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Guessing Under Source Uncertainty

Rajesh Sundaresan, Senior Member, IEEE

Abstract—This paper considers the problem of guessing the
realization of a finite alphabet source when some side information
is provided. The only knowledge the guesser has about the source
and the correlated side information is that the joint source is one
among a family. A notion of redundancy is first defined and a new
divergence quantity that measures this redundancy is identified.
This divergence quantity shares the Pythagorean property with
the Kullback-Leibler divergence. Good guessing strategies that
minimize the supremum redundancy (over the family) are then
identified. The min-sup value measures the richness of the un-
certainty set. The min-sup redundancies for two examples—the
families of discrete memoryless sources and finite-state arbitrarily
varying sources—are then determined.

Index Terms— f -divergence, I -projection, guessing, information
geometry, mismatch, Pythagorean identity, Rényi entropy, Rényi
information divergence, redundancy, side information.

1. INTRODUCTION

ET X be a random variable on a finite set X with prob-
Lability mass function (PMF) given by (P(z) : =z € X).
Suppose that we wish to guess the realization of this random
variable X by asking questions of the form “Is X equal to ?”,
stepping through the elements of X, until the answer is “Yes”
([11, [2]). If we know the PMF P, the best strategy is to guess
in the decreasing order of P-probabilities.

The aim of this paper is to identify good guessing strategies
and analyze their performance when the PMF P is not com-
pletely known. Throughout this paper, we will assume that the
only information available to the guesser is that the PMF of the
source is one among a family T of PMF’s.

By way of motivation, consider a crypto-system in which
Alice wishes to send a secret message to Bob. The message is
encrypted using a private key stream. Alice and Bob share this
private key stream. The key stream is generated using a random
and perhaps biased source. The cipher-text is transmitted
through a public channel. Eve, the eavesdropper, guesses one
key stream after another until she arrives at the correct message.
Eve can guess any number of times, and she knows when she
has guessed right. She might know this, for example, when she
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obtains a meaningful message. From Alice’s and Bob’s points
of view, how good is their key stream generating source? In
particular, what is the minimum expected number of guesses
that Eve would need to get to the correct realization? From
Eve’s point of view, what is her best guessing strategy? These
questions were answered by Arikan in [2] and generalized to
systems with specified key rate by Merhav and Arikan in [3].

Taking this example a step further, suppose that Alice and
Bob have access to a few sources. How can they utilize these
sources to increase the expected number of guesses Eve will
need? What is Eve’s guessing strategy? We answer these ques-
tions in this paper.

When P is known, Massey [1] and Arikan [2] sought to lower
bound the minimum expected number of guesses. For a given
guessing strategy G, let G(x) denote the number of guesses re-
quired when X = z. The strategy that minimizes E [G(X)], the
expected number of guesses, proceeds in the decreasing order
of P-probabilities. Arikan [2] showed that the exponent of the
minimum value, i.e., log [ming E [G(X)]], satisfies

Hya(P) ~log(1+ In[X]) < log [min E [G(X)]] < Hya(P)

where H,, (P) is the Rényi entropy of order o > 0. Boztas [4]
obtains a tighter upper bound.

For p > 0, Arikan [2] also considered minimization of
(E[G(X )”])1/ ” over all guessing strategies G; the exponent of
the minimum value satisfies

Ho(P)—log(1 +1n|X]) < %10g [ngn E [G(X)ﬂ]] <H.(P),

ey
where o = 1/(1 + p).

Arikan [2] applied these results to a discrete memo-
ryless source on X with letter probabilities given by the
PMF P, and obtained that the minimum guessing moment,
ming E [G(X™)P], grows exponentially with n. The minimum
growth rate of this quantity (after normalization by p) is given
by the Rényi entropy H,(P). This gave an operational sig-
nificance for the Rényi entropy. In particular, the minimum
expected number of guesses grows exponentially with n and has
a minimum growth rate of M /5(P). The study of E [G(X)],
as a function of p, is motivated by the fact that it is the convex
conjugate (Legendre-Fenchel transformation) of a function
that characterizes the large deviations behavior of the number
of guesses. See [3] for more details.

