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Abstract— We study the problem of guessing the realization of
a finite alphabet source, when some side information is provided,
in a setting where the only knowledge the guesser has about
the source and the correlated side information is that the joint
source is one among a family. We define a notion of redundancy,
identify a quantity that measures this redundancy, and study
its properties. We then identify good guessing strategies that
minimize the supremum redundancy (over the family). The
minimum value measures the richness of the uncertainty class.

Index Terms— f -divergence, guessing, I-projection, mismatch,
Pythagorean identity, redundancy, Rényi information divergence.

I. INACCURACY AND REDUNDANCY IN GUESSING

The problem of guessing has been studied by Massey [1],
Arikan [2], and others. In this paper, we study the problem
of guessing the realization of a finite alphabet source, when
some side information is provided, in a setting where the only
knowledge the guesser has about the source and the correlated
side information is that the joint source is one among a family.
There are several parallels between guessing and source coding
([3], [4]), under source uncertainty. The results in this paper
bring these similarities into light.

Let X and Y be finite alphabet sets. Consider a correlated
pair of random variables (X,Y ) with joint PMF P on X ×
Y. Given side information Y = y, we would like to guess
the realization of X . Formally, a guessing list G with side
information is a function G : X × Y → {1, 2, · · · , |X|} such
that for each y ∈ Y, the function G(·, y) : X → {1, 2, · · · , |X|}
is bijective, and denotes the order in which the elements of X

will be guessed when the guesser observes Y = y.
Knowing the PMF P , the best strategy that minimizes the

expected number of guesses, given Y , is to guess in the
decreasing order of P (·, Y )-probabilities. Let us denote such
an order GP . Arikan [2] showed the following general result
that gave an operational meaning to the conditional Rényi
entropy Hα(P ) of order α.

Theorem 1: (Arikan’s Guessing Theorem) Let ρ > 0 and
α = 1

1+ρ . Consider a source pair (X,Y ) with PMF P . Then

Hα(P ) − log(1 + ln |X|) ≤ 1
ρ

log
(
min

G
E [G(X, Y )ρ]

)
≤ Hα(P ).

�
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The conditional Rényi entropy is given by

Hα(P ) =
α

1 − α
log

⎛
⎝∑

y∈Y

(∑
x∈X

P (x, y)α

)1/α
⎞
⎠ .

Due to lack of exact knowledge of P , suppose we guess
using some guessing list G. Associated with G is a PMF
QG such that G proceeds in the decreasing order of QG-
probabilities. If QG and P do not lead to the same order,
i.e., G �= GP , then the guessing is mismatched. Let us define
the redundancy in guessing X with side information Y , when
the source is P , as follows:

R(P, G) ∆=
1
ρ

log (E [G(X, Y )ρ]) − 1
ρ

log (E [GP (X,Y )ρ])

(1)
The expectation E in (1) is with respect to P . The dependence
of R(P, G) on ρ is understood and suppressed. The following
proposition bounds the redundancy on either side.

Theorem 2: Let ρ > 0, α = 1/(1 + ρ). Consider a source
pair (X, Y ) with PMF P . Let G be an arbitrary guessing list
with side information Y and QG the associated PMF. Then

|R(P, G) − Lα(P, QG)| ≤ log(1 + ln |X|).

�
Thus the penalty in the guessing moment suffered as a result

of the mismatch is given by the quantity Lα(P, QG), where

Lα(P, Q) ∆=

α

1 − α
log

⎛
⎝∑

y∈Y

∑
x∈X

P (x, y)

[∑
a∈X

(
Q(a, y)
Q(x, y)

)α
] 1−α

α

⎞
⎠

− Hα(P ), (2)

to within log(1 + ln |X|). The expression for Lα in (2)
specializes to the known expression [5] for the case without
side information when |Y| = 1.

For this special case, a universal guessing strategy that
guesses in the increasing order of empirical entropy was
proposed by Arikan and Merhav in [6]. Their strategy is
universal inasmuch as it is asymptotically optimal (within
O((log n)/n)) for all finite-alphabet, memoryless sources. In
our work, we are interested in understanding and interpreting
this universality. Moreover, we would like to study and identify
good guessing strategies that work well over richer classes of
sources, and also generalize to the case with side information.

The quantity Lα(P,Q) also arises in the context of re-
dundancy for Campbell’s average exponential coding length
problem with side information. (The results for the case with
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side information are simple generalizations of [7], [8]). In that
case, the values that the parameter ρ takes are expanded to
−1 < ρ < 0 (resp. 1 < α < ∞) and 0 < ρ < ∞ (resp.
0 < α < 1). Our results below on the properties of Lα(P, Q)
are valid for all these α’s.

