
avr by R(P, G) when the true source B and when the guessing
to within log(1 + In |X|). list is G, is given by

A universal guessing strategy that guesses in the increasin% Al 1
order of empirical entropy was proposed by Arikan and B(P,G) = ;log (E[G(X)’]) - ;log EGp(X)]), (5)

Merhav in [3]. Their strategy is universal inasmuch as it is . . ,
where Gp is the optimal guessing scheme when the source
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Our aim is to minimize this worst redundancy over alK = A", ann-fold cartesian product of a finite alphabet set
guessing strategies.e., find a G that attains the minimum A, thenlog(l + In|X|) grows logarithmically withn. The

in uncertainty set is therefore rich enough for the converse to
mén sup R(P,G) be meaningful ifC' grows withn at a faster rate.
PeT
As indicated earlier, the redundancy under mismatch is I1l. PROOF OFTHEOREM 3

roughly given byL, (P, Q). The guessing strategy¥ can be
associated with a certain PMB¢s. If Qg is not the same
as P, there is mismatch, and the quantify, (P, Q¢) is an
indication of the suffered penalty. So the following definitio
is of relevance for the subset af satisfying0 < « < 1.

From Theorem 4, it is clear that the problem at hand is
one of identifying the minimizing PMR)* and identifying
the minimum in (6). Guessing in the decreasing orde@of
rEJrobabiIities leads to a guessing order that works well for
all PMFs in the family. The min-sup redundancy is given by

Definition 2: For 0 < o < oo, # 1, C to within log(1 4+ In|X]). In this section, we show that
A minimizer Q* exists, and is unique, for the case whéh is
C= mcgn Isgu;;T L.(P,Q). (6) not necessarily finite.
€

The proof outline is as follows. We first solve the related
One of the main contributions of this paper is to demonstrateoblem

the existence of a minimizing*. For the case wheffl| is . / LY

" ) . . f [ du(P)-Is(P ,

finite, previously known results fof-divergences and &hyi Sﬁp % T uw(P)- I (P @)

divergences can be used to show the existence and charact%r-
N : whe
ization of @*. In this paper, we address the problem for thﬁw
case of an infinite uncertainty family.

re the sup is over measurgson (T,7). We show that
inf can be replaced by min, and that the sup-min can
be interchanged. These are extensions of @siszesults to

Theorem 3:There exists a unique PM* such that the infinite |T| case. The proof technique is analogous to a
) . technique used by Gallager in [9, Theorem A]. We then make
%f ISD‘Q% La(P,Q) = Isjé% Lo(P,Q%) = C. a connection to the min-sup problem in Definition 2 via (3).
O

A. L.-center and radius for an arbitrary family

The development in this subsection is analogous to Gal-

The minimizing Q* has the geometric interpretation of 429€r's approach [9] for the source coding problem. We first
centerof the uncertainty sef. Accordingly,C' plays the role reca_tll the technical cond|t|oqs put forth in SectionTl.is a
of radius all elements in the uncertainty s&t are within family of PMFs onX. (T,7) is a measurable space, and for
a “squared distancet” from the centerQ*. The reason for €very« € X, the mappingP’ — P(z) is 7-measurable.
describingL, (P, Q) as “squared distance” is because it shares We next define a few auxiliary quantities. For a given
the Pythagorean property with Euclidean squared distance aigthe a-norm of the PMFP be given by
with Kullback-Leibler divergence. This was discussed briefly 1
nfe. - | h(P) = (Z P(xw) :

The following result shows that guessing in the decreasing ex
order of Q*-probabilities, whereQ* attains the min-sup in
Definition 2, results in min-sup redundancy, to withdmg (1 +

Proof: See Section il [ ]

The dependence df on « is understood, and suppressed for
convenience. The function sifw) - i is a concave function of

In X]). its argument. The &yi entropy is given by
Theorem 4:(Guessing under uncertaintizet T be a family o«
of PMFs onX. For a fixedp > 0, there exists a guessing list Ho(P) = 1—log h(P). )