Suppose now that the guesser only knows that the source be-
longs to a family T of PMFs. The uncertainty set may be finite
or infinite in size. The guesser’s strategy should not be tuned to
any one particular PMF in T, but should be designed for the en-
tire uncertainty set. The performance of such a guessing strategy
on any particular source will not be better than the optimal
strategy for that source. Indeed, for any source P, the exponent
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of E[G(X)*] is at least as large as that of the optimal strategy
E [Gp(X)?], where G p is the guessing strategy matched to P
that guesses in the decreasing order of P-probabilities. Thus for
any given strategy, and for any source P € T, we can define a
notion of penalty or redundancy, R(P,G), given by

R(P.G) = 5 105 E [G(X)"] - 1 lo5 E [Gr(X)]

which represents the increase in the exponent of the guessing
moment normalized by p.

A natural means of measuring the effectiveness of a guessing
strategy G on the family T is to find the worst redundancy over
all sources in T. In this paper, we are interested in identifying
the value of

min sup R(P, Q)
G PeT

and in obtaining the G that attains this min-sup value.

We first show that R(P,G) is bounded on either side in
terms of a divergence quantity L. (P, Q¢); Q¢ is a PMF that
depends on G, and L, is a measure of dissimilarity between
two PMFs. The above observation enables us to transform the
min-sup problem above into another one of identifying

inf sup Lo (P, Q).
Q peT

The role of L, in guessing is similar to the role of Kull-
back-Leibler divergence in mismatched source compression.
The parameter « is given by & = 1/(1 + p). The quantity L, is
such that the limiting value as @ — 1 is the Kullback—Leibler
divergence. Furthermore, L, shares the Pythagorean property
with the Kullback-Leibler divergence [5]. The results of this
paper thus generalize the “geometric” properties satisfied by
the Kullback—Leibler divergence [5].

Consider the special case of guessing an n-string put out
by a discrete memoryless source (DMS) with single letter al-
phabet A. The parameters of this DMS are unknown to the
guesser. Arikan and Merhav [6] proposed a “universal” guessing
strategy for the family of DMSs on A. This universal guessing
strategy asymptotically achieves the minimum growth exponent
for all sources in the uncertainty set. Their strategy guesses in
the increasing order of empirical entropy. In the language of
this paper, their results imply that the normalized redundancy
suffered by the aforementioned strategy is upper bounded by a
positive sequence of real numbers that vanishes as n — co. One
can interpret this fact as follows: the family of discrete memory-
less sources is not “rich” enough; we have a universal guessing
strategy that is asymptotically optimal.

The redundancy quantities studied in this paper also arise in
the study of mismatch in Campbell’s minimum average expo-
nential coding length problem. Campbell ([7] and [8] ) iden-
tified a code that depended on knowledge of the source PMF.
The code has redundancy within a constant of the optimal value
and is analogous to the Shannon code for source compression.
Blumer and McEliece [9] studied a modified Huffman algo-
rithm for this problem and tightened the bounds on the redun-
dancy. Fischer [10] addressed the problem in the context of mis-
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matched source compression and identified the supremum av-
erage exponential coding length for a family of sources. In par-
ticular, he showed that the supremum value is the supremum
of the Rényi entropies of the sources in the family. In contrast
to Fischer’s work, our focus in this paper is on identifying the
worst redundancy suffered by a code.

Most of the results obtained in this paper were inspired by
similar results for mismatched and universal source compres-
sion ([11]-[13]). We now highlight some comparisons between
source compression and guessing.

