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Guessing Under Source Uncertainty
Rajesh Sundaresan, Senior Member, IEEE

Abstract—This paper considers the problem of guessing the
realization of a finite alphabet source when some side information
is provided. The only knowledge the guesser has about the source
and the correlated side information is that the joint source is one
among a family. A notion of redundancy is first defined and a new
divergence quantity that measures this redundancy is identified.
This divergence quantity shares the Pythagorean property with
the Kullback–Leibler divergence. Good guessing strategies that
minimize the supremum redundancy (over the family) are then
identified. The min-sup value measures the richness of the un-
certainty set. The min-sup redundancies for two examples—the
families of discrete memoryless sources and finite-state arbitrarily
varying sources—are then determined.

Index Terms—f -divergence, I-projection, guessing, information
geometry, mismatch, Pythagorean identity, Rényi entropy, Rényi
information divergence, redundancy, side information.

I. INTRODUCTION

LET be a random variable on a finite set with prob-
ability mass function (PMF) given by .

Suppose that we wish to guess the realization of this random
variable by asking questions of the form “Is equal to ?”,
stepping through the elements of , until the answer is “Yes”
([1], [2]). If we know the PMF , the best strategy is to guess
in the decreasing order of -probabilities.

The aim of this paper is to identify good guessing strategies
and analyze their performance when the PMF is not com-
pletely known. Throughout this paper, we will assume that the
only information available to the guesser is that the PMF of the
source is one among a family of PMF’s.

By way of motivation, consider a crypto-system in which
Alice wishes to send a secret message to Bob. The message is
encrypted using a private key stream. Alice and Bob share this
private key stream. The key stream is generated using a random
and perhaps biased source. The cipher-text is transmitted
through a public channel. Eve, the eavesdropper, guesses one
key stream after another until she arrives at the correct message.
Eve can guess any number of times, and she knows when she
has guessed right. She might know this, for example, when she
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obtains a meaningful message. From Alice’s and Bob’s points
of view, how good is their key stream generating source? In
particular, what is the minimum expected number of guesses
that Eve would need to get to the correct realization? From
Eve’s point of view, what is her best guessing strategy? These
questions were answered by Arikan in [2] and generalized to
systems with specified key rate by Merhav and Arikan in [3].

Taking this example a step further, suppose that Alice and
Bob have access to a few sources. How can they utilize these
sources to increase the expected number of guesses Eve will
need? What is Eve’s guessing strategy? We answer these ques-
tions in this paper.

When is known, Massey [1] and Arikan [2] sought to lower
bound the minimum expected number of guesses. For a given
guessing strategy , let denote the number of guesses re-
quired when . The strategy that minimizes , the
expected number of guesses, proceeds in the decreasing order
of -probabilities. Arikan [2] showed that the exponent of the
minimum value, i.e., , satisfies

where is the Rényi entropy of order . Boztaş [4]
obtains a tighter upper bound.

For , Arikan [2] also considered minimization of
over all guessing strategies ; the exponent of

the minimum value satisfies

(1)
where .

Arikan [2] applied these results to a discrete memo-
ryless source on with letter probabilities given by the
PMF , and obtained that the minimum guessing moment,

, grows exponentially with . The minimum
growth rate of this quantity (after normalization by ) is given
by the Rényi entropy . This gave an operational sig-
nificance for the Rényi entropy. In particular, the minimum
expected number of guesses grows exponentially with and has
a minimum growth rate of . The study of ,
as a function of , is motivated by the fact that it is the convex
conjugate (Legendre–Fenchel transformation) of a function
that characterizes the large deviations behavior of the number
of guesses. See [3] for more details.

Suppose now that the guesser only knows that the source be-
longs to a family of PMFs. The uncertainty set may be finite
or infinite in size. The guesser’s strategy should not be tuned to
any one particular PMF in , but should be designed for the en-
tire uncertainty set. The performance of such a guessing strategy
on any particular source will not be better than the optimal
strategy for that source. Indeed, for any source , the exponent
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of is at least as large as that of the optimal strategy
, where is the guessing strategy matched to

that guesses in the decreasing order of -probabilities. Thus for
any given strategy, and for any source , we can define a
notion of penalty or redundancy, , given by

which represents the increase in the exponent of the guessing
moment normalized by .

A natural means of measuring the effectiveness of a guessing
strategy on the family is to find the worst redundancy over
all sources in . In this paper, we are interested in identifying
the value of

and in obtaining the that attains this min-sup value.
We first show that is bounded on either side in

terms of a divergence quantity ; is a PMF that
depends on , and is a measure of dissimilarity between
two PMFs. The above observation enables us to transform the
min-sup problem above into another one of identifying

The role of in guessing is similar to the role of Kull-
back–Leibler divergence in mismatched source compression.
The parameter is given by . The quantity is
such that the limiting value as is the Kullback–Leibler
divergence. Furthermore, shares the Pythagorean property
with the Kullback–Leibler divergence [5]. The results of this
paper thus generalize the “geometric” properties satisfied by
the Kullback–Leibler divergence [5].

Consider the special case of guessing an -string put out
by a discrete memoryless source (DMS) with single letter al-
phabet . The parameters of this DMS are unknown to the
guesser. Arikan and Merhav [6] proposed a “universal” guessing
strategy for the family of DMSs on . This universal guessing
strategy asymptotically achieves the minimum growth exponent
for all sources in the uncertainty set. Their strategy guesses in
the increasing order of empirical entropy. In the language of
this paper, their results imply that the normalized redundancy
suffered by the aforementioned strategy is upper bounded by a
positive sequence of real numbers that vanishes as . One
can interpret this fact as follows: the family of discrete memory-
less sources is not “rich” enough; we have a universal guessing
strategy that is asymptotically optimal.

The redundancy quantities studied in this paper also arise in
the study of mismatch in Campbell’s minimum average expo-
nential coding length problem. Campbell ([7] and [8] ) iden-
tified a code that depended on knowledge of the source PMF.
The code has redundancy within a constant of the optimal value
and is analogous to the Shannon code for source compression.
Blumer and McEliece [9] studied a modified Huffman algo-
rithm for this problem and tightened the bounds on the redun-
dancy. Fischer [10] addressed the problem in the context of mis-

matched source compression and identified the supremum av-
erage exponential coding length for a family of sources. In par-
ticular, he showed that the supremum value is the supremum
of the Rényi entropies of the sources in the family. In contrast
to Fischer’s work, our focus in this paper is on identifying the
worst redundancy suffered by a code.

