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Abstract

The sum capacity on a symbol-synchronous CDMA sys-
tem having processing gain N and supporting K power
constrained users is achieved by employing any set of N
orthogonal sequences if a few users are allowed to sig-
nal along multiple dimensions. Analogously, the min-
imum received power (energy-per-chip) on the symbol-
synchronous CDMA system supporting K users that de-
mand specified data rates is attained by employing any set
of N orthogonal sequences. At most (N − 1) users need
to be split and if there are no oversized users, these split
users need to signal only in two dimensions each. These
results show that sum capacity or minimum sum power
can be achieved with minimal downlink signaling.

1. Introduction
Consider a symbol-synchronous code-division multiple
access (CDMA) system. The kth user is assigned an N -
sequence sk ∈ RN of unit energy, i.e., stksk = 1. The
processing gain is N chips, and the number of users is
K, with K > N . User k modulates the vector sk by its
data symbol Xk ∈ R and transmits Xksk over N chips.
This transmission interferes with other users’ transmis-
sions and is corrupted by noise. The received signal is
modeled by

Y =

K∑

k=1

skXk + Z,

whereZ is a zero-mean Gaussian random vector with co-
variance IN , the N ×N identity matrix.

We consider two optimization problems. In Problem
I, user k has a power constraint pk units per chip, i.e.,
E[X2

k ] ≤ Npk. The goal is to assign sequences and data
rates to users so that the sum of the individual rates at
which the users can transmit data reliably (in an asymp-
totic sense) is maximised. The maximum value Csum is
called the sum capacity.

Problem II, a dual to Problem I, is one where user
k demands reliable transmission at rate rk bits/chip or
higher. The goal is to assign sequences and powers to
users so that despite their mutual interference and noise,
each of the users requirement is met, and the sum of the

received powers (energy/chip) at the base-station is min-
imised.

Viswanath and Anantharam [1] solve Problem I and
Guess [2] solves Problem II. Some highlights of their re-
sults are the following:

• Oversized users, i.e., those capable of transmit-
ting at large powers relative to other users’ power
constraints in Problem I, and those that demand
large rates relative to other users’ requirements in
Problem II, are best allocated non-interfering se-
quences.

• Others are allocated generalised Welch-bound
equality (GWBE) sequences [1].

• Let ptot =
∑K
k=1 pk and rtot =

∑K
k=1 rk . For

Problem I, Csum ≤ (1/2) log(1 + ptot). For Prob-
lem II, the received sum power is lower bounded by
exp {2rtot} − 1. In both problems, equality holds
if and only if no user is oversized.

• No user is oversized if Nxk ≤ xtot for every user
k where x denotes power in Problem I and rate in
Problem II.

Once the optimal sequences are identified and the power
or rate allocated to a user determined, they have to be
signaled to the typically geographically separated users.
When the system is dynamic, either due to the users en-
tering and leaving the system or due to variation of the
channel as is typical is wireless communication, the N
length sequence vector and a real number representing
the power or rate allocated need to be signalled period-
ically at a significant cost of downlink bandwidth. It is
therefore of interest to identify schemes that result in re-
duced signaling overhead. To some extent this reduced
signaling can be achieved by using at most 2N − L − 1
sequences, as shown in [3], where L is the number of
oversized users.

In this paper we show that if some users can be split,
N sequences suffice. This is useful because any set of N
orthogonal sequences will then work. For example, we
may employ the standard basis as in a TDMA system, or
a set of Walsh sequences when N is a power of 2 as in a
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CDMA system. Moreover, this set can be fixed up front.
As the system evolves, it is sufficient to send an index
to this set, thereby making the sequence signaling on the
downlink rather easy. When there are no oversized users,
at most N − 1 users are split into exactly two each, and
therefore will need two indices. Because their energy is
now concentrated in a two-dimensional subspace instead
of one, the benefits of spreading (such as robustness to
jamming) is obtained to a lesser degree. The allocation is
however optimal; it will either maximise sum capacity or
minimise sum power.