Suppose that the source outputs an n-string of bits. In loss-
less source compression, one can think of an encoding scheme
as asking questions of the form, “Does X™ € FE;?” where
(E; :i=1,2,...) is a carefully chosen sequence of subsets of
X". More specifically, one can ask the questions “Is X; = 0?7,
“Is X2 = 07?7, and so on. The goal is to minimize the number
of such questions one needs to ask (on the average) to get to
the realization. The minimum expected number of questions one
can hope to ask (on the average) is the Shannon entropy H (P).
In the context of guessing, one can only test an entire string in
one attempt, i.e., ask questions of the form “Is X" = z"7”.
The guessing moment grows exponentially with n and the min-
imum exponent, after scaling by p, is given by the Rényi entropy
H,(P).

As indicated earlier, the quantity L, plays the same role
as Kullback-Leibler divergence does in mismatched source
compression. L, shares the Pythagorean property with the
Kullback-Leibler divergence [14]. Moreover, the best guessing
strategy is based on a PMF that is a mixture of sources in the
uncertainty set, analogous to the source compression case. The
min-sup value of redundancy for the problem of compression
under source uncertainty is given by the capacity of a channel
[12] with inputs corresponding to the indices of the uncertainty
set, and channel transition probabilities given by the various
sources in the uncertainty set. We show that a similar result
holds for guessing under source uncertainty. In particular, the
min-sup value is the channel capacity of order 1/« [15] of an
appropriately defined channel.

The following is an outline of the paper. In Section II we re-
view known results for the problem of guessing, introduce the
relevant measures that quantify redundancy, and show the re-
lationship between this redundancy and the divergence quan-
tity L. In Section III, we see how the same quantities arise in
the context of Campbell’s minimum average exponential coding
length problem. In Section IV, we pose the min-sup problem
of quantifying the worst-case redundancy and identify another
inf-sup problem in terms L,. In Section V we study the rela-
tions between L, and other known divergence measures. In Sec-
tion VI we identify the so-called center and radius of an uncer-
tainty set. In Section VII, we specialize our results to two exam-
ples: the family of discrete memoryless sources on finite alpha-
bets, and the family of finite-state arbitrarily varying sources.
We establish results on the asymptotic redundancies of these two
uncertainty sets. We further refine the redundancy upper bound
for the family of binary memoryless sources. In Section VIII we
conduct a further study of L, divergence and show that it satis-
fies the Pythagorean property. Section IX closes the paper with
some concluding remarks.
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II. INACCURACY AND REDUNDANCY IN GUESSING

In this section, we prove previously known results on
guessing. Our aim is to motivate the study of quantities that
measure inaccuracy in guessing. In particular, we introduce
a measure of divergence, and show how it is related to the «
-divergence of Csiszar [15].

Let X and Y be finite alphabet sets. Consider a correlated
pair of random variables (X, Y") with joint PMF P on X x Y.
Given side information Y = y, we would like to guess the re-
alization of X. Formally, a guessing list G with side informa-
tion is a function G : X x Y — {1,2,...,|X|} such that for
each y € Y, the function G(-,y) : X — {1,2,...,|X|} isa
one-to-one function that denotes the order in which the elements
of X will be guessed when the guesser observes Y = y. Nat-
urally, knowing the PMF P, the best strategy which minimizes
the expected number of guesses, given Y = y, is to guess in the
decreasing order of P(-,y)-probabilities. Let us denote such an
order Gp. Due to lack of exact knowledge of P, suppose we
guess in the decreasing order of probabilities of another PMF
Q. This situation leads to mismatch. In this section, we analyze
the performance of guessing strategies under mismatch.

In some of the results we will have p > 0, and in others
p > —1,p # 0. The p > 0 case is of primary interest in
the context of guessing. The other case is also of interest in
Campbell’s average exponential coding length problem where
similar quantities are involved.

Following the proof in [2], we have the following simple re-
sult for guessing under mismatch.

