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Capacity of Queues Via Point-Process Channels
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Abstract—A conceptually simple proof for the capacity formula
of an exponential server timing channel is provided. The proof
links the timing channel to the point-process channel with instan-
taneous noiseless feedback. This point-process approach enables a
study of timing channels that arise in multiserver queues, queues
in tandem, and other simple configurations. Although the capaci-
ties of such channels remain to be found, the paper provides some
analytical bounds and highlights a method to find achievable rates
via simulations.

Index Terms—Channels with feedback, direct-detection photon
channel, intensity, nonlinear filtering, point process, Poisson
channel, queue, rate, timing channel.

I. INTRODUCTION

THE capacity of the exponential server timing channel
(ESTC) with service rate packets per second is

nats per second [1]. The capacity of the point-process channel
with maximum input intensity points per second, and no
background intensity, is also nats per second (cf. [2], [3]).
Furthermore, in both channels, the capacity does not increase
in the presence of instantaneous noiseless feedback. In [1], the
connection between the two channels in the presence of instan-
taneous noiseless feedback was discussed briefly. In [4], this
connection was further explored—any strategy on the ESTC
can be mapped to an equivalent strategy that uses feedback on
the point-process channel. This observation implies that the
capacity of the ESTC is upper-bounded by the capacity of the
point-process channel with instantaneous noiseless feedback,
i.e., nats per second.

From [1] and [4], we know that nats per second is in-
deed achievable on the ESTC. The route taken in [4] was to show
the achievability result in full generality for a stationary and
ergodic sequence of service times. Considerable attention has
been focused on the ESTC (cf. [1], [5], [6]). However, not much
is known about the capacity of other queueing systems such as
multiserver queues, queues in tandem, or even the single-server
queue with a finite buffer. For such systems, the approaches of
[1], [5], [6], and [4] via Lindley’s equation [7, p. 431] do not
seem to extend easily to more general queueing systems.

In this paper, we take a point-process approach to study
timing channels. We restrict our attention to servers whose ser-
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vice times have the exponential distribution. In Section II, we
first show the converse and the direct parts for the ESTC, using
point-process techniques. We also find the capacity region when
two or more users access this channel. This approach is then
used in Sections III and IV to study timing channels in a mul-
tiserver queueing system and in some other simple networks
of servers with exponential service times. In particular, we
obtain bounds, either analytically or from simulations, on the
capacities of multiserver queues in Section III, the single-server
queue with spurious departures, and a pair of queues connected
in tandem in Section IV. In all these examples, we identify the
channel model, find upper bounds on the capacity, and then find
achievable rates through simulations. Section V is a summary
and discussion of the results.

Since the inclusion of the main results of this paper in [8],
several papers have focused on the ESTC. We now summarize
their results. Reference [9] identifies the error exponent of this
channel for rates between and nats per second,
and gives upper and lower bounds for rates below
nats per second. These upper and lower bounds on the reliability
function are based on the sphere-packing and random-coding
bounds, respectively. The sphere-packing bound is identical to
the sphere-packing bound for point-process channels without
dark current. Similarly, the two channels’ random-coding
bounds also coincide. However, [10] shows that the reliability
functions of the two channels are different; the zero-rate error
exponent of the ESTC is while that of the point-process
channel without feedback is . Incidentally, the zero-rate
error exponent of the point-process channel with feedback is

. Thus, the restrictive use of feedback on the point-process
channel, as suggested by the emulation of the ESTC on the
point-process channel, does not achieve the best reliability with
feedback in the low-rate regime. The point-process technique
used in [10] is similar to that used in [8], and in this paper. While
the focus of [10] is on the ESTC, the goal of the present paper
is not only to highlight the connections between point-process
channels and the ESTC, but also to apply the technique to study
other queueing systems.

II. SINGLE QUEUEING STATION

In this section, we rederive the capacity formula for the
ESTC. In showing the achievability result, we directly see the
role played by Burke’s output theorem, a well-known result for
the queue ([11, Ch. V, Theorem T1]). We also find the
capacity region when we allow more than one transmitter. We
first give some mathematical preliminaries before we describe
the channel in Section II-B1. In the interest of brevity, several
facts and technical details are stated without proof. Where the
arguments may not be obvious, we supply pointers to sections
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and theorems in standard texts to help the reader complete the
technical arguments.