For the case when there is no side information, i.e., |Y| = 1,
it is known that Lα(P, Q) can be written in terms of some
well-studied divergence quantities. Indeed,

Lα(P, Q) = Dβ(P ′||Q′) =
1
ρ

log (sign(ρ) If (P ′||Q′)) , (3)

where β = 1/α = 1 + ρ, Dβ(R||S) is the Rényi divergence
of order β (see for example [9]), If is Csiszár’s f -divergence
(see [10]) with f(x) = sign(ρ) · x1+ρ, and P ′ is the tilted
PMF obtained from P and given by

P ′(x) =
P (x)α∑

a∈X
P (a)α

.

It is known that limα→1 Lα(P, Q) = D(P ||Q), the Kullback-
Leibler divergence, for the special case. For the case with side
information, limα→1 Lα(P, Q) = D(PX|Y ‖ QX|Y | PY ),
where (X, Y ) is the pair of random variables of interest with
PMF P = PY ·PX|Y . The mismatched PMF Q = QY ·QX|Y .

II. PROBLEM STATEMENT

Let T denote a set of PMFs on the finite alphabet X × Y.
T may be infinite in size. Associated with T is a family T of
measurable subsets of T and thus (T, T ) is a measurable space.
We assume that for every x ∈ X, the mapping P �→ P (x) is
T -measurable.

For a fixed ρ > 0, we seek a good guessing strategy G that
works well for all P ∈ T. G can depend on knowledge of T,
but not on the actual source PMF. More precisely, for P ∈ T

the redundancy denoted by R(P,G) when the true source is
P and when the guessing list is G, is given by (1). The worst
redundancy under this guessing strategy is given by

sup
P∈T

R(P,G)

Our first aim is to minimize this worst redundancy over all
guessing strategies, i.e., find a G that attains the minimum in

min
G

sup
P∈T

R(P,G)

In view of Theorem 2, clearly, the following quantity is
relevant for 0 < α < 1. The definition however is wider in
scope.

Definition 3: For α > 0, α �= 1,

C
∆= min

Q
sup
P∈T

Lα(P,Q). (4)

One contribution of this paper is to demonstrate the ex-
istence of a minimizing Q∗ thereby justifying the use of
“min” instead of “inf”. For the case when |T| is finite and
|Y| = 1, previously known results for f -divergences and
Rényi divergences can be used to show the existence and
characterization of Q∗. Here, however, T may have an infinite
number of elements or |Y| > 1 or both.

Theorem 4: There exists a unique PMF Q∗ such that

C = sup
P∈T

Lα(P, Q∗) = inf
Q

sup
P∈T

Lα(P, Q).

�
The minimizing Q∗ has the geometric interpretation of a

center of the uncertainty set T. Accordingly, C plays the role
of radius; all elements in the uncertainty set T are within
a “squared distance” C from the center Q∗. The reason for
describing Lα(P, Q) as “squared distance” is because it shares
the Pythagorean property with Euclidean squared distance and
with Kullback-Leibler divergence. See the next section for
more details on this other contribution of the paper. It is
already known that Lα satisfies this property in the no side
information case [5]; our results in the next section show that
the property holds in a wider context.

Returning to the problem of guessing, the following re-
sult shows that guessing in the decreasing order of Q∗-
probabilities, where Q∗ attains the min-sup in Definition 3,
results in min-sup redundancy to within log(1 + ln |X|).

Theorem 5: (Guessing under uncertainty) Consider the
class of PMFs parameterized by T. There exists a guessing
list G∗ for X with side information Y such that

sup
P∈T

R(P,G∗) ≤ C + log(1 + ln |X|).

In particular, G∗ = GQ∗ . Conversely, for any arbitrary
guessing strategy G, the worst-case redundancy is at least
C − log(1 + ln |X|), i.e.,

sup
P∈T

R(P,G) ≥ C − log(1 + ln |X|).

�
The converse part of Theorem 5 is meaningful only when

C > log(1 + ln |X|). This will hold, for example, when the
uncertainty class is sufficiently rich. The finite state, arbitrarily
varying source is one such example. Observe that if we have
X×Y = A

n ×B
n, a cartesian product of the n-fold cartesian

product of A and B, then log(1+ln |X|) grows logarithmically
with n if |X| ≥ 2. The uncertainty class is therefore rich
enough for the converse to be meaningful if C grows with n
at a faster rate.

This brings us to the interpretation of the universality result
in [6] where Arikan and Merhav proposed a guessing strategy
that achieves the guessing exponent to within O((log n)/n) for
all finite-alphabet memoryless sources (without side informa-
tion). We interpret this as follows: the normalized Lα-radius
for the class of finite-alphabet memoryless sources vanishes
asymptotically as O((log n)/n), a fact that we demonstrate
rather directly in [11] by choosing a candidate for center
and enclosing all PMFs in the class within normalized radius
O((log n)/n) from the chosen center.

