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Guessing Under Source Uncertainty
Rajesh Sundaresan,Senior Member, IEEE

Abstract— We study the problem of guessing the realization of
a finite alphabet source, when the only knowledge available about
the source is that it belongs to a (finite or infinite) family. We
identify good guessing strategies that minimize the supremum
redundancy(over the family) due to mismatch, and identify this
min-sup value.

Index Terms— f -divergence, guessing, mismatch, redundancy,
Rényi information divergence

I. I NACCURACY AND REDUNDANCY IN GUESSING

LetX be a finite alphabet set. LetP be the PMF of a random
variableX taking values inX. We need to guess the realization
of X. Formally, a guessing listG is a one-to-one function
G : X→ {1, 2, · · · , |X|} that indicates the order in which the
guesses are made. Naturally, knowing the PMFP , the best
strategy that minimizes the expected number of guesses goes
in the decreasing order ofP -probabilities. Let us call such
a guessing listGP . Arikan [1] showed the following general
result that gave an operational meaning to the Rényi entropy
Hα(P ) of orderα.

Theorem 1:(Arikan’s Guessing Theorem)Let ρ > 0 and
X a finite alphabet set. Consider a source onX with PMF P .
Let α = 1/(1 + ρ). Then

Hα(P )− log(1 + ln |X|)
≤ 1

ρ
log

(
min

G
E [G(X)ρ]

)

≤ Hα(P ).

¤
Suppose that due to lack of exact knowledge ofP we guess

in the decreasing order of probabilities of another PMFQ,
i.e., we guess in the order given byGQ. This situation leads
to mismatchedguessing. The penalty suffered in the guessing
moment, as a result of the mismatch, is given by [2]

Lα(P, Q)

∆=
α

1− α
log


∑

x∈X
P (x)

[∑

a∈X

(
Q(a)
Q(x)

)α
] 1−α

α




−Hα(P ), (1)

to within log(1 + ln |X|).
A universal guessing strategy that guesses in the increasing

order of empirical entropy was proposed by Arikan and
Merhav in [3]. Their strategy is universal inasmuch as it is
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asymptotically optimal (withinO((log n)/n)) for all finite-
alphabet, memoryless sources. In our work, we are interested
in understanding this universality and why the maximum
penalty is withinO((log n)/n). Moreover, we would like to
study and identify good guessing strategies that work well over
richer classes of sources.

The quantityLα(P,Q) also arises in the context of re-
dundancy for Campbell’s average exponential coding length
problem [4], [5]. In that case, the values that the parameter
ρ takes are expanded to−1 < ρ < 0 (resp.1 < α < ∞)
and 0 < ρ < ∞ (resp.0 < α < 1). Our results below for
Lα(P,Q) are valid for all theseα’s.

Lα(P,Q) can be written in terms of some well-understood
divergence quantities. Indeed,

Lα(P,Q) = Dβ(P ′ ‖ Q′) (2)

=
1
ρ

log (sign(ρ) · If (P ′ ‖ Q′)) , (3)

whereβ = 1/α = 1 + ρ, Dβ(R ‖ S) is the Ŕenyi divergence
of orderβ (see for example [6]),If is Csisźar’s f -divergence
(see [7])

If (R ‖ S) =
∑

x∈X
S(x)f

(
R(x)
S(x)

)
, (4)

f(x) = sign(ρ) ·x1+ρ, andP ′ is the tilted PMF obtained from
P and given by

P ′(x) =
P (x)α

∑
a∈X P (a)α

.

It is known thatlimα→1 Lα(P, Q) = D(P ‖ Q), the Kullback-
Leibler divergence.

II. PROBLEM STATEMENT

Let T denote a family of PMFs on the finite alphabet set
X. The setT may be infinite in size. Associated withT is
a family T of measurable subsets ofT and thus(T, T ) is
a measurable space. We assume that for everyx ∈ X, the
mappingP 7→ P (x) is T -measurable.

For a fixedρ > 0, we seek a guessing strategyG that works
well for all P ∈ T. More precisely, the redundancy denoted
by R(P, G) when the true source isP and when the guessing
list is G, is given by

R(P,G) ∆=
1
ρ

log (E [G(X)ρ])− 1
ρ

log (E [GP (X)ρ]) , (5)

whereGP is the optimal guessing scheme when the source
PMF isP , and the expectation is with respect toP . The worst
redundancy under this guessing strategy is given by

sup
P∈T

R(P,G).
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Our aim is to minimize this worst redundancy over all
guessing strategies,i.e., find a G that attains the minimum
in

min
G

sup
P∈T

R(P,G)

As indicated earlier, the redundancy under mismatch is
roughly given byLα(P, Q). The guessing strategyG can be
associated with a certain PMFQG. If QG is not the same
as P , there is mismatch, and the quantityLα(P, QG) is an
indication of the suffered penalty. So the following definition
is of relevance for the subset ofα satisfying0 < α < 1.