It is perhaps obvious that N orthogonal sequences
suffice if multi-dimensional signaling is allowed. Indeed,
the goal of an optimal allocation is to ensure that energy
is spread equally in all dimensions leading to a GWBE al-
location. A sufficiently fine splitting of the users into vir-
tual users with smaller requirements, coupled with multi-
ple dimensional signaling per user, will achieve this. The
interesting aspects of the above result, however, are an
identification of the number of users that need be split
and the resulting dimensionality of their signaling.

We now discuss some other prior work in the area.
The problem of sequence detection has attracted much
attention since the work of Rupf and Massey [4] who
consider the scenario where users have identical power
constraints. Their goal is to maximise the sum capac-
ity. Viswanath and Anantharam [1] extend the results for
users with differing power constraints. Guess [2] studies
the dual problem (Problem II) and obtains sequences that
minimise sum power subject to users’ rate constraints.
Tropp and others [5] show that sequence design for Prob-
lem I is a structured inverse singular value problem [6]
and provide a numerically stable algorithm whose com-
plexity is O(KN) floating point operations. The algo-
rithm in [3] has the same O(KN) complexity and nu-
merical stability properties.

Several iterative algorithms for finding optimal se-
quences have been proposed. As our focus is on finite-
step algorithms, we refer the interested reader to a work
of Tropp and others [7] and references therein. Se-
quence design for suboptimal receivers has been studied
by Viswanath and others [8] and Guess [9]. In our work,
we place no restriction on the receivers.

The paper is organised as follows. Section 2 provides
the preliminaries and states the problems. Section 3 de-
scribes the sequence allocation algorithms. In Section 4
we propose the technique of multi-dimensional signaling
and provide the proof for sufficiency of N orthogonal se-
quences. Section 5 provides some concluding remarks.

2. Preliminaries and Problem Statements

Suppose user k is assigned sequence sk and is received
at power pk. Let S be the N ×K matrix [s1 s2 · · · sK ].

Then, the capacity region [10] can be written as

C(S, p) =
⋂

J⊂{1,··· ,K}

{
(r1, · · · , rK) ∈ RK+ :

∑

k∈J
rk ≤

1

2N
log

∣∣∣∣∣IN +
∑

k∈J
Npk · skstk

∣∣∣∣∣

}
, (1)

where |A| denotes the determinant of the matrix A, and
rk is user k’s data rate in bits/chip.

The rate vector r = (r1, · · · , rK) is a vertex of this
capacity region if

rk
∆
=

1

2N
log |Ak| −

1

2N
log |Ak−1| , 1 ≤ k ≤ K, (2)

where A0
∆
= IN , and Ak

∆
= (Ak−1 +Npk · skstk) for

k = 1, · · · ,K. The matrix Ak is real, symmetric, and
positive-definite.

The vertex (see (2)) satisfies rk ≥ 0 and r ∈
C(S, p). These are deduced as follows. Let σ(Ak) =(
λ

(k)
1 , · · · , λ(k)

N

)
. Clearly λ(0)

1 = · · · = λ
(0)
N = 1. A

well-known result due to Weyl (see for example [11, Sec-
tion 4.3]) indicates

λ
(k)
1 ≥ λ(k−1)

1 ≥ λ(k)
2 ≥ λ

(k−1)
2 ≥ · · ·

· · · ≥ λ
(k)
N ≥ λ(k−1)

N ≥ 1,

which implies that |Ak| ≥ |Ak−1|, and hence rk ≥
0. Moreover, r ∈ C(S, p) because this rate point can
be achieved via successive decoding. (Alternatively,
C(S, p) is a polymatroid [12], and therefore contains all
its vertices in RN+ ).

With the above ideas fixed, let us now re-state Prob-
lems I and II.

• Problem I : Given a per user power constraint of
p = (p1, · · · , pK) where no user is oversized (i.e.,
Npk ≤ ptot for every user k), find S and r that sat-
isfy r ∈ C(S, p) and rtot = (1/2) log(1+ptot), the
maximum sum-rate among all sequence and rate
allocations.

• Problem II : Given a per user rate requirement
of r = (r1, · · · , rK) bits/chip where no user is
oversized (i.e., Nrk ≤ rtot for every user k),
find S and p that satisfy r ∈ C(S, p) and ptot =
exp {2rtot} − 1, the minimum value among all
power and sequence allocations.