G such that From the known bound8 < H,(P) < |X], it is easy to see

sup R(P,G*) < C + log(1 + In [X]). the following bounds ork(P):
PeT 1—a
Indeed, we may tak&* = Q. LS h(P) < X7, for 0 <o <1, (8)
Conversely, for any arbitrary guessing stratégythe worst- and
case redundancy is at least— log(1 + In |X]), i.e, IX|=" < h(P)<1, for 1 < a < . 9)
sup R(P,G) > C —log(1 4+ In|X]). In both cases, we see thafP) is bounded away from O.
pet For the sake of clarity, let us define
([l
A
I(P,Q) = I;(P' || Q). (10)

The converse part of Theorem 4 is meaningful only when )
C > log(1 + In [X]). This will hold, for example, when the Then from (3) we can write
uncertainty set is sufficiently rich. The finite state, arbitrarily

1 .
varying source is one such example. Observe that if we have La(P.Q) = ;log (sign(p) - 1(P,Q)). 1)



Our focus will be on the following: Consequently

Definition 5: For0 < a < oo, # 1, J(p, T) = Inin/ du(P) - I(P,Q),
Q Jr
A
Ky = minsup I(P,Q). (12)  which leads to
Q@ per
Taking Q to be the uniform PMF oKX it is easy to check K_ = supJ(uT)
that K, is finite; indeedl < K, < |X|” whenp > 0 and .
—1<K; <0when-1<p<0. = Supmln/d,u( )-I(P,Q)
Definef : T — le_gl as follows:
A < mlnsup/du
F(P) 2 PIH(P), @
For a measurg on (T, T), let = min f}g’rl (P,Q)
= KT.

2 [aup)- 1(p). (13)

Define the PMFuf on X as the scaled version df,

The following Proposition is similar to [9, Theorem A]. The

wf 20F (14) proof mostly runs along similar lines.
whered is the normalizing constant Proposition 8: A real numberR equalsK _ if and only if
du(P) there exist a sequence of probability measyyes: n € N)
d2 / : = Z F(x). (15) on(T,7) and a PMRQ* on X with the following properties:
zeX 1) lim, J(un, T) = R;
Moreover, let 2) limy, pn f = Q7
3) I(P,Q*) <R, foreveryP € T.
J(u, T) _/ du(P) - I(P,uf). (16) FurthermoreQ* is unique, ands_ = K. O
Simple algebraic manipulations result in Proof: <: Observe that on account of 1), 3), and
Proposition 7, we have
J(p,T) = si - h(F 17
MU e 09 o
- SR > sup I(P,Q")
these are extensions of [7, Equation (2.24)] for arbitrary Pet
The following definition will be useful in the proof. > %f Isggrf (P,Q)
Definition 6: For0 < a < oo, a # 1, = Ki
A Z K—7
K_ = supJ(p,T). (19)
I where the first inequality follows from 1) and the definition

To help fix ideas, we now describe some parallels withf £, the second from 3), and the last from Proposition 7.
classical information theoretic quantitiéB represents a chan- Consequently, all the inequalities are equalitiis= K_ =
nel where the input alphabet is any index set for the PMHS+, and the use of min in the definition @, is justified.
in T. The output alphabet iX. The quantityuf in (14) is =: SinceR = K_ < K, and is therefore finite, by
analogous to the PMF at the output of the charfievhen definition of K, there exists a sequencg,, : n € N) such

the input measure ig. J(u, T) in (16) is the analogue of thatlim, J(Mn’T) =R
mutual information; Csisar calls it informativity in his work  Now consider the sequence|&f-dimensional vectors given

on finite families [7]. by F, = [;dun(P) - f(P). This is a sequence of scaled
N PMFs given byF,, = d, - u.f, whered,, is given by (15).
Proposition 7: K_ < K. This is clearly a bounded quantity. The sequence therefore

resides in a compact space of scaled PMFs and therefore has
a cluster pointF™* which can be normalized to get the PMF
Q*. Moreover we can find a subsequence(&f, : n € N)

such thatlimy F,,, = F*. We redefine the sequengg, as

du(P) - I(P.O) = si T T - I . given by this subsequence, and properties 1) and 2) hold.
/T u(P) - I(P. Q) = signlp) - J(u, T) - 1, Q) Suppose that there is/ € T such that 3) is violated,e.,,