Definition 2: For 0 < α < ∞, α 6= 1,

C
∆= min

Q
sup
P∈T

Lα(P,Q). (6)

One of the main contributions of this paper is to demonstrate
the existence of a minimizingQ∗. For the case when|T| is
finite, previously known results forf -divergences and Ŕenyi
divergences can be used to show the existence and character-
ization of Q∗. In this paper, we address the problem for the
case of an infinite uncertainty familyT.

Theorem 3:There exists a unique PMFQ∗ such that

inf
Q

sup
P∈T

Lα(P,Q) = sup
P∈T

Lα(P,Q∗) = C.

¤

Proof: See Section III

The minimizing Q∗ has the geometric interpretation of a
centerof the uncertainty setT. Accordingly,C plays the role
of radius; all elements in the uncertainty setT are within
a “squared distance”C from the centerQ∗. The reason for
describingLα(P, Q) as “squared distance” is because it shares
the Pythagorean property with Euclidean squared distance and
with Kullback-Leibler divergence. This was discussed briefly
in [8].

The following result shows that guessing in the decreasing
order of Q∗-probabilities, whereQ∗ attains the min-sup in
Definition 2, results in min-sup redundancy, to withinlog(1+
ln |X|).

Theorem 4:(Guessing under uncertainty) LetT be a family
of PMFs onX. For a fixedρ > 0, there exists a guessing list
G∗ such that

sup
P∈T

R(P,G∗) ≤ C + log(1 + ln |X|).

Indeed, we may takeG∗ = QG∗ .
Conversely, for any arbitrary guessing strategyG, the worst-

case redundancy is at leastC − log(1 + ln |X|), i.e.,

sup
P∈T

R(P,G) ≥ C − log(1 + ln |X|).

¤

The converse part of Theorem 4 is meaningful only when
C > log(1 + ln |X|). This will hold, for example, when the
uncertainty set is sufficiently rich. The finite state, arbitrarily
varying source is one such example. Observe that if we have

X = An, an n-fold cartesian product of a finite alphabet set
A, then log(1 + ln |X|) grows logarithmically withn. The
uncertainty set is therefore rich enough for the converse to
be meaningful ifC grows withn at a faster rate.

III. PROOF OFTHEOREM 3

From Theorem 4, it is clear that the problem at hand is
one of identifying the minimizing PMFQ∗ and identifying
the minimum in (6). Guessing in the decreasing order ofQ∗-
probabilities leads to a guessing order that works well for
all PMFs in the family. The min-sup redundancy is given by
C to within log(1 + ln |X|). In this section, we show that
minimizer Q∗ exists, and is unique, for the case when|T| is
not necessarily finite.

The proof outline is as follows. We first solve the related
problem

sup
µ

inf
Q

∫

T
dµ(P ) · If (P ′ ‖ Q′),

where the sup is over measuresµ on (T, T ). We show that
the inf can be replaced by min, and that the sup-min can
be interchanged. These are extensions of Csiszár’s results to
the infinite |T| case. The proof technique is analogous to a
technique used by Gallager in [9, Theorem A]. We then make
a connection to the min-sup problem in Definition 2 via (3).

A. Lα-center and radius for an arbitrary family

The development in this subsection is analogous to Gal-
lager’s approach [9] for the source coding problem. We first
recall the technical conditions put forth in Section II.T is a
family of PMFs onX. (T, T ) is a measurable space, and for
everyx ∈ X, the mappingP 7→ P (x) is T -measurable.

We next define a few auxiliary quantities. For a givenP ,
let theα-norm of the PMFP be given by

h(P ) ∆=

(∑

x∈X
P (x)α

) 1
α

.

The dependence ofh on α is understood, and suppressed for
convenience. The function sign(ρ) ·h is a concave function of
its argument. The Ŕenyi entropy is given by

Hα(P ) =
α

1− α
log h(P ). (7)

From the known bounds0 ≤ Hα(P ) ≤ |X|, it is easy to see
the following bounds onh(P ):

1 ≤ h(P ) ≤ |X| 1−α
α , for 0 < α < 1, (8)

and
|X| 1−α

α ≤ h(P ) ≤ 1, for 1 < α < ∞. (9)

In both cases, we see thath(P ) is bounded away from 0.
For the sake of clarity, let us define

I(P, Q) ∆= If (P ′ ‖ Q′). (10)

Then from (3) we can write

Lα(P, Q) =
1
ρ

log (sign(ρ) · I(P, Q)) . (11)
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Our focus will be on the following:

Definition 5: For 0 < α < ∞, α 6= 1,

K+
∆= min

Q
sup
P∈T

I(P, Q). (12)

Taking Q to be the uniform PMF onX it is easy to check
that K+ is finite; indeed1 ≤ K+ ≤ |X|ρ when ρ > 0 and
−1 ≤ K+ ≤ 0 when−1 < ρ < 0.