Proposition 1: (Guessing Under Mismatch): Let p > 0. Con-
sider a source pair (X, Y") with PMF P. Let @ be another PMF
with Supp(Q) = X x Y. Let G, be the guessing list with side
information Y obtained under the assumption that the PMF is
Q, with ties broken using an arbitrary but fixed rule. Then the
guessing moment for the source with PMF P under G satisfies

% log (E [Go (X, Y)"))

1 a, "
| S e[S (§e)7]) e

yeY xzeX aeX

where the expectation E is with respect to P. O
Proof: For p > 0, for each y € Y, observe that

Go(,y) < > 1{Q(a,y) > Q(x,9)}

aeX
1

<> (gen)”

aeX

for each z € X, which leads to the proposition. ]

For a source P on X x Y, the conditional Rényi entropy of

order o, with a > 0, is given by

1/«
H,(P)= 1fa10g > (Z P(Ly)“) )

yeY \zeX
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For the case when |Y| = 1, i.e., when there is no side infor-
mation, we may think of P as simply a PMF on X. The above
conditional Rényi entropy of order « is then the Rényi entropy
of order « of the source P, given by

Ha(P) =

: i ~log (Z P(a:)a> . 4)

zeX

Note that the left-hand side of (3) is written as a functional of
P instead of the more common H,, (X | Y'). We do not use the
latter because the dependence on the PMF needs to be made
explicit in many places in the sequel. Also note that both (3) and
(4) define H,, (P)—(3) for a pair of random variables and (4) for
a single random variable. The actual definition being referred to
will be clear from the context. It is well known that

0 < Ho(P) < log |X]. ®)

Suppose that our guessing order is “matched” to the source,
i.e., we guess according to the list G p. We then get the following
corollary.

Corollary 2: (Matched Guessing, Arikan [2] ): Under the
hypotheses in Proposition 1, the guessing strategy G p satisfies

1
where « = 1/(1 + p). O
Proof: Set (Q = P in Proposition 1. [ |

Let us now look at the converse direction.

Proposition 3: (Converse): Let p > 0. Consider a source pair
(X,Y) with PMF P. Let G be an arbitrary guessing list with
side information Y. Then, there is a PMF Q¢ on X X Y with
Supp(Qg) = X x Y, and

% log (E [G(X, Y)?])

1 ‘ QG(avy) B ’
>~ log ZZPW)[Z(M) ]

yeY zeX a€EX
—log(1 4+ In|X]) )
where the expectation E is with respect to P. O

Proof: The proof is very similar to that of [2, Th. 1]. Ob-
serve that because p > 0, for each y € Y, we have

X

zeX
Define the PMF Q¢ as

1 1

Qc(z,y) = o7
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Note that Supp(Q¢) = X x Y. Clearly, guessing in the de-
creasing order of ()g-probabilities leads to the guessing order
G. By virtue of the definition of ), we have

55 e |5 (E6)

p

yeY zeX a€eX
P
1
-3 sty (X gy
yeY zeX aeX G(a7y)
<D0 Play)Gla,y) | -+ X)) (®)
yeY xzeX

where the last inequality follows from (as in [2] )

IXI
1 1
E;:E—<11X.V Y.
Glay)  Zi="" n /X, vy €
a€X =1
The proposition follows from (8). [ |

Observe the similarity of the terms in the right-hand sides
of (2) and (7) in Propositions 1 and 3, respectively. The
analog of this term in mismatched source compression is
— > wex P(7)log Q(x), which is the expected length of a
codebook built using a mismatched PMF (). The Shannon
inequality (see, for example, [16] ) states that

=Y Pz - Pz

)log Q(z
zeX zeX

The next inequality is analogous to the Shannon inequality.
We can interpret this as follows: if we guess according to some
mismatched distribution, then the expected number of guesses
can only be larger. We will let « = 1/(1 + p) and expand
the range of & to 0 < a < o0. A special case (when no side
information is available) was shown by Fischer (cf. [10, Th.
1.3]).

)log P(z) = H(P).