In the following section we describe the sequence de-
sign algorithm that solve the above problems. Those al-
gorithms will be our starting points to show that N or-
thogonal sequences are sufficient to achieve maximum
sum capacity or minimum sum power.



3. Sequence Assignments
In this section, we state the algorithms for sequence al-
location for Problems I and II. The proof of correctness
is provided in [13]. The algorithms assign sequences to
users one after another. The order of the users is imma-
terial. We therefore assume that users are assigned in the
increasing order of their indices. We discuss the intuition
behind the algorithms.

Allocating powers to various dimensions can be
thought of as pouring water in N columns, each column
representing a dimension. For systems with no oversized
users, the water-filling solution is optimal. Thus we need
to get equal powers in all dimensions to attain optimality.
The algorithm adds one user after another ensuring that
the added user’s requirements are met at every stage. This
is done by pouring power in an already partially filled di-
mension before going to an empty dimension. Occasion-
ally, a user’s requirement will not fit in a given dimension,
say n. In such cases, the user fills up dimension n to the
maximum value suggested by the water-filling solution,
and pours the remaining power in the empty dimension
n+ 1. If there are no oversized users, it is possible to al-
locate a single sequence to such a user, as shown in [13].

3.1. Algorithm for Problem II

Let rk denote the rate requirement of user k. The algo-
rithms make use of a subroutine c

(
A, λ̂

)
where σ(A) =

λ = (λ1, · · · , λN ) and λ̂ =
(
λ̂1, · · · , λ̂N

)
interlace, i.e.,

λ̂1 ≥ λ1 ≥ λ̂2 ≥ λ2 ≥ · · · ≥ λ̂N ≥ λN . (3)

The output vector c is such that σ(A + cc∗) = λ̂. For a
proof of this fact, and for a proof of the correctness of the
following algorithms, see [13]. The proofs are not central
to the contribution in this paper.

Algorithm 1 Problem II

• Initialisation: Set λ(k)
n ← 1 for k = 0, 1, · · · ,K

and n = 1, · · · , N . Set the user index k ← 1,
dimension n ← 1, λmax ← exp {2rtot}, and
A0 ← IN .

• Step 1: If k > K, stop.

• Step 2 (a): If λ(k−1)
n · exp {2Nrk} < λmax, then

set λ(k)
n ← λ

(k−1)
n · exp {2Nrk} and go to Step 3.

• Step 2 (b): If λ(k−1)
n · exp {2Nrk} = λmax, then

set λ(j)
n ← λmax for j = k, · · · ,K. Set n← n+ 1

and go to Step 3.

• Step 2 (c): If λ(k−1)
n · exp {2Nrk} > λmax, then

set λ(j)
n ← λmax for j = k, · · · ,K, and λ(k)

n+1 ←
λ

(k−1)
n · exp {2Nrk} /λmax. Also set n← n+ 1.

• Step 3: Identify the vector ck = c
(
Ak−1, λ

(k)
)
.

Then set sk ← ck/||ck||, pk ← (ctkck) /N . This
provides the sequence and power for user k. Fi-
nally, set Ak ← Ak−1 + ckc

t
k, k ← k + 1, and go

to Step 1.

3.2. Algorithm for Problem I

We will now describe the algorithm for the dual problem
of sequence and rate allocation for sum capacity maximi-
sation given users’ power constraints p = (p1, · · · , pK).

Algorithm 2 Problem I

• Initialisation: Set λ(k)
n ← 1 for k = 0, 1, · · · ,K

and n = 1, · · · , N . Set the user index k ← 1,
dimensionn← 1, λmax ← 1+ptot, andA0 ← IN .

• Step 1: If k > K, stop.

• Step 2 (a): If λ(k−1)
n + Npk < λmax, then set

λ
(k)
n ← λ

(k−1)
n +Npk and go to Step 3.

• Step 2 (b): If λ(k−1)
n + Npk = λmax, then set

λ
(j)
n ← λmax for j = k, · · · ,K. Also set n ←
n+ 1 and go to Step 3.