A. Preliminaries

Let denote the set of nonnegative integers,
, and the set of natural numbers. Let be a mea-

surable space. Fix finite . Let be
an increasing family of sub- -algebras that is right-continuous.
An uppercase letter will denote a sto-
chastic process on . We say is adapted to the family

if is -measurable for each . Let

for

and

for

We say that a stochastic process is predictable with re-
spect to if is measurable with respect
to , where is the -algebra generated by all
left-continuous processes adapted to . (In par-
ticular, any adapted left-continuous process is predictable.)

The input space is , where the alphabet is the set of
functions that are nondecreasing and right-con-
tinuous. represents the set of arrival processes on with
possible multiple arrivals at the same instant. Let . This
function’s value at , denoted by , represents the number of
arrivals in . Similarly, the output space is , where

is the set of functions that are nondecreasing,
right-continuous, have unit jumps, and satisfy . repre-
sents the set of counting processes (or point processes) on .

Let be a probability space. (In all settings consid-
ered in this paper, the space will be such that

; this will be clear from the context). We say that the point
process adapted to has the rate (or intensity)
process with respect to the family , if the
following three conditions hold:

• (i) the nonnegative process is
predictable with respect to the family ;

• (ii) – almost surely ( ), for each
; and

• (iii) for every nonnegative process that is predictable
with respect to , we can write

where denotes Lebesgue–Stieltjes integra-
tion for a fixed .

Let be the measure on such that is a point
process having constant and unit-rate intensity with respect to

. This is the projection of the standard Poisson
point process on , and will be our reference measure on the
space . The dependence of on is understood.

Even though we have allowed in the range of the observ-
able , our attention in this paper will be restricted to ( -a.s.)
nonexplosive point processes.

B. The Queue

1) Channel Model: is a transition probability
function [12, p. 315] from the space to the space

, if it satisfies the following measurability properties:

• for each , the mapping from to
is a probability measure on , and

• for each , the mapping is -mea-
surable.

Yet again, the dependence of on is understood.
For each , we now define a transition probability function

that models the rate- ESTC with information encoded in the
arrival times of packets. (See also the definition in [10, Sec. II]).
We motivate our definition as follows. Consider an
queue in equilibrium at . Define the state process

(right-continuous with left limits),
where denotes the number of packets that remain in the
system at time . It is shown in [11, Example 2.6] and [11, Ex-
ample 1.3] that for the queue, the departure process
admits the rate process with

respect to .
Fix and . Let

(1)

Fix arbitrary . If , there is no packet in the
system at time , and therefore no packet can depart at time
; the rate of the point process of departures is at time . If

, there is at least one packet in the system at . Due
to the memoryless property of exponential service times, the
residual time for the next departure is exponentially distributed
with mean seconds, independent of the past. In other words,
the rate of the point process of departures is at time .

For a fixed , therefore, the probability measure
on is such that , the point process of departures in

, admits the rate process

(2)

with respect to , where is as defined in (1).
We therefore model this channel by setting the

Radon–Nikodym derivative of with respect to as

(3)

where

(4)

The results [11, Ch. VI, Theorems T2–T4] ensure that the point
process of departures admits the rate process (2) with respect
to under the probability measure .
The function is measurable with respect to ,
which implies that is a transition probability function.
Thus, (3) and (4) suitably model the ESTC. Note that (3) and (4)
are related to the sample function density for the self-exciting
point process with rate [13, Theorem 5.2.2] with the difference
being that (3) is written as a Radon–Nikodym derivative with
respect to .

We adopt the following definitions for achievability and ca-
pacity. Each of equiprobable messages is mapped to an el-
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ement in . The decoder observes the departures in the time
interval and declares one of the messages as trans-
mitted. An error occurs if the decoded message is different from
the transmitted message. For a fixed , a codebook with
codewords, and a decoder, let be the probability of error. We
call this a -code. Rate is achievable if, for every

, there is a sequence of -codes that satisfies
, for all sufficiently

large , and . The capacity is the supremum of
all achievable rates.

The codes considered in [4] require all codewords to have the
same number of packets. The codes considered in [1] require
that packets exit before on the average. The above definition
does not impose such restrictions. These relaxations however do
not increase the capacity of the ESTC.

, in addition to modeling the ESTC, is also the re-
sulting transition probability function under the coding tech-
nique (2) on the point-process channel. This coding technique
utilizes feedback on the channel where background noise is ab-
sent and a peak constraint is placed on the rate. From [2] we
know that is optimal on the point-process channel.
The coding technique described in the above paragraphs also re-
sults in intensity values on the set .