Proposition 4: (Analog of Shannon Inequality): Let a =
1+p>0 a # 1. Then
l—a
a Qa,y)\"| °
1 P :
o | 2 2 M) [Z <Q(l’7y)> ]
yEY zEX a€X
> Ho(P), (9
with equality if and only if P = Q. O

Proof: We will prove this directly using Holder’s in-
equality. The right side of (9) is bounded. Without loss of
generality, we may assume that the left side of (9) is finite, for
otherwise the inequality trivially holds and P # . We may
therefore assume Supp(P) C Supp(Q) under 0 < o < 1, and
Supp(P) N Supp(Q) # @ under 1 < a < oo which are the
conditions when the left side of (9) is finite.

With o = 1/(1 + p), (9) is equivalent to

sign(p) - T Ha,9) il
(o) 3 Plewo) LGZX<Q<x,y>> ]
1+p
>S1gn Z(ZPCLUT) .
YyeY \zeX
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The above inequality holds term by term for each y € Y, a fact
that can be verified by using the Holder inequality

sign()\)-( um> ( %) >sign(A (E:uA 1= )‘>

(10)
with A = p/(14p) =1 — a, u, = Q(z,y) /1 +)

ve = P(z,y)Q(z,y) =/ 0+

and raising the resulting inequality to the power 1 + p > 0.
From the condition for equality in (10), equality holds in (9) if
and only if P = Q. ]

Proposition 4 motivates us to define the following quantity
that will be the focus of this paper:

La(P,Q) = 7
o Qla,y)\“| °
a8 | 2 2, P L%(cm,y)) ]
— Ho(P). (11)

Proposition 4 indicates that L, (P, Q) > 0, with equality if and
only if P = Q.

Just as Shannon inequality can be employed to show the con-
verse part of the source coding theorem, we employ Proposition
4 to get the converse part of a guessing theorem. We thus have
a slightly different proof of [2, Th. 1(a)].

Theorem 5: (Arikan’s Guessing Theorem [2]): Let p > 0.

Consider a source pair (X,Y) with PMF P. Let « = ﬁ. Then
He(P) — log(1 +1In|X])
1
p —log (ngnlE [G(X Y)”])
< Hy(P). O

Proof: Tt is easy to see that the minimum is attained when
the guessing list is G'p, i.e., when guessing proceeds in the de-
creasing order of P-probabilities. Application of Proposition 3
with G = G'p and Proposition 4 with () = Q¢,, yields the first
inequality. The upper bound follows from Corollary 2. ]

Remarks:

1) Q¢, may be different from P even though they lead to the
same guessing order.

2) Theorem 5 gives an operational meaning to H, (P); it in-
dicates the exponent of the minimum guessing moment to
within log(1 + In |X]).

3) Loosely speaking, Proposition 4 indicates that mismatched
guessing will perform worse than matched guessing. The
looseness is due to the looseness of the bound in The-
orem 5.

Suppose now that we use an arbitrary guessing strategy G to
guess X with side information Y, when the source (X,Y)’s
PMF is P. G may not necessarily be matched to the source, as
would be the case when the source statistics is unknown. Let us
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define its redundancy in guessing X with side information Y
when the source is P as follows:

1
R(P,G) 2 —log (E[G(X,Y)’]) - = log (E[Gp(X,Y)"]).
p
12)
The dependence of R(P, G) on p is understood and suppressed.

The following proposition bounds the redundancy on either
side.

1
p

Theorem 6: Let p > 0, « = 1/(1 + p). Consider a source
pair (X,Y’) with PMF P. Let G be an arbitrary guessing list
with side information Y and Q¢ the associated PMF given by
Proposition 3. Then

|R(P,G) = La(P.Qc)| < log(1+In|X|).  (13)

O

Proof: The inequality R(P,G) < L.(P,Q¢g) + log(1 +

In |X]) follows from Proposition 1 applied with Q = Q¢, the
first inequality of Theorem 5, and (11).

The inequality R(P,G) > Lo(P,Qg) — log(1 + In|X]) fol-
lows from Proposition 3, the second inequality of Theorem 35,
and (11). [ |

Remark: It is possible that two different PMFs P and
@ lead to the same guessing order, i.e., Gp = Gg. Thus
R(P,Gp) = R(P,Gg) = 0. Yet, it is possible that L, (P, Q)
and L.(P,Qg,) are nonzero. This remains consistent with
Theorem 6 since (13) only provides bounds for R(P,Gg) on
either side to within log (1 4 In|X]), and is not an entirely
accurate measure of R(P, Gg). One can only conclude that

Lo(P,Qq,) < log(1+1n]X]).