Most of the results obtained in this paper were inspired by
similar results for mismatched and universal source compres-
sion ([11]–[13]). We now highlight some comparisons between
source compression and guessing.

Suppose that the source outputs an -string of bits. In loss-
less source compression, one can think of an encoding scheme
as asking questions of the form, “Does ?” where

is a carefully chosen sequence of subsets of
. More specifically, one can ask the questions “Is ?”,

“Is ?”, and so on. The goal is to minimize the number
of such questions one needs to ask (on the average) to get to
the realization. The minimum expected number of questions one
can hope to ask (on the average) is the Shannon entropy .
In the context of guessing, one can only test an entire string in
one attempt, i.e., ask questions of the form “Is ?”.
The guessing moment grows exponentially with and the min-
imum exponent, after scaling by , is given by the Rényi entropy

.
As indicated earlier, the quantity plays the same role

as Kullback–Leibler divergence does in mismatched source
compression. shares the Pythagorean property with the
Kullback–Leibler divergence [14]. Moreover, the best guessing
strategy is based on a PMF that is a mixture of sources in the
uncertainty set, analogous to the source compression case. The
min-sup value of redundancy for the problem of compression
under source uncertainty is given by the capacity of a channel
[12] with inputs corresponding to the indices of the uncertainty
set, and channel transition probabilities given by the various
sources in the uncertainty set. We show that a similar result
holds for guessing under source uncertainty. In particular, the
min-sup value is the channel capacity of order [15] of an
appropriately defined channel.

The following is an outline of the paper. In Section II we re-
view known results for the problem of guessing, introduce the
relevant measures that quantify redundancy, and show the re-
lationship between this redundancy and the divergence quan-
tity . In Section III, we see how the same quantities arise in
the context of Campbell’s minimum average exponential coding
length problem. In Section IV, we pose the min-sup problem
of quantifying the worst-case redundancy and identify another
inf-sup problem in terms . In Section V we study the rela-
tions between and other known divergence measures. In Sec-
tion VI we identify the so-called center and radius of an uncer-
tainty set. In Section VII, we specialize our results to two exam-
ples: the family of discrete memoryless sources on finite alpha-
bets, and the family of finite-state arbitrarily varying sources.
We establish results on the asymptotic redundancies of these two
uncertainty sets. We further refine the redundancy upper bound
for the family of binary memoryless sources. In Section VIII we
conduct a further study of divergence and show that it satis-
fies the Pythagorean property. Section IX closes the paper with
some concluding remarks.
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II. INACCURACY AND REDUNDANCY IN GUESSING

In this section, we prove previously known results on
guessing. Our aim is to motivate the study of quantities that
measure inaccuracy in guessing. In particular, we introduce
a measure of divergence, and show how it is related to the
-divergence of Csiszár [15].

Let and be finite alphabet sets. Consider a correlated
pair of random variables with joint PMF on .
Given side information , we would like to guess the re-
alization of . Formally, a guessing list with side informa-
tion is a function such that for
each , the function is a
one-to-one function that denotes the order in which the elements
of will be guessed when the guesser observes . Nat-
urally, knowing the PMF , the best strategy which minimizes
the expected number of guesses, given , is to guess in the
decreasing order of -probabilities. Let us denote such an
order . Due to lack of exact knowledge of , suppose we
guess in the decreasing order of probabilities of another PMF

. This situation leads to mismatch. In this section, we analyze
the performance of guessing strategies under mismatch.

In some of the results we will have , and in others
, . The case is of primary interest in

the context of guessing. The other case is also of interest in
Campbell’s average exponential coding length problem where
similar quantities are involved.

Following the proof in [2], we have the following simple re-
sult for guessing under mismatch.

Proposition 1: (Guessing Under Mismatch): Let . Con-
sider a source pair with PMF . Let be another PMF
with . Let be the guessing list with side
information obtained under the assumption that the PMF is

, with ties broken using an arbitrary but fixed rule. Then the
guessing moment for the source with PMF under satisfies

(2)

where the expectation is with respect to .
Proof: For , for each , observe that

for each , which leads to the proposition.
For a source on , the conditional Rényi entropy of

order , with , is given by

(3)

For the case when , i.e., when there is no side infor-
mation, we may think of as simply a PMF on . The above
conditional Rényi entropy of order is then the Rényi entropy
of order of the source , given by

(4)

Note that the left-hand side of (3) is written as a functional of
instead of the more common . We do not use the

latter because the dependence on the PMF needs to be made
explicit in many places in the sequel. Also note that both (3) and
(4) define —(3) for a pair of random variables and (4) for
a single random variable. The actual definition being referred to
will be clear from the context. It is well known that

(5)

Suppose that our guessing order is “matched” to the source,
i.e., we guess according to the list . We then get the following
corollary.

Corollary 2: (Matched Guessing, Arikan [2] ): Under the
hypotheses in Proposition 1, the guessing strategy satisfies

(6)

where .
Proof: Set in Proposition 1.

Let us now look at the converse direction.

Proposition 3: (Converse): Let . Consider a source pair
with PMF . Let be an arbitrary guessing list with

side information . Then, there is a PMF on with
, and

(7)

where the expectation is with respect to .
Proof: The proof is very similar to that of [2, Th. 1]. Ob-

serve that because , for each , we have

Define the PMF as
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Note that . Clearly, guessing in the de-
creasing order of -probabilities leads to the guessing order

. By virtue of the definition of , we have

(8)

where the last inequality follows from (as in [2] )

The proposition follows from (8).
Observe the similarity of the terms in the right-hand sides

of (2) and (7) in Propositions 1 and 3, respectively. The
analog of this term in mismatched source compression is

, which is the expected length of a
codebook built using a mismatched PMF . The Shannon
inequality (see, for example, [16] ) states that

The next inequality is analogous to the Shannon inequality.
We can interpret this as follows: if we guess according to some
mismatched distribution, then the expected number of guesses
can only be larger. We will let and expand
the range of to . A special case (when no side
information is available) was shown by Fischer (cf. [10, Th.
1.3]).

Proposition 4: (Analog of Shannon Inequality): Let
, . Then

(9)

with equality if and only if .
Proof: We will prove this directly using Holder’s in-

equality. The right side of (9) is bounded. Without loss of
generality, we may assume that the left side of (9) is finite, for
otherwise the inequality trivially holds and . We may
therefore assume under , and

under which are the
conditions when the left side of (9) is finite.