2) Mutual Information: Let be a probability measure on
. Then and define a joint probability mea-

sure on , denoted by

(5)

We can verify from Fubini’s theorem [14, Theorem 18.3, p. 238]
and some measurability arguments that, under , the stochastic
process has rate with respect to the information pattern

.
Let and be the restrictions of to and , re-

spectively. Let be the product probability measure on
. Let the symbol “ ” denote that the mea-

sure on the left side of the symbol is absolutely continuous with
respect to the measure on the right side. From (5), we get that

[15, Corollary 5.3.1, p. 112], and that
. Furthermore, [11, Ch. VI, Result R8] gives

(6)

where has rate with respect to under
the probability measure . More specifically, we can take

, for each [16, Theorem 18.3].
Equation (6) was proved for the special case of an intensity

driven by a Markov process in [17], and is analogous to the
well-known “estimator–correlator” formula for the likelihood
ratio of a random signal in Gaussian noise [18]. Equation (6)
tells us how to identify the likelihood ratio in two separate steps
when the intensity is random. In the first step, for each

, we perform an “estimation” to obtain , the conditional
expectation of the intensity at time , given the past departures

. In the second step, we observe that the point process admits
this filtered signal as an -intensity. Substitution of in place
of in (4) yields the likelihood ratio in (6).

The normalized information density is there-
fore

(7)

Finally, as a consequence of property (iii) in the definition of a
rate process, we can write the normalized mutual information as

where (see [2], [16], [3], [11]). We define
. The function is strictly convex on .

Related formulas for the derivative of mutual information
with respect to the channel parameters have been derived re-
cently in [19].

3) Optimal Decoding: Suppose that there are equiprob-
able codewords. Each codeword is mapped to a sequence of ar-
rivals , in the time interval . Suppose is
received. It is well known that the optimal decoder that mini-
mizes the probability of error works as follows. For each code-
word, assign a score of , where

is obtained from (2) and (1). Then choose the codeword that
maximizes this score, and in case of a tie choose the one with
the least index.

Note that for a codeword under consideration, if and
a departure is observed at time , i.e., , then the score
is . This codeword therefore does not explain the received
sequence of departures. If the codeword is indeed compatible,
then at instants of departures is . Thus, the decision is based
on maximizing , or equivalently, is based on max-
imizing the net idling time of the server.

4) Converse: The following converse was proved in [3], [2].
Observe that it works for any predictable process on the point-
process channel that satisfies . The coding that arises
in the queueing system (cf. (2) and (1)) is only a specific case.

Proposition 1: ([3], [2]) The capacity of the point-process
channel with maximum intensity cannot exceed nats per
second, even in the presence of instantaneous noiseless feed-
back.

Proof: This proof is taken from [3], [2]. We present it here
because, when looking at achievability, it is instructive to see the
conditions when the inequalities in the converse become equal-
ities. Let be an arbitrary predictable process with .
We interpret as an encoding strategy of the input message in
the presence of (instantaneous noiseless) feedback. Then the fol-
lowing sequence of inequalities holds:
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(8)

Inequality follows from Jensen’s inequality applied to the
strictly convex function . Equality follows from Fubini’s
theorem which allows us to move expectation inside the integral.
Equality follows from . Inequality comes
from fixing , maximizing over all possible
distributions on with mean , followed by a maximiza-
tion over . Equality represents an equivalent maximization
with .

Observe that, because , and
for every , the maximizing puts mass only on the
set . Furthermore, because the mean is , puts masses

and on and , respectively. Moreover,
has maximum value at . We there-

fore have that .

Remarks: This proves the converse for the timing channel
without feedback. The converse is valid for any predictable
that lies within . Feedback therefore cannot increase the
capacity of the timing channel.

The proof also indicates that if we restrict attention to those
processes with , the normalized mutual
information satisfies .

5) Direct Part: The in probability of a sequence of
random variables is the supremum of all reals
such that . If the limit does not exist
for any real , we take the in probability to be . It
was shown in [20, Theorem 2] that the in probability of
the normalized information density is an achievable rate.

Proposition 2: Fix finite . For the ESTC given by
, there is an input probability measure such that

. Furthermore, for any sequence
with , the in probability

of the sequence is .
Proof: From [1] and [4], we already know that the max-

imum mutual information nats per second is attained using
Poisson input following equilibrium at time . The purpose
of this proof is to show this directly from the converse (8).