• Step 2 (c): If λ(k−1)
n + Npk > λmax, then set

λ
(j)
n ← λmax for j = k, · · · ,K, and λ

(k)
n+1 ←

1 + λ
(k−1)
n +Npk − λmax. Also set n← n+ 1.

• Step 3: Identify the vector ck = c
(
Ak−1, λ

(k)
)
.

Then set sk ← ck/||ck||, rk ← 1
2N log |Ak| −

1
2N log |Ak−1|. This provides the sequence and
rate for user k. Finally, set Ak ← Ak−1 + ckc

t
k,

k ← k + 1, and go to Step 1.

4. Sufficiency of N orthogonal sequences
We now show how to achieve sum capacity (respectively,
minimum sum power) by using at most N orthogonal se-
quences. The above algorithms confine each user to sig-
nal along a single dimension. It is possible in some cases
that the algorithms in Section 3 lead to a set of orthogonal
sequences. The following example illustrates this.

Example 3 Let N = 3 and K = 5. Let the five
users have rate requirements r = (r1, r2, r3, r4, r5) =
(2, 2, 4, 3, 1) bits/chip. Allocate powers and sequences to
these users so that their rate requirements are met, and
the sum power minimised.

No user is oversized in Example 3. Assigning sequences
in the increasing order of their indices, Algorithm 1 re-
sults in the following sequence assignment. Users 1 and 2
share the sequence (1, 0, 0)t, user 3 is assigned (0, 1, 0)t,
and users 4, 5 share (0, 0, 1)t. The key to attaining or-
thogonality is the fact that after each user is added, ex-
actly one eigenvalue changes. Users 1 and 2 exactly fill



up dimension 1, user 3 fills up dimension 2, and users 4
and 5 fill up dimension 3. This motivates the following
definition.

Definition 4 A vector x = (x1, x2, · · · , xK) has a sym-
metric sum partition of size N , if there is a partition of
the users {1, 2, · · · ,K} into N subsets S1, S2, · · · , SN ,
such that

∑

k∈Sn
xk =

1

N

K∑

k=1

xk =
xtot
N

, (4)

for n=1, 2, · · · , N . The subsets S1, S2, · · · , SN will be
referred to as the symmetric sum partition.

Remark : If x has a symmetric sum partition of
size N , no user is oversized. This is because, any user
k′ belongs to Sn, for some n, and (4) implies xk′ ≤∑

k∈Sn xk=xtot/N . Note that the rate constraint vec-
tor r of Example 3 has a symmetric sum partition of size
3. The partition is {1, 2}, {3}, and {4, 5}.
Proposition 5 If the rate vector r has a symmetric sum
partition of size N , then N orthogonal sequences are
sufficient to attain the minimum sum power ptot =
exp {2rtot} − 1. Analogously, if the power constraint
vector p has a symmetric sum partition of size N , then
N orthogonal sequences are sufficient to attain the sum
capacity rtot=1

2 log (1 + ptot). �

Proof: We will prove the proposition for Problem
II. A similar argument holds for Problem I.

Let S1, S2, · · · , SN be the symmetric sum partition
of the users. Assign sequences and powers as follows: if
k ∈ Sn, then

sk = en, (5)

pk =
Ik(n)

N
[exp {2Nrk} − 1] , (6)

where

Ik (n)
∆
= exp



2N

∑

j:j∈Sn,j<k
rj



 (7)

is the interference suffered by user k due to presence of
other users in the same subset Sn with a smaller index.

It is easy to see that

rk=
1

2N
log

(
1 +

Npk
Ik (n)

)
(8)

is achievable via successive interference cancelation,
where the highest index user in this subset is decoded
first. Users in other subsets do not cause interference to
users in this subset. Observe that the total power assigned
to users in any subset Sn is given by

∑

k∈Sn
pk=

1

N
(exp {2rtot} − 1) , (9)

where (9) follows by substitution of (6) and (7) in the left
side of (9) and by observing that the resulting sum over
Sn has only two terms that survive.