With , (9) is equivalent to

The above inequality holds term by term for each , a fact
that can be verified by using the Hölder inequality

(10)
with ,

and raising the resulting inequality to the power .
From the condition for equality in (10), equality holds in (9) if
and only if .

Proposition 4 motivates us to define the following quantity
that will be the focus of this paper:

(11)

Proposition 4 indicates that , with equality if and
only if .

Just as Shannon inequality can be employed to show the con-
verse part of the source coding theorem, we employ Proposition
4 to get the converse part of a guessing theorem. We thus have
a slightly different proof of [2, Th. 1(a)].

Theorem 5: (Arikan’s Guessing Theorem [2]): Let .
Consider a source pair with PMF . Let . Then

Proof: It is easy to see that the minimum is attained when
the guessing list is , i.e., when guessing proceeds in the de-
creasing order of -probabilities. Application of Proposition 3
with and Proposition 4 with yields the first
inequality. The upper bound follows from Corollary 2.

Remarks:
1) may be different from even though they lead to the

same guessing order.
2) Theorem 5 gives an operational meaning to ; it in-

dicates the exponent of the minimum guessing moment to
within .

3) Loosely speaking, Proposition 4 indicates that mismatched
guessing will perform worse than matched guessing. The
looseness is due to the looseness of the bound in The-
orem 5.

Suppose now that we use an arbitrary guessing strategy to
guess with side information , when the source ’s
PMF is . may not necessarily be matched to the source, as
would be the case when the source statistics is unknown. Let us
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define its redundancy in guessing with side information
when the source is as follows:

(12)
The dependence of on is understood and suppressed.
The following proposition bounds the redundancy on either
side.

Theorem 6: Let , . Consider a source
pair with PMF . Let be an arbitrary guessing list
with side information and the associated PMF given by
Proposition 3. Then

(13)

Proof: The inequality
follows from Proposition 1 applied with , the

first inequality of Theorem 5, and (11).
The inequality fol-

lows from Proposition 3, the second inequality of Theorem 5,
and (11).

Remark: It is possible that two different PMFs and
lead to the same guessing order, i.e., . Thus

. Yet, it is possible that
and are nonzero. This remains consistent with
Theorem 6 since (13) only provides bounds for on
either side to within , and is not an entirely
accurate measure of . One can only conclude that

This is unlike the case in source compression with mismatch
where the “nuisance” term is not but the con-
stant 1. Yet, in the examples in Section VII on guessing we see
how to make good use of these bounds. See also the discussion
following Theorem 8 at the end of the next section.

III. CAMPBELL’S CODING THEOREM AND REDUNDANCY

Campbell in [7] and [8] gave another operational meaning
to the Rényi entropy of order . In this section, we show
that arises as “inaccuracy” in this problem as well, when we
encode according to a mismatched source. To be consistent with
the development in the previous section, we will assume that
is coded when the source coder has side information .

Let and be finite alphabet sets as before. Let the true
source probabilities be given by the PMF on . We wish
to encode each realization of using a variable-length code,
given side information . More precisely, let the (nonnegative)
integer code lengths satisfy the Kraft inequality

The problem is then to choose among those that satisfy the
Kraft inequality so that the following is minimized:

(14)

where the expectation is with respect to the PMF . As ,
this quantity tends to the expected length of the code .

Observe that we may assume that for
each ; otherwise we can reduce all lengths uniformly by , still
satisfy the Kraft inequality, and get a strictly smaller value for
(14). Henceforth, we focus only on length functions that satisfy

(15)

Theorem 7: (Campbell’s Coding Theorem, Campbell [7]):
Let , . Consider a source with PMF .
Let . Then

where the minimization is over all those length functions that
satisfy (15).

For a PMF on , let be defined by

(16)

(17)

where refers to the ceiling function and is a condi-
tional PMF on . Clearly, satisfies (15).

Analogously, for any length function satisfying (15), we can
define a PMF on as follows:

(18)

We can easily check that .
Let us define the redundancy for any satisfying (15) as

analogous to the definition without side information in [9].
Following the same sequence of steps as in the mismatched
guessing problem, it is straightforward to show the following.

Theorem 8: Let , , . Con-
sider a source pair with PMF on . Let be a length
function that denotes an encoding of with side information

, and the associated PMF given by (18). Then

(19)



274 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 1, JANUARY 2007

We interpret as the penalty for mismatched coding
when is not matched to . is indicative of the
redundancy to within a constant, as the Kullback–Leibler di-
vergence is in mismatched source compression. By comparing
(19) with (13), we see that the nuisance term in this problem
is a constant that does not depend on the size of the source al-
phabet; is therefore a more faithful representation of

than is of .

IV. PROBLEM STATEMENT

Let denote a set of PMFs on the finite alphabet .
may be infinite in size. Associated with is a family of

measurable subsets of and thus is a measurable space.
We assume that for every , the mapping

is -measurable.
For a fixed , we seek a good guessing strategy that

works well for all . can depend on knowledge of ,
but not on the actual source PMF. More precisely, for
the redundancy denoted by when the true source is
and when the guessing list is , is given by (12). The worst
redundancy under this guessing strategy is given by

Our aim is to minimize this worst redundancy over all guessing
strategies, i.e., find a that attains the minimum

(20)

In view of Theorem 6, clearly, the following quantity is rele-
vant for . The definition, however, is wider in scope.

Definition 9: For , ,

(21)

The following theorem justifies the use of “min” instead of
“inf”.

Theorem 10: There exists a unique PMF such that

The proof is in Section VI-C.

Remark:
1) and is therefore finite. Indeed, take to be

uniform PMF on . Then

2) The minimizing has the geometric interpretation of a
center of the uncertainty set . Accordingly, plays the
role of radius; all elements in the uncertainty set are

within a “squared distance” from the center . The
reason for describing as “squared distance” will
become clear after Proposition 24.

The following result shows how to find good guessing
schemes under uncertainty.

Theorem 11: (Guessing Under Uncertainty): Let be a set
of PMFs. There exists a guessing list for with side infor-
mation such that

Conversely, for any arbitrary guessing strategy , the worst-
case redundancy is at least , i.e.

Proof: Let be the PMF on that attains the min-
imum in (21), i.e.

(22)

Let . Then

(23)

follows from Proposition 1 applied with , the first in-
equality of Theorem 5, and (11), as in the proof of Theorem 6.
After taking supremum over all , and after substitution
of (22), we get

which proves the first statement.
For any guessing strategy , observe that Theorem 6 implies

that

and therefore

which proves the second statement.
Remarks:

1) Thus one approach to obtain the minimum in (20) is to
identify minimum value in (21). This minimum value will
be within of in (20). Moreover, the corre-
sponding minimizer can be used to generate a guessing
strategy.