Let be such that (i.e., ), the initial number in the
queue, has the equilibrium state distribution associated with an

queue with Poisson arrivals of rate , i.e.,

for

Furthermore, let the arrivals on form a Poisson
process of rate . Let and be defined as in (2) and
(1). Let be as defined in (5). Under , is the state process
of an queue starting from equilibrium at . We

can therefore apply a result due to Burke (see, e.g., [11, Ch. V,
Theorem T1]), which states that

(9)

for every , -a.s. This means that is independent
of for every .

We now verify that all inequalities in (8) are equalities. Ob-
serve that, . The system remains in equilibrium
throughout ; is therefore either or with probabil-
ities and , respectively, for every . Hence,

This implies that inequality in (8) is an equality.
For inequality to be an equality, we need

for each

Note that is a function of . From Burke’s theorem,
is independent of for each . Consequently,

is independent of [21, Theorem 1.6], and therefore
. Hence, , i.e., the input

probability measure maximizes mutual information.
We now consider the normalized information density. Con-

sider an increasing unbounded sequence taking
values in . Fix . Consider the same input measure as
in the first part of this proof. Since for every ,
we get

Observe that a departure can occur only when there is a packet
in the system. At all times, we know exactly how many packets
are in the system from (1). If a packet exits at time , we must
have that . The first integral is there-
fore ; it converges by the renewal theorem
to almost surely, and therefore in probability. The
second integral converges to in probability because the time
average of the quantity converges in probability
to [22, Theorem 6.1]. By setting , we get that the nor-
malized information density converges in probability to .

Remarks: From this result and the converse, the capacity of
the ESTC is nats per second. Moreover, the coding scheme
utilizing feedback described in (2) and (1) achieves capacity on
the point-process channel.

As a final remark, observe that for all , we have
, the maximum achievable under

the constraint . (See remark at the end of
Section II-B4).

C. Multiuser Capacity Region

Suppose now that two users input packets to the ESTC. The
capacity region is the triangle given by , , and

nats per second [23]. Indeed, by time sharing
and by the single-user result with output constraint [1], this re-
gion is clearly achievable. To show the converse, note that even
if the two users cooperate, they have to transmit information
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through a queueing system whose maximum service rate is .
Consequently, joint coding cannot achieve a (sum) rate larger
than nats per second. In contrast, in the Gaussian case,
joint encoding leads to an increase in available power. An anal-
ogous argument holds when there are more than two users.

III. THE QUEUE

In this section, we show how the point-process approach can
be extended to study a multiserver queue. We show an upper
bound based on the capacity of the ESTC, and an analytically
obtained lower bound. A discussion on the results can be found
at the end of this section.

The model for the queue timing channel is given by
(1) and (3) with the rate being

(10)

i.e., the rate is times the number of servers among the
that are busy. The optimal decoding strategy is as before with

given by (10), i.e., choose the codeword that maximizes
. In case of a tie, choose the

codeword with the least index.
Note that since the maximum possible rate is , the ca-

pacity is upper-bounded by nats per second (this follows
straightforwardly as in (8)).

For the direct part, although inequality in (8) can be made
an equality by choosing Poisson input, inequality in (8) is
clearly not an equality. This is because, unlike the single-server
system, the encoder is unable to keep the rate at the extreme
values and ; the intermediate values are unavoidable. The
following result gives achievable rates on the queue
timing channel.

Proposition 3: For the queue timing channel

is an achievable rate, where for
and is the equilibrium state distribution

for the queue with input rate .
Proof: The input distribution is as in the proof of Propo-

sition 2, with input rate . The initial number of packets in
queue at time is as per the equilibrium distribution for
an queueing system. We therefore have an
queueing system starting at equilibrium. We now apply Burke’s
result for the queue [11, Ch. V, Theorem T1] to get

for every . Consequently, inequality of (8)
is an equality, and we get

with . Upon simplification, we get

where is the fraction of the time the system is in state ; its
expected value is , independent of . Thus, for each ,
the normalized mutual information is independent of . Upon

optimization over , we obtain that is the supremum of
normalized mutual information under Poisson arrivals.

To show achievability, however, we need to show that the
liminf in probability of the normalized information density is
at least as large as . Fix an arbitrary and choose so
that the normalized mutual information under Poisson arrivals is

. Fix any strictly increasing sequence of
such that and . Substitution of

in (7) simplifies the normalized information density to

(11)

The term

in probability (12)

as in the proof of Proposition 2.
To analyze the first term, the following lemma turns out to be

useful.