Proof: Fix an arbitrary PMR) onX. It is straightforward
to show that [7, Equation 2.26] holds for the arbitrdfycase
as well, and is given by

From the convexity off, we havel(uf,Q) > sign(p). It I(Py, Q") > K_.

follows that ) o
Consider the convex combinations of measures

/TCWP ) 1(P.Q) 2 I D). vnx = (1= Niin + (\p, (20)



wheredp, is the atomic distribution orP.
From (20), (13), and (17), we have

$n(A) 2 J(Wpr, T)

sign(p) - b ((1 = N Fn + Af(Fo)) -

IV. DISCUSSION

In this section, we will specialize our results to binaty
strings. LetX = {0,1}", and P a PMF on{0,1}. Let

n

Since sigfip) - h(-) is a concave and therefore continuougenote the PMF of the discrete memoryless source (DMS)

function of its vector-valued argument, () converges point-
wise to

S(N) = signp) - h (1~ NF* + Af(Py)),

for A € [0,1]. In particular,s(0) = lim, s,(0) = K_. Now,
s(A) is a concave function oX since sigfip) - h(-) is concave
and the argument is linear ik.

with 2™ = (z1, 9, -+, z,). Theorem 1 says that fgr = 1,
the minimum expected number of guesses grows exponentially
with n; the growth rate is given byf, ,»(P). Such results find
application in the analysis of private-key cryptosystems where
users have access to a fixed random source to generate the key-
string. The higher the growth rate of the minimum expected
number of guesses, the better the security of the system.
When all that the guesser knows is that the sourtee

Next, we can straightforwardly check that the one-sidel, the guesser suffers a penalty (also called redundancy);

derivative athA = 0, denoted bys(0), is given by
5(0) =I1(Py, Q%) — K_ >0,

with the possibility that the value (slope at= 0) may be
+00.

We have therefore established thdt\) hass(0) = K_,
is concave and therefore continuous|in1], and has strictly
positive slope at\ = 0. Consequentlys(A) > K_ for some
0 < XA < 1. Since

J(Wpr, T) = s, (A) = s(A) > K_,

we have a contradiction. So 3) must hold.

To show uniqueness @*, suppose there were anothet
and another sequence of measufes : n € N) satisfying
1), 2) and 3). We can get two cluster poirfts and G* that
when normalized lead t@* and R*, respectively. Then with
Vn = %in + 37, We have

sign(p) - h (2F + §G )

J(n,T) —
1 . o1 »
> Lesignn) b (F) + 2 -sign(p) - 1 (G)
1 1
= 5K7+§K,

a contradiction. The strict inequality above is due to stri¢il

concavity of sigiip) - h(-) whenp > —1. [ ]

B. Proof of Theorem 3

Proof: From (11), it is clear that

oz;%@@wng.

Q* attains the min-sup valu&’, in Definition 5 if and only
if Q* attains the min-sup valu€ in Definition 2. Proposition
8 guarantees the existence and uniqueness of siigh a m

growth rate of the minimum expected number of guesses
is larger than that achievable with knowledge Bf'. The
increase in growth rate is given by the normalized redundancy
R(P™,G)/n, where G is the guessing strategy chosen for
T. This normalized redundancy equals the normaliZzeg,-
radius ofT, i.e,, C,,/n, whereC,, is given by (6).

WhenP™ is a DMS, but the PMEP on {0, 1} is unknown to
the guesser, Arikan and Merhav [3] have shown that there is a
universal guessing strategy that works well for all DMSs. Their
universal guessing strategy, as indicated earlier, guesses strings
in the increasing order of their empirical entropies. Their
universality result implies that the normalizéd /,-radius of
the family of DMSs satisfie€”,,/n — 0. The set of DMSs
is thus not rich enough from the point of view of guessing.
Knowledge of the PMFP is not needed; the universal strategy
achieves, asymptotically, the minimum growth rate achievable
with full knowledge of the source statistics.

It is known that the family of finite-state, arbitrarily varying
sources has normalized, /,-radius approaching a strictly
positive constant as — oo under some circumstances [2].
Such a family is rich in the following sense; the growth rate of
the minimum expected number of guesses without knowledge
of source statistics is strictly larger than that achievable with
full knowledge of source statistics.
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