2) Theorem 11 can be easily restated for Campbell’s coding
problem. The nuisance term is now replaced
by the constant .
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3) The converse part of Theorem 11 is meaningful only when
. This will hold, for example, when

the uncertainty set is sufficiently rich. The finite state, arbi-
trarily varying source is one such example. Observe that if
we have , then grows log-
arithmically with if . The uncertainty set will be
rich enough for the converse to be meaningful if grows
with at a faster rate.

V. RELATIONS BETWEEN AND OTHER DIVERGENCE

QUANTITIES

Having shown how arises as a penalty function for
mismatched guessing and coding, we now study it in greater de-
tail and relate it to other divergence quantities. The relationships
we discover here will be useful in the sequel. Throughout this
section, , . Accordingly, ,

. Let and be PMFs on .
1) As we saw before, , with equality if and only

if .
2) if and only if ,

or and .
3) Given the joint PMF , let us define the “tilted” conditional

PMF on as in (24) shown at the bottom of the page.
The above definition simplifies many expressions in the

sequel. The dependence on in the mapping is
suppressed.

4) When , we interpret that no side information is
available. Then and may be thought of PMFs on
with no reference to . and given by (24) are PMFs
in one-to-one correspondence with and respectively.
Using the expression for Rényi entropy and (11), we have
that

(25)

where is the Rényi information divergence of
order

which is and equals if and only if . For the
case when we therefore have another proof of
Proposition 4.

5) The conditional Kullback–Leibler divergence is recovered
as follows:

where and are the respective conditional
PMFs of given .

6) In general, is not a convex function of . More-
over, it is not, in general, a convex function of .

7) In general, does not satisfy the so-called data-
processing inequality. More precisely, if and are fi-
nite sets, and if is a function, it is
not necessarily true that .

8) When , i.e., in the no side information case, using
(24) we can write as follows:

(26)

where is the -divergence [17] given by

(27)

with

(28)

Since is a strictly convex function for , an applica-
tion of Jensen’s inequality in (27) indicates that

.
(29)

Moreover, when , we have the following
bounds:

(30)

9) Let us define

The dependence of on is understood, and suppressed
for convenience. Clearly

(31)

Motivated by the relationship in (26), let us write in the
general case as follows:

(32)

if
otherwise.

(24)
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where is given by

(33)

(34)

These expressions turn out to be useful in the sequel.
It is not difficult to show that

where is the PMF on given by

Consequently, the bounds given in (29) and (30) are valid
for , under corresponding conditions on .

10) Inequalities involving result in inequalities involving
with ordering preserved. More precisely, for , if

, then , for .
11) From the known bounds , it is easy

to see the following bounds:

(35)

and

(36)

In both cases, we see that is bounded away from
and therefore (33) and (34) are well defined.

The quantity does not have many of the useful
properties enjoyed by the Kullback–Leibler divergence, or other

-divergences, even in the case when . See, for example,
comments 6 and 7 made earlier in this section. However, it be-
haves like squared distance and shares a “Pythagorean” property
with the Kullback–Leibler divergence. This is explored in Sec-
tion VIII.

VI. -CENTER AND RADIUS OF A FAMILY

In this section we identify the -center and radius of a
family. We first begin with a finite family and subsequently
study an arbitrary family (that satisfies some measurability
conditions). We finally conclude the section with a proof of
Theorem 10.

A. -Center and Radius of a Finite Family

Let be finite. For simplicity, assume that no side informa-
tion is available. We will therefore use instead of the cum-
bersome . Our main goals here are to verify using known

results that the -center exists, is unique, and lies is in the clo-
sure of the convex hull of . We then briefly touch upon con-
nections with Gallager exponents, capacity of order , and
information radius of order . The development in this sec-
tion will suggest an approach to prove Theorem 10 for the case
when is infinite.

Proof of Theorem 10 for a Finite Family of PMFs: Let
be PMFs on . The problem of identi-

fying the -center and radius can be solved by identifying
the -center and radius of the tilted family of PMFs

, where the invertible transformation from
is given by (24). Moreover, from (25) and (26), we

have

(37)

(38)

(39)

Csiszár considered the evaluation of (38) in [15, Prop. 1], and
the evaluation of the inf-max within parenthesis in (39) in [17].

From [17, Th. 3.2] and its Corollary (the required conditions
for their application are is strictly convex and ; these
clearly hold since and ) there exists a unique
PMF on , which minimizes .
From the bijectivity of the mapping, the infima in
(37)–(39) can all be replaced by minima. From the inverse of
the map , we obtain the unique minimizer for (37).
This proves the existence and uniqueness result of Theorem 10
when is finite.

1) Minimizer is in the Convex Hull: Let be the convex hull
of . That the minimizer is in the convex hull of the family,
i.e., , can be gleaned from the results of [17, eq. 2.25],
[17, Th. 3.2], and its Corollary. Indeed, [17, Th. 3.2] assures that

(40)

(41)

where the max-min in (41) is achieved at , and is
the PMF which attains the min-max in (40). We now seek to find
out the nature of and thence .

For any arbitrary weight function , we have from [17, eq.
2.25] that the which minimizes

(42)

is

(43)

(44)
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for every , where is the normalizing constant. From the
correspondence between the primed and the unprimed PMFs,
and (44), we obtain

(45)

where is the normalizing constant

(46)

Thus, for an arbitrary , the (obtained from ) that mini-
mizes (42) is in the convex hull . In particular, the minimizing

corresponding to the that attains the max-min objective
in (41), and therefore the min-max objective in (40), is also in

. This result will be proved in wider generality in Section VIII.
With some algebra, we can further show that

(47)

where is given by (45) and by (46) with .
2) Necessary and Sufficient Conditions for Finding the
-Center and Radius: From [17, Th. 3.2], a weight vector

maximizes (41) if and only if

(48)

where equality holds whenever , and is given by
(43). Under this condition, clearly, the corresponding given
by (45) is the -center and is the

-radius.
An interesting special case occurs when is independent

of . Then we may simplify (45) to

(49)

i.e., the weights that make the optimum mixture (of PMFs) are
the same as the given weights that form the objective function
in (41).

3) Relationship With Gallager Exponent: For the set of
PMFs the tilted set can
be considered as a channel with input alphabet
and output alphabet . This channel will be represented as .