This is unlike the case in source compression with mismatch
where the “nuisance” term is not log (1 4 In |X]) but the con-
stant 1. Yet, in the examples in Section VII on guessing we see
how to make good use of these bounds. See also the discussion
following Theorem 8 at the end of the next section.

III. CAMPBELL’S CODING THEOREM AND REDUNDANCY

Campbell in [7] and [8] gave another operational meaning
to the Rényi entropy of order a > 0. In this section, we show
that L,, arises as “inaccuracy” in this problem as well, when we
encode according to a mismatched source. To be consistent with
the development in the previous section, we will assume that X
is coded when the source coder has side information Y.

Let X and Y be finite alphabet sets as before. Let the true
source probabilities be given by the PMF P on X x Y. We wish
to encode each realization of X using a variable-length code,
given side information Y. More precisely, let the (nonnegative)
integer code lengths [(x, y) satisfy the Kraft inequality

» 27l <1, Wy e,
reX
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The problem is then to choose | among those that satisfy the
Kraft inequality so that the following is minimized:

%log ([E [2/’10‘7”)}) . —l<p<oo,p#0  (14)
where the expectation E is with respect to the PMF P. As p — 0,
this quantity tends to the expected length of the code E[{( X, Y)].

Observe that we may assume that Y ., 27/(®%) > 1/2 for
each y; otherwise we can reduce all lengths uniformly by 1, still
satisfy the Kraft inequality, and get a strictly smaller value for
(14). Henceforth, we focus only on length functions that satisfy

<Y 2!tv <l wey. (15)

zeX

N =

Theorem 7: (Campbell’s Coding Theorem, Campbell [7]):
Let =1 < p < o0, p # 0. Consider a source with PMF P.

_ 1
Leta = Tt Then

1 )
Ho(P) < = log <mlin[E [291(“ >D < Ho(P)+1,
p

where the minimization is over all those length functions that
satisfy (15). O

For a PMF @ on X x Y, let [ be defined by

{—log< Qe y) ™ ﬂ 16)
ZaGX Q(a7y)m
[—log (Q"(x | y))] (17)

where [] refers to the ceiling function and Q' (- | ) is a condi-
tional PMF on X. Clearly, g satisfies (15).

Analogously, for any length function satisfying (15), we can
define a PMF on X X Y as follows:

>

lo(z,y)

1 92— (1+p)l(zy)

Ql(xv U) = M Zaex 92—(1+p)l(a,y)

(18)

We can easily check that lg, = /.
Let us define the redundancy for any [ satisfying (15) as

R.(P,1)

£ %log (IE [QPI(X-,Y)]) — %log (min[E [2P£I(X,Y)i|>

g
analogous to the definition without side information in [9].

Following the same sequence of steps as in the mismatched
guessing problem, it is straightforward to show the following.

Theorem 8: Let —1 < p < 00, p # 0, = 1/(1 + p). Con-
sider a source pair (X,Y") with PMF P on X. Let [ be a length
function that denotes an encoding of X with side information
Y, and @, the associated PMF given by (18). Then

|RC<P7I)_L04(P7Q1>| <1 (19)

O
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We interpret L, (P, ;) as the penalty for mismatched coding
when @Q; is not matched to P. L, (P, Q) is indicative of the
redundancy to within a constant, as the Kullback-Leibler di-
vergence is in mismatched source compression. By comparing
(19) with (13), we see that the nuisance term in this problem
is a constant that does not depend on the size of the source al-
phabet; L, (P, Q) is therefore a more faithful representation of
R.(P,l) than L,(P,Q¢) is of R(P, Q).