Definef : T→ R|X|+ as follows:

f(P ) ∆= P/h(P ).

For a measureµ on (T, T ), let

F
∆=

∫

T
dµ(P ) · f(P ). (13)

Define the PMFµf on X as the scaled version ofF ,

µf
∆= d−1F (14)

whered is the normalizing constant

d
∆=

∫

T

dµ(P )
h(P )

=
∑

x∈X
F (x). (15)

Moreover, let

J(µ,T) ∆=
∫

T
dµ(P ) · I(P, µf). (16)

Simple algebraic manipulations result in

J(µ,T) = sign(ρ) · h(F ) (17)

= sign(ρ) · d · h(µf); (18)

these are extensions of [7, Equation (2.24)] for arbitraryT.
The following definition will be useful in the proof.

Definition 6: For 0 < α < ∞, α 6= 1,

K−
∆= sup

µ
J(µ,T). (19)

To help fix ideas, we now describe some parallels with
classical information theoretic quantities.T represents a chan-
nel where the input alphabet is any index set for the PMFs
in T. The output alphabet isX. The quantityµf in (14) is
analogous to the PMF at the output of the channelT when
the input measure isµ. J(µ,T) in (16) is the analogue of
mutual information; Csisźar calls it informativity in his work
on finite families [7].

Proposition 7: K− ≤ K+.

Proof: Fix an arbitrary PMFQ onX. It is straightforward
to show that [7, Equation 2.26] holds for the arbitraryT case
as well, and is given by

∫

T
dµ(P ) · I(P, Q) = sign(ρ) · J(µ,T) · I(µf, Q).

From the convexity off , we haveI(µf, Q) ≥ sign(ρ). It
follows that ∫

T
dµ(P ) · I(P,Q) ≥ J(µ,T).

Consequently

J(µ,T) = min
Q

∫

T
dµ(P ) · I(P, Q),

which leads to

K− = sup
µ

J(µ,T)

= sup
µ

min
Q

∫

T
dµ(P ) · I(P, Q)

≤ min
Q

sup
µ

∫

T
dµ(P ) · I(P, Q)

= min
Q

sup
P∈T

I(P, Q)

= K+.

The following Proposition is similar to [9, Theorem A]. The
proof mostly runs along similar lines.

Proposition 8: A real numberR equalsK− if and only if
there exist a sequence of probability measures(µn : n ∈ N)
on (T, T ) and a PMFQ∗ onX with the following properties:

1) limn J(µn,T) = R;
2) limn µnf = Q∗;
3) I(P, Q∗) ≤ R, for everyP ∈ T.

FurthermoreQ∗ is unique, andK− = K+. ¤

Proof: ⇐: Observe that on account of 1), 3), and
Proposition 7, we have

K− ≥ R

≥ sup
P∈T

I(P, Q∗)

≥ inf
Q

sup
P∈T

I(P, Q)

= K+

≥ K−,

where the first inequality follows from 1) and the definition
of K−, the second from 3), and the last from Proposition 7.
Consequently, all the inequalities are equalities,R = K− =
K+, and the use of min in the definition ofK+ is justified.
⇒: Since R = K− ≤ K+ and is therefore finite, by

definition of K−, there exists a sequence(µn : n ∈ N) such
that limn J(µn,T) = R.

Now consider the sequence of|X|-dimensional vectors given
by Fn =

∫
T dµn(P ) · f(P ). This is a sequence of scaled

PMFs given byFn = dn · µnf , wheredn is given by (15).
This is clearly a bounded quantity. The sequence therefore
resides in a compact space of scaled PMFs and therefore has
a cluster pointF ∗ which can be normalized to get the PMF
Q∗. Moreover we can find a subsequence of(Fn : n ∈ N)
such thatlimk Fnk

= F ∗. We redefine the sequenceµn as
given by this subsequence, and properties 1) and 2) hold.

Suppose that there is aP0 ∈ T such that 3) is violated,i.e.,

I(P0, Q
∗) > K−.

Consider the convex combinations of measures

νn,λ = (1− λ)µn + (λ)δP0 , (20)
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whereδP0 is the atomic distribution onP0.
From (20), (13), and (17), we have

sn(λ) ∆= J(νn,λ,T)
= sign(ρ) · h ((1− λ)Fn + λf(P0)) .