From the remarks in [15] on the connection between infor-
mation radius of order and the Gallager exponent of the
channel , and from [15, Prop. 1], we have

where the right-hand side is the maximized Gallager exponent
of the channel . ( is relevant in [18, p. 138],

in [18, p. 157], and in [19]).
4) The Max-Min Problem for : Thus far our focus has

been on the min-max problem of finding the -center. We
briefly looked at identifying the max-min value of in (41), but
only as a means to study the min-max problem. We now make

some remarks about the max-min problem for the finite family
case. Its extension to arbitrary uncertainty sets is not considered
in this paper.

Suppose that our new objective is to find

(50)

This problem is the same as identifying the “capacity of order
” of the channel [15], i.e.

[15, Prop. 1] solves this problem; the value is the same as the
min-max value

Consequently, the max-min value of (50) is the same as the
-radius of the family.

B. -Center and Radius for an Arbitrary Family

We are now back to the case with side information and an
infinite family . The development in this subsection will be
analogous to Gallager’s approach [12] for source compression.
We first recall the technical condition indicated in Section IV.

is a family of PMFs on , a measurable space,
and for every , the mapping is

-measurable.
Our focus will be on the following.

Definition 12: For ,

(51)

Taking to be the uniform PMF on it is easy to check
that is finite; indeed when and

when .

Let us define some other auxiliary quantities. Define the map-
ping as follows:

For a probability measure on , let

(52)

We define the PMF as the scaled version of ,

(53)
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where as in the finite case is the normalizing constant

(54)

These definitions are extensions of (45) and (46) to arbitrary .
Moreover, let

(55)

Simple algebraic manipulations result in

(56)

(57)

an extension of [17, eq. (2.24)] for arbitrary .
The following auxiliary quantity will be useful.

Definition 13: For ,

(58)

The quantity in (53) is analogous to the PMF at the output
of a channel represented by when the input measure is .

in (55) is the analogue of mutual information; Csiszár
calls it informativity in his work on finite-sized families [17].

Proposition 14: .
Proof: Fix an arbitrary PMF on . It is straight-

forward to show that [17, eq. 2.26] holds even when is not
finite, and is given by

Since , it follows that

Consequently

which leads to

The following Proposition is similar to [12, Th. A]. The proof
largely runs along similar lines.

Proposition 15: A real number equals if and only if
there exist a sequence of probability measures on

and a PMF on with the following properties:
1) ;
2) ;
3) , for every .

Furthermore is unique, attains the minimum in (51), and
.

Proof:
: Observe that on account of 1), 3), and Proposition 14,

we have

where the first inequality follows from 1), the second from
3), and the last from Proposition 14. Consequently, all the
inequalities are equalities, , and the use of
“min” in the definition of is justified.

: Since , it follows from the
definition of that there exists a sequence
such that .

Now consider the sequence of vectors in given by
. This is a sequence of scaled PMFs

given by , where is given by (54). The se-
quence resides in a compact space of scaled PMFs and therefore
has a cluster point which can be normalized to get the PMF

. Moreover we can find a subsequence of such
that . We redefine the sequence as given by
this subsequence, and properties 1) and 2) hold.

Suppose now that there is a such that 3) is violated,
i.e.

Consider the convex combinations of measures

(59)

where is the atomic distribution on .
From (59), (52), and (56), we have

Since is a concave and therefore continuous func-
tion of its vector-valued argument, converges point-wise
to

for . In particular, .
is a concave function of since is concave and the
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argument is linear in . Let be the one-sided derivative of
evaluated at (i.e., limit as ). We can straight-

forwardly check that

with the possibility that the value (slope at ) may be .
We have therefore established that has ,

is concave and therefore continuous in , and has strictly
positive slope at . Consequently, for some

. Since

contradicts the definition of , 3) must hold.
To show uniqueness of , suppose there were another

and another sequence of measures satisfying
1), 2) and 3). We can get two cluster points and that
when normalized lead to and , respectively. Then with

, we have

a contradiction. The strict inequality above is due to strict con-
cavity of when and .

C. Proof of Theorem 10

Proof: From (32), it is clear that

attains the min-sup value in Definition 12 if and only if
attains the min-sup value in Definition 9. Proposition 15

guarantees the existence and uniqueness of such a .

VII. EXAMPLES

In this section, we look at two example families of PMFs,
and identify their -centers and radii. We focus on guessing
without side information. We also take a closer look at the bi-
nary memoryless channel and obtain tighter upper bounds on
redundancy than those obtained via Theorem 11. Throughout
this section, therefore, and . The uncertainty
set will thus be PMFs in (with no reference to ).

A. The Family of Discrete Memoryless Sources

Let be a finite alphabet set, a positive integer, and
. We wish to guess -strings with letters drawn from . Let

. Let denote the set of all PMFs
on .

Let be the set of all discrete memoryless sources (DMS) on
, i.e.

and

The parameters of the source are unknown to the guesser.
Arikan and Merhav [6] provide a guessing scheme for this un-
certainty set. The scheme happens to be independent of . More-
over, their guessing scheme has the same asymptotic perfor-
mance as the optimal guessing scheme. Their guessing order
proceeds in the increasing order of empirical entropies; strings
with identical letters are guessed first, then strings with exactly
one different letter, and so on. Within each type of sequence,
the order of guessing is inconsequential. Denote this guessing
list by . Arikan and Merhav [6, Th. 1] showed that for any

,

The above result is couched in our notation. This indicates that
, the family of all DMSs on , is not rich enough in the sense

that there exists a “universal” guessing scheme. The following
result makes this notion more precise.

Theorem 16 (Family of DMSs on ): Let . The
-radius of the family of discrete memoryless sources on
satisfies

where , a constant that depends
on the alphabet size, and is a sequence in that vanishes as

.

Proof: Recall that . is the joint PMF of the
-string with individual letter probabilities . Let

according to the mapping given in (24). It is easy to verify that
is the joint PMF of the -string with individual letter prob-

abilities , where according to the mapping (24),
and therefore also belongs to . Furthermore, for a fixed

, let be the PMF of letter frequencies in , and
define

for every . Note that is not necessarily a PMF.
Xie and Barron [20, Th. 2] show that there is a PMF on , say

, and a vanishing sequence , such that for every discrete
memoryless source , the following holds:

(60)

(61)

Define the PMF as follows:

the inverse of the mapping in (24). We then have the following
series of inequalities:

(62)
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(63)

where (62) follows from (25) and (63) from (61). Taking the
supremum over all yields the theorem.