Lemma 1: The sequence of random variables
given by

(13)

converges almost surely and in to a constant .
Proof: See Appendix I.

This lemma implies, in particular, that converges in prob-
ability to . Moreover, convergence in implies that

However, we saw earlier that the normalized mutual information
did not depend on . In light of this fact, and (12), we get

which establishes that is an achievable rate.

Table I gives the achievable rate in Proposition 3 as a
function of and compares it to the known upper bound
nats per second. We take packet per second. The values
were obtained numerically by varying the input load factor
in steps of . The load factor that achieves is reported
in the next row. The last row indicates the upper bound.

Discussion: Setting we get Proposition 2. Proposi-
tion 3 is thus a generalization. Note that the lower bound on
capacity for and give significant improvements
over the ESTC. For higher values of , our lower bound sat-
urates at about nats per second. The capacity of the

queue is however infinite. See Appendix II for a coding
technique with batch arrivals that achieves reliable communica-
tion at any arbitrary bit rate. The limitation of Poisson inputs
is that the transmitter is unable to explicitly control the rate
of the departure process and keep it at extremes (i.e., at or

), given the constraints of the channel. Multiple arrivals at
the same instant (with sufficiently far apart batches of arrivals)
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TABLE I
ACHIEVABLE RATES FOR MULTISERVER QUEUES; � = 1 PACKET PER SECOND

Fig. 1. Single-server queue with spurious departures.

is expected to give higher achievability rates. Our upper and the
lower bounds are therefore quite loose and the capacity of the
multiserver queue remains an interesting open problem.

IV. OTHER EXAMPLES

In this section, we analyze two simple configurations of
exponential servers and get bounds on the timing channel ca-
pacity. These two simple examples demonstrate how to extend
the point-process approach beyond the ESTC.

A. Single-Server Queue With Spurious Departures

Suppose that the output of a single-server queue is merged
with a stream of Poisson arrivals having rate (cf. Fig. 1). The
departures from the two streams are indistinguishable to the re-
ceiver. The resulting model is similar to a point-process channel
with background intensity .

To simplify the recursion formulas in Proposition 4, we as-
sume single arrivals at the input. Fix . The input
space is , where is the set of counting functions

(nondecreasing and right-continuous) with unit
jumps and . Let be the output space where
is the set of counting functions with unit jumps
and .

Our first goal is to find the transition probability function that
models this channel. We now outline the steps to do this.

Step 1: Fix . We first identify an information pattern
, where for , so that

has a known rate with respect to
.

Let denote the departures from the queue,
and let be the spurious departures. The output

observed by the receiver is , where
for . The service times are independent

and exponentially distributed with mean seconds, and is
a Poisson process having rate arrivals per second.

Fix . Let for . Clearly, with

has rate with respect to the information
pattern , where for .
Note that for because for

.

Step 2: The measure on that models the
channel is represented by (cf. [11, Ch. VI, Result R8])

(14)
where has rate with respect to under

. Furthermore, we may assume that satisfies (cf. [16,
Theorem 18.3], [21, Theorem 1.6])

(15)

Step 3: Fix . Given the observed , we ob-
tain the estimates for the queue states so that we can evaluate

for . Substitution of this eval-
uation in (15) and (14) yields the transition probability func-
tion from to . Given (14), the max-
imum-likelihood criterion for decoding is then straightforward.
Equation (14) also tells us how to evaluate the information den-
sity, as we will see later in this subsection.

For the single-server queue with spurious departures, the
following proposition shows how to calculate the estimates of
queue sizes given the observations. Let
and for .

Proposition 4: Consider the single-server queue with spu-
rious departures. Fix . The process
for can be recursively evaluated using the following
update rules.

• (a) Initialize for .
• (b) If an arrival occurs at time , i.e., ,

then

• (c) If a departure occurs at time , i.e., , then

• (d) Let and be two successive instants of discon-
tinuity of . Let . Then

and for

Proof: See Section IV-C.

Proposition 4 solves explicitly for
. Such explicit solutions are however hard to obtain in most
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cases because of the difficulty in solving a system of nonlinear
differential equations. In most cases, we can only write an in-
tegral equation for the updates. The single-server queue with
spurious departures in this subsection and a pair of queues con-
nected in tandem considered in Section IV-B are two exceptions
where an explicit solution can indeed be found.