From (9) the total power allocated to all users is
ptot=

∑N
n=1

∑
k∈Sn pk = exp{2rtot}− 1, thus showing

that N orthogonal sequences are optimal.
Checking for the existence of a symmetric sum parti-

tion is as hard as checking to see if there is a subset with
a certain target sum. This is known to be an NP-complete
problem when the input constraints are integers. How-
ever, we show how to manufacture a symmetric sum par-
tition of size N from a given set of power constraints or
rate requirements.

Proposition 6 Every strictly positive vector x represent-
ing power constraints or rate requirements for K non-
oversized users can be cast into a vector x′ forK ′ virtual
users, where K ≤ K ′ ≤ K +N − 1, and x′ is such that
it has a symmetric sum partition of size N . Moreover x′

is obtained by splitting K ′ − K users into exactly two
virtual users each. �

Proof: The cumulative requirementXk
∆
=
∑

i≤k xi
is a strictly increasing function of k satisfying XK =
xtot. Hence there exist N − 1 distinct users with indices
kj , j = 1, 2, · · · , N − 1, such that

Xkj−1 =

kj−1∑

i=1

xi <
jxtot
N

,

Xkj =

kj∑

i=1

xi ≥
jxtot
N

. (10)

If strict inequality holds in (10), split user kj ’s rate as

xkj =

(
jxtot
N
−Xkj−1

)

︸ ︷︷ ︸
x′kj

+

(
Xkj −

jxtot
N

)

︸ ︷︷ ︸
x
′′
kj

. (11)

If equality holds in (10) leave the user as is. For users
that will be split, obtain x′ from x by replacing xkj , the
requirement for user kj , by requirements x′kj and x′′kj
for two virtual users, where x′kj and x′′kj are as in (11).

Clearly, x′ is a vector of size K
′
, K ≤ K ′ ≤ K+N−1,

and x′ has a symmetric sum partition of size N .
Users whose rates or power constraints are split are

assigned two orthogonal sequences. The design subse-
quently results in N orthogonal sequences.

It is immediate that even for the case with oversized
users, the oversized users will be split into at most N
virtual users. Non-oversized users will be split into at
most two virtual users. ThusN orthogonal sequences are
sufficient if rate or power splitting and multi-dimensional
signaling is allowed for some users. We make this precise
in the following Proposition. The proof is identical to the
proof of Proposition 6 and therefore omitted.



Proposition 7 Every strictly positive vector x represent-
ing power constraints or rate requirements for K users,
regardless of the presence of oversized users, can be cast
into a vector x′ of size K

′
, where x′ has a symmetric sum

partition of size N , and K ≤ K ′ ≤ K +N − 1. �

5. Concluding Remarks
The work in this paper was primarily motivated by a de-
sire to reduce the amount of signaling necessary to com-
municate the sequences to the geographically separated
users. We saw that with a small penalty in the spread-
ing factor for a few users, N orthogonal sequences are
sufficient. The users and the base station can then agree
on a fixed orthogonal set of N sequences. The base sta-
tion only needs to signal the powers/rates and the indices
corresponding to the sequences allocated to a user.

The assumed multiple access channel model, how-
ever, has severe limitations. The uplink wireless channel
typically suffers from multipath effects, fading, and asyn-
chronism. Moreover, the users are not active all the time.
Yet, if the users can all be synchronised via, for example,
a Global Positioning System (GPS) receiver, our results
give some interesting design insights. For frequency-flat
slow fading channels where all the users with a tight de-
lay constraint have to be served simultaneously, multi-
dimensional signaling (more commonly referred to multi-
code where the code is a spreading sequence) can allow
communication at sum capacity or minimum power. Or-
thogonal sequences are sufficient and the signaling in the
downlink is significantly reduced. A successively can-
celing decoder is necessary, but the complexity of this
receiver is reduced to a great extent because optimal de-
coding for the K users decouples into decoding for N
separate non-interfering groups.

Fairness of the allocation has not been considered in
this paper. However, with the splitting approach that sep-
arates virtual users into groups, the decoding order of vir-
tual users within a group can be cycled to get a fairer al-
location. The first user to be decoded in a group treats all
others in the group as interference and suffers the most.
Cycling ensures that this and other such disadvantageous
positions are shared in time by all users.
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