Remark: Redundancy in guessing is thus upper bounded by
. Since the -radius grows with as

, the normalized redundancy vanishes. This im-
plies that we can get a “universal” guessing strategy. Theorem
16 suggests the use of , which in general may depend on

. Arikan and Merhav’s technique of guessing in the order of
increasing empirical entropy is another universal guessing tech-
nique.

Given any guessing scheme, how do we “measure” the set
of DMSs which result in relatively large redundancy? The fol-
lowing theorem answers this question, and uses a strong version
of the redundancy capacity theorem of universal coding in [21]
and [22].

Theorem 17 : Let be any PMF on . Let be a proba-
bility measure on and let . Then
for any DMS , we have

except on a set of -probability .
Proof: Observe that . An application of Jensen’s

inequality to the concave function yields

The theorem then follows from [22, Th. 2] which states that
the redundancy in source compression is at least as
large as except on a set of -probability
upper bounded by .

Remark: In particular, we may do the following. We choose
such that . (This can be done since

the inf-sup value of is , as re-
marked in [20, Remark 5 after Theorem 2]. We may then choose

such that so that vanishes with , but
is negligibly small compared to . (For example, for the

family of DMSs, and therefore we may set
). Then, the set of sources for which

has negligible -probability for all suf-
ficiently large . Equivalently, with high -probability (at least

), .
Since quantifies the redundancy in Campbell’s coding

problem to within unity, the above remark leads us to conclude
that the redundancy in that problem is tightly bounded as

(up to a constant).

In the guessing context, since the nuisance term
grows as for large , we deduce that

with high -probability (at least ), the guessing
redundancy of any strategy is at least ,
which for large is

(64)

This fact and Theorem 16 immediately lead us to conclude that
for , the redundancy is between and
for large (ignoring constants and smaller order terms). For

and , the lower bound in (64) is useless, and the
upper bound may not be tight. The case of
is addressed in the next subsection. Tighter upper bounds for

remain to be found.

B. Guessing an Unknown Binary Memoryless Source

The -based bounding technique suggested by Theorem 11
provides good bounds on guessing redundancy for large when
the DMSs alphabet size . In this subsection, we identify
tighter upper bounds on the guessing redundancy of a binary
memoryless source using a more direct approach.

Let . There is only one unknown parameter, i.e.,
. The probability of any -string is given by

where is the number of 1s in the string . Since
is monotonic in , it immediately follows that when

, the optimal guessing order is to guess the string of all ’s,
followed by all strings with exactly one , followed by all strings
with exactly two ’s, and so on, viz., in the decreasing order
of number of ’s in the string. Note that the optimal guessing
sequence is the same for all sources whose . Exactly
the opposite is true when —the guessing proceeds in
the increasing order of number of ’s, the first guess being the
string of all 0’s.

Thus there are only two optimal guessing lists for the bi-
nary memoryless source. By guessing one element from each
list, skipping those already guessed, we obtain a guessing list
that requires at most twice the optimal number of guesses, i.e.,

for every . This guessing list is
one of those that proceed in the increasing order of empirical
entropy. Clearly then, the redundancy is upper bounded by the
constant , a bound tighter than Theorem 16. there-
fore vanishes as . It is not known if this is the tightest
upper bound.

C. Arbitrarily Varying Sources

For the family of DMSs, we saw in Section VII-A that the
redundancy is upper bounded by . In this section we
look at the example of finite-state arbitrarily varying sources
(FS-AVS) for which the redundancy grows linearly with . Yet
again, for exposition purposes, we assume .

As before, let . Let be a finite set of states, and
for each , let be a PMF on the finite set .
An arbitrarily varying source (AVS) is a sequence of -valued
random variables , such that ’s are independent
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and the probability of an -string is governed by an arbitrary
state sequence as follows:

Observe that for a fixed , there are only sources in the
uncertainty set. Let be the subset of all sequences in with
the same letter-frequencies as . is also referred to as the
type of the sequence [23]. If the letter frequencies are given
by a PMF on , we refer to as the type of sequences. Let

be a stochastic matrix given by for and .
Then for a particular sequence , we refer to , the set of
sequences that are of conditional type given , as the -shell
of .

Proposition 18: Let . Let be a type of se-
quences on . Let the uncertainty set be given by

. The -radius of this family is given
by

(65)

where the -center is given by

(66)

Remarks:
1) It will be apparent from the proof that the quantity

in (65) depends on only through its
type, and hence the average over all sequences in the type
may be replaced by the value for any specific .

2) All PMFs in the uncertainty set are spaced equally apart (in
the sense of -divergence) from the -center .

3) Guessing in the decreasing order of -probabilities re-
sults in a redundancy in guessing that is upper bounded by

.
4) is a concave function of . It follows from

(31) that is also a concave function of for
. By Jensen’s inequality, . (For ,

is neither concave nor convex in ).
5) For any guessing strategy, there exists at least one sequence

for which the redundancy is lower bounded by
. We will see later in Proposition

20 that if the sequence (parameterized by ) converges
as to a PMF , then con-
verges to a strictly positive constant. Thus grows
linearly with , thereby making the converse meaningful;
the nuisance term grows only logarithmi-
cally in .
Proof: Note that given an , the uncertainty set is finite.

We will simply show that the candidate -center satisfies the

necessary and sufficient condition (48) given in Section VI-A2.
From (33), it is sufficient to show that

(67)
where is some constant that depends only on and . We
will show that the numerator and denominator in (67) do not
depend on the actual , so long as .

Observe that the stochastic matrix that defines the conditional
PMF is given by for and . Consider

. First

where the sum is over all conditional types . All the quantities
inside the summation, including , depend on only
through , and therefore depends on only
through .

Next, depends on only through . This is
easily seen via a permutation argument. Given two -se-
quences of the same type, let be a permutation that takes

to , where
and are the two given -sequences. This
permutation leaves unchanged. Moreover, the
sum continues to be over

Thus and therefore depend on only through
.

Finally, given two -sequences of the same type , the
above permutation argument indicates that the numerator of (67)

depends on only through .
That is given by (65) follows from (45)–(47), the fact

that is a constant over all , and (31). This
concludes the proof.

The number of different types of sequences grows polynomi-
ally in , in particular, this number is upper bounded by

. We can use this fact to stitch together the guessing lists
for the different types of sequences on and get one list that
does only marginally worse than the list obtained by knowing
the type of the state sequence.