Step 4: We use [11, Ch. VI, Result R8] to obtain an expres-
sion for the mutual information. We proceed as in Section II-B2.
Let be any probability measure on . The input mea-
sure and the transition probability function in (14)
define the joint probability measure on ,
denoted by . We can again verify
that under , the stochastic process has rate with respect to
the information pattern .

With and denoting the restrictions of to and
, respectively, we get that , and

that . Furthermore, [11, Ch. VI, Resuslt R8] gives

where has rate with respect to under

the probability measure . We may take , for
each [16, Theorem 18.3]. The normalized information
density is therefore given by

(16)

the normalized mutual information can be written as

(17)

(18)

where .

Step 5: To find achievable information rates, we need to find
the liminf in probability of the normalized information density,
under a suitable input distribution.

For the single-server queue with spurious departures, let be
such that

for , and is a Poisson process
having rate . For each , we then have

(19)

(20)

where (19) follows from [14, Theorem 34.4] and (20) follows
from the fact that and are independent, which im-

plies that and are independent. Substitution of (20) in (16)
and (17) yields

(21)

(22)

For an increasing sequence , with
, we conjecture that the sequence for the

single-server queue with spurious departures converges in
to a constant real number. Then this constant has to be the lim-
iting normalized mutual information. Furthermore, the conjec-
ture would imply convergence in probability to that constant.
Some weaker results are known to hold —convergence in to
a random variable, convergence almost surely to a finite value.
They are consequences of uniform integrability and bound-
edness of the sequence of normalized information densities. For
brevity, we omit the proofs of these weaker facts. As seen earlier
in this paper, the conjecture holds true for the cases.

Under the conjecture, (21) and (22) are amenable to numer-
ical evaluation through simulations. The simulation results are
plotted in Fig. 2 and discussed at the end of this subsection.

Step 6: We can find an upper bound on the capacity of
the single-server queue with spurious departures. Recall that

(cf. (14)) is the transition probability function for the
self-exciting point process having rate (cf (15)), i.e., the rate

at any instant of time instant is determined by the input
and by the past departures. The capacity of the point-process
channel with instantaneous noiseless feedback, and where

, is (cf. [2], [3])

The capacity of the single-server queue with spurious departures
is therefore upperbounded by .

Simulation Results: The simulation results are plotted in
Fig. 2 for packet per second. The simulations are for

and packets per second. The abscissa is
the input rate to the queue. The ordinate is the estimate of

in (22). The reported value for each is an
average of 500 values of , where each realization
of the process has . These simulations indicate
that 0.21 nats per second is achievable when , and
that 0.09 nats per second is achievable when ; the
corresponding upper bounds are 0.251 and 0.132 nats per
second, respectively, achieved at input intensity of
and , respectively. As can be observed from the figure, the
maximizing values for the queueing case and the chosen

’s are close to the parameters of the point-process channel.

B. Two Queues in Tandem

In Section IV-A, we outlined a method to study the single-
server queue with spurious departures. We now consider two
exponential server queues in tandem with identical service rates
of packets per second (cf. Fig. 3).
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Fig. 2. Estimate of normalized mutual information on the single-server queue with spurious departures as a function of input rate, for � = 0:1 and � = 0:5.

Fig. 3. Two exponential-server queues in tandem.

Step 1: Let and be as in Section IV-A.
Let be the input,
the departures from the first queue (i.e., the arrivals to the second
queue), and the departures from the second
queue, which are observed by the receiver. The transmitter can
control the input process and the initial state in the second
queue. (For , it has no direct control or exact knowledge of

.) The state of the queue at any time is ,
where and for .

We choose for . Then for each
fixed , the process of departures is a point process
having rate with respect to

.

Step 2: The transition probability function that
models the tandem-queue timing channel is represented by
(14), where we take and for

(23)

Step 3: The estimates for the queue states can be evaluated
from Proposition 5 below. Let

and

for .

Proposition 5: Consider two queues in tandem with identical
service rates of packets per second. Fix . The process

can be recursively evaluated using the
following update rules.

• (a) Initialize
for .

• (b) If an arrival occurs at time , i.e., , then

for .
• (c) If a departure occurs at time , i.e., , then

for .
• (d) Let and be two successive instants of discon-

tinuity of . Let , , and
. There are exactly packets in the system

at time . Furthermore

for , is given by the expression

and

Proof: See Section IV-C.