Since sign(ρ) · h(·) is a concave and therefore continuous
function of its vector-valued argument,sn(λ) converges point-
wise to

s(λ) = sign(ρ) · h ((1− λ)F ∗ + λf(P0)) ,

for λ ∈ [0, 1]. In particular,s(0) = limn sn(0) = K−. Now,
s(λ) is a concave function ofλ since sign(ρ) ·h(·) is concave
and the argument is linear inλ.

Next, we can straightforwardly check that the one-sided
derivative atλ = 0, denoted byṡ(0), is given by

ṡ(0) = I(P0, Q
∗)−K− > 0,

with the possibility that the value (slope atλ = 0) may be
+∞.

We have therefore established thats(λ) has s(0) = K−,
is concave and therefore continuous in[0, 1], and has strictly
positive slope atλ = 0. Consequently,s(λ) > K− for some
0 < λ < 1. Since

J(νn,λ,T) = sn(λ) → s(λ) > K−,

we have a contradiction. So 3) must hold.
To show uniqueness ofQ∗, suppose there were anotherR∗

and another sequence of measures(πn : n ∈ N) satisfying
1), 2) and 3). We can get two cluster pointsF ∗ andG∗ that
when normalized lead toQ∗ andR∗, respectively. Then with
νn = 1

2µn + 1
2πn, we have

J (νn,T) → sign(ρ) · h
(

1
2
F ∗ +

1
2
G∗

)

>
1
2
· sign(ρ) · h (F ∗) +

1
2
· sign(ρ) · h (G∗)

=
1
2
K− +

1
2
K−

= K−,

a contradiction. The strict inequality above is due to strict
concavity of sign(ρ) · h(·) whenρ > −1.

B. Proof of Theorem 3

Proof: From (11), it is clear that

C =
1
ρ

log (sign(ρ) ·K+) .

Q∗ attains the min-sup valueK+ in Definition 5 if and only
if Q∗ attains the min-sup valueC in Definition 2. Proposition
8 guarantees the existence and uniqueness of such aQ∗.

IV. D ISCUSSION

In this section, we will specialize our results to binaryn-
strings. LetX = {0, 1}n, andP a PMF on{0, 1}. Let

Pn(xn) =
n∏

i=1

P (Xi = xi)

denote the PMF of the discrete memoryless source (DMS)
with xn = (x1, x2, · · · , xn). Theorem 1 says that forρ = 1,
the minimum expected number of guesses grows exponentially
with n; the growth rate is given byH1/2(P ). Such results find
application in the analysis of private-key cryptosystems where
users have access to a fixed random source to generate the key-
string. The higher the growth rate of the minimum expected
number of guesses, the better the security of the system.

When all that the guesser knows is that the sourcePn ∈
T, the guesser suffers a penalty (also called redundancy);
growth rate of the minimum expected number of guesses
is larger than that achievable with knowledge ofPn. The
increase in growth rate is given by the normalized redundancy
R(Pn, G)/n, where G is the guessing strategy chosen for
T. This normalized redundancy equals the normalizedL1/2-
radius ofT, i.e., Cn/n, whereCn is given by (6).

WhenPn is a DMS, but the PMFP on{0, 1} is unknown to
the guesser, Arikan and Merhav [3] have shown that there is a
universal guessing strategy that works well for all DMSs. Their
universal guessing strategy, as indicated earlier, guesses strings
in the increasing order of their empirical entropies. Their
universality result implies that the normalizedL1/2-radius of
the family of DMSs satisfiesCn/n → 0. The set of DMSs
is thus not rich enough from the point of view of guessing.
Knowledge of the PMFP is not needed; the universal strategy
achieves, asymptotically, the minimum growth rate achievable
with full knowledge of the source statistics.

It is known that the family of finite-state, arbitrarily varying
sources has normalizedL1/2-radius approaching a strictly
positive constant asn → ∞ under some circumstances [2].
Such a family is rich in the following sense; the growth rate of
the minimum expected number of guesses without knowledge
of source statistics is strictly larger than that achievable with
full knowledge of source statistics.
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IEEE Trans. Inform. Theory, vol. IT-41, pp. 26–34, Jan. 1995.

[7] ——, “A class of measures of informativity of observation channels,”
Periodica Mathematica Hungarica, vol. 2, pp. 191–213, 1972.

[8] R. Sundaresan, “A measure of discrimination and its geometric proper-
ties,” in Proc. 2002 IEEE Int. Symp. on Information Theory, Lausanne,
Switzerland, Jun. 2002, p. 264.

[9] R. G. Gallager, “Source coding with side information and universal
coding,” LIDS Technical Report, LIDS-P-937, Sept. 1979.