Proposition 19: Let . Let the uncertainty set
be given by . There is

a guessing strategy such that for every , the redundancy is
upper bounded by

whenever .
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Proof: Let be the number of types. is upper bounded
by . Fix an arbitrary order on these types. Let the

th type be . Set , where is the guessing
strategy that is obtained knowing that , via Proposition
18. It proceeds in the decreasing order of probabilities of the

-center of the uncertainty set indexed by .
We now stitch together the guessing lists to

get a new guessing list , as follows. Think of as a column
vector of size and let be the column vector of
size obtained by reading the entries of the matrix

in raster order (one row after another). Every
would have figured exactly once in the list, and therefore

occurs exactly times in the list. Next, prune the list. For
each , if there exists an index with and , set

. This indicates that the th string already figures in the
final guessing list. Finally remove all ’s to obtain the desired
guessing list , where is the
unique position at which occurs in the pruned list.

Clearly, for every and for every such that ,
we have . Indeed, occurs in the position

in the matrix constructed above. It therefore occurs
in position and therefore before the position

in the unpruned list. It cannot be placed any later
in the pruned list, and thus .

The above observation leads to

The proposition follows from Theorem 6, Proposition 18, and
the bounding .

We finally remark that the min-sup redundancy for the fi-
nite-state arbitrarily varying source grows linearly with under
some circumstances.

Proposition 20: For a fixed , let be a PMF on and
the corresponding type. Let the sequence (as a function of )
converge to a PMF as . Then

where .
Proof: The second term in the right-hand side of (65), after

normalization by , converges to a nonnegative real number as
seen below:

(68)

We next consider the first term on the right-hand side of (65)
after normalization, i.e., , where is given by (66).

Lemma 21: For a fixed , let be a PMF on and the
corresponding type. Let the sequence (as a function of ) con-
verge to a PMF as . Let be the output
PMF when the input PMF on is and the channel is . Fur-
thermore, let be the limiting output PMF as . Then

.
As a consequence of this lemma and (68), we have

By the strict concavity of for , and Jensen’s
inequality, we have . This concludes the proof of the
theorem.

Remarks: if and only if either (i) for some
, or (ii) does not depend on , i.e., the state

does not affect the source. Thus, for all but the trivial finite-
state arbitrarily varying sources, the min-sup redundancy grows
linearly with at a rate . This means that the guessing strategy
that achieves the min-sup redundancy has an exponential growth
rate strictly bigger than that of the best strategy obtained with
knowledge of the state sequence.

We now prove the rather technical Lemma 21.

Proof:
a) We first show that . Let

be the PMF on given by . Let
denote the -probability of the set . From (66),

we may write

(69)

(70)

(71)

where (69) follows from the observation that
for all , (70) from

(see proof of [23, Lemma 2.3]) and by en-
larging the sum over to all of .
From (71) and (31), we have
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b) We now show that . For a
given PMF on and conditional PMF , let be the
induced PMF on and the reverse conditional PMF,
i.e., is the probability of a state given .

Continuing from (69), we may write

(72)

(73)

(74)

where (72) follows because and the sum over
is restricted to a sum over a type to be chosen later; (73)

follows because
and the sum over is now restricted over a nonvoid -shell
of , where will be appropriately chosen later.

We next observe that for , the following hold:

Substitution of these inequalities into (74) yields

and therefore

(75)

for any type of sequences and for any such that
is a nonvoid shell for an .

Clearly, the last term in (75) vanishes as .
If we can choose and , we will be done

since . We cannot do this if
is not a type of sequences, or if is not a conditional type

given an . But we will show that as , we can get close
enough. The following arguments make this idea precise.

Define

and consider . We may restrict our
choice of to those that are absolutely continuous with re-
spect to , i.e., for every . For
sufficiently large , we can choose such a that in addition
satisfies

and .
We then have

(76)

where (76) follows from [23, Lemma 2.7]. After averaging, we
get

A similar argument shows that

where we have made use of the fact that
. This concludes the proof of Lemma 21

VIII. -PROJECTION

In this section we look at an interesting geometric property
of divergence that makes it behave like squared Euclidean
distance, analogous to the Kullback–Leibler divergence.
Throughout this section, we assume and .

We proceed along the lines of [5]. Let and be finite al-
phabet sets. Let denote the set of PMFs on .
Given a PMF on , the set

is called an -sphere (or ball) with center and radius . The
term “sphere” conjures the image of a convex set. That the set
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is indeed convex needs a proof since is not convex in
its arguments.

Proposition 22: is a convex set.
Proof: Let for . For any ,

we need to show that . With
, and , we get from (32) that

(77)

The proof will be complete if we can show that .
To this end

(78)

(79)

(80)

where (78) follows from (34), (79) from (77), and (80) from the
concavity of .

Proposition 22 shows that is a quasi-convex func-
tion of , its first argument.

When we talk of closed sets, we refer to the usual Euclidean
metric on . The set of PMFs on is closed and
bounded (and therefore compact).

If is a closed and convex set of PMFs on intersecting
, i.e., there exists a PMF such that ,

then a PMF satisfying

is called the -projection of on .

Proposition 23: (Existence of -projection) Let be a
closed and convex set of PMFs on . If is
nonempty, then has an -projection on .

Proof: Pick a sequence with
such that . This sequence
being in the compact space has a cluster point and
a subsequence converging to . We can simply focus on
this subsequence and therefore assume that and

. is closed and hence .

The continuity of the logarithm function, wherever it is finite,
and the condition imply that

(81)

where (81) follows from the observation that (34) is the ratio of
a continuous linear function of and the continuous concave
function that is bounded, and moreover bounded
away from .

From the uniqueness of limits we have that
. is then an -projection of on .

We next state generalizations of [5, Lemma 2.1, Th. 2.2]
which show that plays the role of squared Euclidean
distance (analogous to the Kullback–Leibler divergence).

Proposition 24: Let , .
1) Let and be finite. The segment joining

and does not intersect the -sphere with
radius , i.e.

for each

if and only if

(82)

2) (Tangent hyperplane) Let

(83)

Let , , and be finite. The seg-
ment joining and does not intersect (with

) if and only if

(84)

Remarks:

1) Under the hypotheses in Proposition 24.1, we deduce that
as a consequence.

2) The condition (83) implies that (i.e.,
every component satisfies the inequality), and therefore

. If , and ,
then we have . Thus
both and are necessarily finite. For

, the requirement that be finite
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can therefore be removed. The requirement is how-
ever needed for because even though

and ,
we may have leading to

.
3) Proposition 24.2 extends the analog of Pythagoras the-

orem, known to hold for the Kullback–Leibler divergence,
to the family parameterized by .

4) By symmetry between and , (84) holds when is re-
placed by .