Step 4: An input measure on and the transition
probability function from to define
the joint measure on as before. With
other analogous definitions, the normalized mutual information

is given by (17) and (18).

Step 5: As expected, we can evaluate when is such that
the arrivals are Poisson with rate in , and the queue
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Fig. 4. Estimate of normalized mutual information for two queues connected in tandem as a function of input rate.

size is in equilibrium at time . Under these circumstances,

for each , which leads to

(24)

(25)

For this case too, for an increasing sequence such
that , we conjecture that the sequence of nor-
malized information density converges in
to a constant real number. Yet again, (24) and (25) are amenable
to simulation. The simulation results are shown in Fig. 4. The
capacity of this system is an open problem.

Simulation Results: In Fig. 4, the service rate is packet
per second. The abscissa is the input rate to the first queue. The
ordinate is the estimate of in (25). The reported
value for each is an average of 200 values of ,
where each realization of the second queue’s departures has

. The simulation indicates that 0.23 nats per second
is achievable. The capacity of this system cannot exceed the
capacity of the queue, which is 0.36 nats per second.

C. Proofs of Proposition 4 and 5

Proof Outline: We first discuss the key ideas in the proofs
with reference to Proposition 4. We also highlight the necessary
modifications to the statements and proofs of [11, Ch. IV, The-
orems T1–T2] for application in our setting. The same ideas are
employed in the proof of Proposition 5.

Proposition 4 tells us how to evaluate the projections
of the indicator function ,

on the information pattern . To prove Proposition 4, we first
identify a representation for of the following form:

(26)

where we have temporarily discarded the argument in .
In (26), is a zero-mean -martin-
gale which is almost surely of bounded variation, and are
predictable with respect to . We assume that

and do not have common jumps. (Bremaud [11, Ch. IV,
eq. 1.1] calls (26) a semi-martingale when the term involving the
Lebesgue–Stieljes integral is absent). We then follow the proofs
of [11, Ch. IV, Theorems T1–T2], specialized to the case when

and are predictable with respect to , to show
that

(27)

where is a zero-mean -martingale, and and are given
by

(28)

(29)

That and are predictable with respect to
follows from the predictability of and with respect to

, and from [16, Lemma 19.11]. Additionally, the
Lebesgue–Stieltjes integral in is handled in ex-
actly the same way as is handled in the proof of [11,
Ch. IV, Theorems T1-T2]; the details are therefore omitted.

The innovations process can be represented as

(30)

where the process is predictable with respect
to and plays the role of innovations gain. This
gain is a sum of components that have to satisfy certain condi-
tions; we indicate these in the proofs below. For more details,
the reader is referred to [11, Ch. IV, Theorems T1–T2, T8].

As a final step, we explicitly solve the set of integral equations
for . We are now ready to look at the proof of Proposition 4
in detail.
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Proof of Proposition 4: Recall that the process
of departures from the queue has rate

with respect to .
Moreover, we can write

(31)

where

(32)

Observe that for every we have

(33)

Furthermore, the process
is bounded (in fact, either or ). From [11, Ch. II, The-
orem T8( )], the process is a

-martingale because

is bounded within for every . Also,
is almost surely of bounded variation on . Equation (31)
is of the form (26). After substitution of (33) in (31), and from
(27) and (30), we get

(34)

where

for

and , , are predictable with respect to
, and satisfy

(35)

(36)

for all nonnegative bounded processes that are
predictable with respect to .

To get , observe that

Moreover, . After substitution of
these in (35), we can check that

(37)

To get , we write

This leads to

(38)

where we have used (33) to get the last equality. A comparison
of (38) with (36) shows that

(39)

Substitution of (37) and (39) in (34) yields

(40)

The update rules (a), (b), and (c) follow straightforwardly from
(40). For where and are two consecutive
points of discontinuity of , observe that

for , a system of differential equations with initial con-
ditions for . Using standard techniques to solve
differential equations, we get (d).
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Proof of Proposition 5: We give only a brief outline of the
proof; most of the steps are analogous to the proof of Proposi-
tion 4. The state can be represented by

This, after evaluation and substitution of the innovations gain,
leads to the following equation for the estimates:

(41)

where

The update rules (a), (b), and (c) then follow straightforwardly.
Let . To get the update rule (d) for ,
we need to solve the system

for . Let . When , we solve the differential
equation

to get

Suppose now that . Then

We search for solutions of the form . We
can always take

which implies that

We now proceed by induction. Solving for , substituting
it in , we obtain the update rule (d) for

. The expression for now follows because

for every

V. SUMMARY AND DISCUSSION

We gave a conceptually simple proof of the capacity of the
ESTC (Proposition 2 ). Our proof emphasizes the connection
between the point-process channel and the ESTC. We also ob-
served that the capacity region of the two-user ESTC is a tri-
angle. We then showed a lower bound on the capacity of mul-
tiserver queues (Proposition 3 and Table I) by optimizing the
mutual information over Poisson inputs. The bounds are quite
loose when there are several servers, and it would be interesting
to find tighter lower and upper bounds.

Estimates for the queue size, given partial information (ei-
ther the departures alone, or the departures and arrivals) play a
key role in determining the sample function densities and there-
fore the mutual information between the input and the output.
This observation leads to a methodology to study timing chan-
nels that arise in some simple networks. We looked at two ex-
amples, the single-server queue with spurious departures, and a
pair of queues connected in tandem. In these two special cases,
we could explicitly write an expression for the sample function
density (cf. Propositions 4 and 5, (15), (23), and (14)). In other
examples, such as the single-server queue with finite buffer size,
or the single-server queue where the spurious packets are input
to the queue, we can write a system of integral equations for up-
dating the estimates for queue sizes along the lines of (40) and
(41); however, an explicit solution analogous to Propositions 4
and 5 is not known.

In the two examples considered, under a conjecture that the
normalized information density converges in to a constant
real number, we identified achievable rates using simulations
with Poisson inputs. For the single-server queue with spurious
departures of rate , our simulations indicate that the ca-
pacity is at least nats per second (Fig. 2). The capacity
is upper-bounded by which is nats per second. For
the pair of queues connected in tandem, our simulations indi-
cate that the capacity is at least nats per second (Fig. 4).
The capacity is upper-bounded by the ESTC’s capacity
nats per second.
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APPENDIX I
PROOF OF LEMMA 1

Proof

We first show that , almost surely. Recall that
is given by (13). When a departure occurs, is one

of . In particular, just prior to the departing
epoch, if packets are in the queue, , .
We can therefore rewrite as

(42)

where for is the number of departures
in that saw packets in queue prior to their departing
epochs, and is the number of departures that saw or
more packets in queue prior to their departing epochs. Clearly

(43)

By the renewal theorem, , almost surely, because
the departures are Poisson. Moreover, because the
queue states form a continuous-time Markov chain, the time be-
tween two successive departures that see packets in the queue
prior to their departures , is independent and iden-
tically distributed with mean duration . Another applica-
tion of the renewal theorem indicates that ,
almost surely, where . (Note that this argument holds
even if .) The almost sure convergences of and

for to finite constants, and (43), imply
that also converges almost surely to a real number,
thereby establishing that in (13) converges to a al-
most surely.

We next show that the sequence is uniformly
integrable ([7, p. 322]), i.e.,

as (44)

From (42) and (43), we can bound as follows:

where

Furthermore, for every , we have

Observe that is a Poisson random variable with mean
. Consequently

(45)

(46)

where (45) follows from Markov’s inequality, and (46) is true
for all , if . Since (46) goes to as ,
the sequence is uniformly integrable.

A uniformly integrable sequence of random variables that
converges in probability also converges in , and this ends the
proof.

APPENDIX II
QUEUE

Proposition 6: The capacity of a queue is .
Proof: Let be an arbitrary sequence with

and . Let be an
arbitrary sequence with and . Fix .
In the following, we will not explicitly show the dependence on

. So, we will work with the indexed and , but will denote
them by and , respectively.

Fix an arbitrary target rate . Let be the
number of codewords. Fix such that . The
queue is assumed to be empty at . To transmit message ,
the transmitter floods the queue with packets precisely at the
instant seconds, where .

The receiver identifies the instant of the first departure from
the queue. Let this epoch be . The decoding rule is described
as follows:

i.e., the receiver does not observe beyond .
It is easy to see that if an error occurs, then the minimum of the

service times for the packets is at least . This minimum
random variable is exponentially distributed with mean ;
the probability that the minimum is at least is .
Thus, the probability of error is upper-bounded by , and we
have a -code (indeed, a -code). Since was
arbitrary, the proposition follows.
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