The above results are analogous to results on source coding
under source uncertainty [3], [4]. The channel capacity of an
associated channel plays the role of Lα-radius in this paper.
The geometric results of the next section shed some light on
the nature of Q∗ and may be of independent interest.
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III. Lα-PROJECTION : A GENERALIZATION

In this section, we generalize the Pythagorean property
to Lα with side information. The results of this section are
relevant to the guessing problem to the extent that they charac-
terize the minimizing Q∗, and are straightforward extensions
of results in [12] and [5]. Note that the expression for Lα

is different from [5] and accounts for side information. We
proceed along the same lines.

Let X and Y be finite alphabet sets. Given a PMF R on
X × Y, the set of PMFs on X × Y

B(R, r) ∆= {P | Lα(P, R) < r} , 0 < r ≤ ∞,

is called an Lα-sphere (or ball) with center R and radius r.
The term “sphere” conjures the image of a convex set. That
the set is indeed convex needs a proof since Lα(P,R) is not
convex in its arguments.

Proposition 6: B(R, r) is a convex set. �
When we talk of closed sets, we refer to the usual Euclidean

metric on the |X||Y|-dimensional Euclidean vector space. The
set of PMFs on X × Y is closed and bounded (and therefore
compact).

If E is a closed and convex set of PMFs on X×Y intersecting
B(R,∞), i.e. there exists a PMF P ∈ E such that Lα(P, R) <
∞, then a PMF Q ∈ E satisfying

Lα(Q,R) = min
P∈E

Lα(P, R),

is called the Lα-projection of R on E .
Proposition 7: (Existence of Lα-projection) Let E be a

closed and convex set of PMFs on X×Y. If B(R,∞)∩ E is
nonempty, then R has an Lα-projection on E . �

We next state the generalizations of [12, Lemma 2.1, Theo-
rem 2.2]. Here Lα(P, Q) plays the role of squared Euclidean
distance (analogous to the Kullback-Leibler divergence).

Proposition 8: Let 0 < α < ∞, α �= 1.

1) Let Lα(Q,R) and Lα(P, R) be finite. The segment
joining P and Q does not intersect the Lα-sphere
B(R, r) with radius r = Lα(Q,R), i.e.,

Lα(Pλ, R) ≥ Lα(Q,R)

for each

Pλ = λP + (1 − λ)Q, 0 ≤ λ ≤ 1,

if and only if

Lα(P, R) ≥ Lα(P, Q) + Lα(Q,R). (5)

2) (Tangent hyperplane) Let

Q = λP + (1 − λ)S, 0 < λ < 1. (6)

Let Lα(Q, R), Lα(P, R), and Lα(S, R) be finite. The
segment joining P and S does not intersect B(R, r)
(with r = Lα(Q,R)) if and only if

Lα(P, R) = Lα(P, Q) + Lα(Q,R). (7)

�
Proposition 8.2 extends the analog of Pythagoras theorem,

known to hold for the Kullback-Leibler divergence, and for

Lα without side information. Let us now apply Proposition 8
to the Lα-projection of a convex set.

For a convex E , we call Q an algebraic inner point of E if
for every P ∈ E , there exist λ and S satisfying (6).

Theorem 9: (Projection Theorem) Let 0 < α < ∞, α �= 1.
A joint PMF Q ∈ E ∩B(R,∞) is the Lα-projection of R on
the convex set E if and only if every P ∈ E satisfies

Lα(P,R) ≥ Lα(P, Q) + Lα(Q,R). (8)

If the Lα-projection Q is an algebraic inner point of E , then
every P ∈ E ∩ B(R,∞) satisfies (8) with equality. �

While existence of Lα-projection is guaranteed for certain
sets by Proposition 7, we can show that a projection onto a
convex set, if it exists, is unique.

As an application of Theorem 9, let us characterize the Lα-
center of a family.

Proposition 10: The Lα-center of T lies in the closure of
its convex hull. �

The proof is quite simple. If the Lα-center does not lie in
the closure of the convex hull of T, the projection of the PMF
on the closed and convex set is a better candidate.

IV. SUMMARY OF MAIN CONTRIBUTIONS

The main contributions of this paper are as follows:
• a highlighting of the similarity between guessing and

source coding;
• a generalization of the results on redundancy in guessing

to the case when side information is available;
• a discovery of the fact that the relevant quantity that

measures redundancy in guessing with side information
also satisfies the Pythagorean property.

All the above are generalizations of known results for the
case without side information. Proofs of stated results are
available in [11].
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