Proof: 1) . Since and are finite,
from (33), we gather that both
and are finite and nonzero.Observe
that , and implies that

Thus

(85)

for every . The limiting value as , the derivative
of with respect to evaluated at , should be .
This will give us the necessary condition.

Note that the derivative evaluated at is a one-sided
limit since . We will first check that this one-sided
limit exists.

From (33), can be written as , where
is bounded, positive, and lower bounded away from 0, for every

. Let and be the derivatives of and evaluated at
. Clearly

Similarly, it is easy to check that

with the possibility that it is (only when and
).

Since we can write

it follows that the derivative of exists at and is
given by , with the possibility that
it might be . However, (85) and imply that

Consequently, is necessarily finite. In particular, when
, we have ascertained that is finite. After sub-

stitution of , , , and we get

(86)

When , clearly

cannot be zero, due to the nonzero assumptions on the other
quantities in (86). This implies that is finite when

as well. An application of (32) and (33) shows that (86)
and (82) are equivalent. This concludes the proof of the forward
implication.

The reader will recognize that the basic idea is quite simple:
evaluation of a derivative at and a check that it is nonneg-
ative. The technical details above ensure that the case when the
derivative of the denominator is infinite is carefully examined.

1) . The hypotheses imply that , , and
are finite. As observed above, (86) and (82) are equiv-

alent. Observe that both sides of (86) are linear in . This prop-
erty will be exploited in the proof. Clearly, if we set in
(82) and (86), we have the equalities

(87)

and

(88)

A -weighted linear combination of the inequalities (86) and
(88) yields (86) with replaced by . The equivalence of (82)
and (86) result in

This concludes the proof of the first part.
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2) This follows easily from the first statement. For the
forward implication, indeed, (86) holds for . Moreover, (86)
holds when is replaced by . If either of these were a strict
inequality, the linear combination of these with the given
by (83) will satisfy (88) with strict inequality replacing the
equality, a contradiction. The reverse implication is straightfor-
ward.

Let us now apply Proposition 24 to the -projection of a
convex set. For a convex , we call an algebraic inner point
of if for every , there exist and satisfying (83).

Theorem 25 (Projection Theorem): Let ,
and a finite set. A PMF is the -projection
of on the convex set if and only if every satisfies

(89)

If the -projection is an algebraic inner point of , then
every satisfies (89) with equality. .

Proof: This follows easily from Proposition 24. For the
case when not covered by Proposition 24, (89)
holds trivially.

Corollary 26: Let , and a PMF
be the -projection of on the convex set . If is an al-
gebraic inner point of , then every satisfies (89) with
equality.

Proof: Clearly, for any , we have
, and therefore . The

corollary now follows from the second statement of Theorem
25.

While existence of -projection is guaranteed for certain
sets by Proposition 23, the following talks about uniqueness of
the projection.

Proposition 27: (Uniqueness of Projection): Let
, . If the -projection of on the convex set exists,

it is unique.
Proof: Let and be the projections. Then

where the last inequality follows from Theorem 25. Thus
, and .

Analogous to the Kullback–Leibler divergence case, our next
result is the transitivity property.

Theorem 28: Let and be convex sets of PMFs on
. Let have -projection on and on , and suppose

that (89) holds with equality for every . Then is the
-projection of on .

Proof: The proof is the same as in [5, Th. 2.3]. We repeat
it here for completeness.

Observe that from the equality hypothesis applied to
, we have

(90)

Consequently is finite.

Furthermore, for a , we have

(91)

(92)

where (91) follows from Theorem 25 applied to , and (92)
follows from (90).

We next compare (92) with
and cancel to obtain

for every . Theorem 25 guarantees that is the -pro-
jection of on .

As an application of Theorem 25 let us characterize the
-center of a family.

Proposition 29: If the -center of a family of PMFs ex-
ists, it lies in the closure of the convex hull of the family.

Proof: Let be the closure of the convex hull of . Let
be an -center of the family, and , which is at most ,
the -radius. Our first goal is to show that .

By Proposition 23, has an -projection on , and by
Proposition 27, the projection is unique on . From Theorem
25, for every , we have

Thus

Thus , leading to .
For the special case when is finite, i.e.,

, we found the weight vector such
that and . This was
done in an explicit fashion in Section VI-A2 using results on

-divergences.

IX. CONCLUDING REMARKS

We conclude this paper by applying some of our results to
guessing of strings of length with letters in . Let ,

, and a PMF on . Let

denote the PMF of the discrete memoryless source (DMS)
where the -string . Theorem 5 says that
for , the minimum expected number of guesses grows
exponentially with ; the growth rate is given by .
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If the only information that the guesser has about the source
is that , the guesser suffers a penalty (interchange-
ably called redundancy); growth rate of the minimum expected
number of guesses is larger than that achievable with knowledge
of . The increase in growth rate is given by the normalized re-
dundancy , where is the guessing strategy chosen
to work for all sources in . This normalized redundancy equals
the normalized -radius of , i.e., , where is given
by (21), to within .

When is a DMS, and the PMF on is unknown to
the guesser, Arikan and Merhav [6] have shown that guessing
strings in the increasing order of their empirical entropies is a
universal strategy. Their universality result is implied by the fact
that the normalized -radius of the family of DMSs satisfies

. The family of DMSs is thus not rich enough from
the point of view of guessing. Knowledge of the PMF is not
needed; the universal strategy achieves, asymptotically, the min-
imum growth rate achievable with full knowledge of the source
statistics.

Suppose now that ; we may think of an -string
as the outcome of independent coin tosses. Suppose further that
two biased coins are available. To generate each , one of
the two coins is chosen arbitrarily, and tossed. The outcome of
the toss determines . This is a two-state arbitrarily varying
source. We may assume . Let us assume that as

, the fraction of time when the first coin is picked ap-
proaches a limit . Let us further assume that for each , the
receiver knows how many times the first coin was picked, i.e., it
knows the type of the state sequence. If the two coins are not
statistically identical, the normalized -radius approaches
a strictly positive constant as . This implies that the
growth rate in the minimum expected number of guesses for a
strategy without full knowledge of source statistics is strictly
larger than that achievable with full knowledge of source statis-
tics. We note that in order to maximize the expected number of
guesses, the right solution may be to pick one coin, the one with
the higher entropy, all the time.

The guesser’s lack of knowledge of the number of times
the first coin is picked results in additional redundancy. How-
ever this additional redundancy asymptotically vanishes. The
guesser “stitches” together the best guessing lists for each type
of state sequences.
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