IV. PROBLEM STATEMENT

Let T denote a set of PMFs on the finite alphabet X x Y.
T may be infinite in size. Associated with T is a family 7 of
measurable subsets of T and thus (T, 7) is a measurable space.
We assume that for every (z,y) € X x Y, the mapping P +—
P(z,y) is 7 -measurable.

For a fixed p > 0, we seek a good guessing strategy G that
works well for all P € T. G can depend on knowledge of T,
but not on the actual source PMF. More precisely, for P € T
the redundancy denoted by R(P, G) when the true source is P
and when the guessing list is G, is given by (12). The worst
redundancy under this guessing strategy is given by

sup R(P,G).
PeT

Our aim is to minimize this worst redundancy over all guessing

strategies, i.e., find a G that attains the minimum

R* = min sup R(P,G).

(20)
G PpeT

In view of Theorem 6, clearly, the following quantity is rele-
vant for 0 < « < 1. The definition, however, is wider in scope.

Definition 9: For0 < a < 0o, a # 1,

C £ min sup Lo (P, Q).

21
Q peT

The following theorem justifies the use of “min” instead of
“inf”.

Theorem 10: There exists a unique PMF Q* such that

C = sup L.(P, Q%)
PeT

sup L. (P, Q).

= inf
Q pPeT

The proof is in Section VI-C.

Remark:
1) C < log|X| and is therefore finite. Indeed, take @ to be
uniform PMF on X x Y. Then

La(P,Q) = log |X| - Ha(P) < log|X|, VP € T.

2) The minimizing Q* has the geometric interpretation of a
center of the uncertainty set T. Accordingly, C plays the
role of radius; all elements in the uncertainty set T are
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within a “squared distance” C from the center Q*. The
reason for describing L, (P, Q) as “squared distance” will
become clear after Proposition 24.

The following result shows how to find good guessing
schemes under uncertainty.

Theorem 11: (Guessing Under Uncertainty): Let T be a set
of PMFs. There exists a guessing list G* for X with side infor-
mation Y such that

sup R(P,G*) < C + log(1 + In|X]).

PeT
Conversely, for any arbitrary guessing strategy G, the worst-
case redundancy is at least C' — log(1 + In |X]), i.e.

sup R(P,G) > C —log(1 + In |X]).
PeT
O
Proof: Let Q* be the PMF on X x Y that attains the min-
imum in (21), i.e.

C = sup La(P,Q"). (22)
PET
Let G* = G¢-~. Then
R(P,G") < La(P, Q%) +log(1 +In[X]) ~ (23)

follows from Proposition 1 applied with Q@ = Q¥ the first in-
equality of Theorem 5, and (11), as in the proof of Theorem 6.
After taking supremum over all P € T, and after substitution
of (22), we get

sup R(P,G*) < sup L (P, Q") + log(1 + In|X])
PeT PeT

=C+log(1+In|X|)

which proves the first statement.
For any guessing strategy G, observe that Theorem 6 implies
that

R(P G) > LQ(P7 QG) - log(l +In |X|)

and therefore

sup R(P,G)

> sup La(P, Q) — log(1 +In X))
PeT PeT

>C —log(1+1In|X]|)

which proves the second statement. ]

Remarks:

1) Thus one approach to obtain the minimum in (20) is to
identify minimum value in (21). This minimum value will
be within log(1+1n |X|) of R* in (20). Moreover, the corre-
sponding minimizer Q* can be used to generate a guessing
strategy.

2) Theorem 11 can be easily restated for Campbell’s coding
problem. The nuisance term log(1+1n |X|) is now replaced
by the constant 1.
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3) The converse part of Theorem 11 is meaningful only when
C > log(1 + In|X|). This will hold, for example, when
the uncertainty set is sufficiently rich. The finite state, arbi-
trarily varying source is one such example. Observe that if
we have X x Y = A™ x B™, then log(1+1n |X]) grows log-
arithmically with n if |X| > 2. The uncertainty set will be
rich enough for the converse to be meaningful if C' grows
with n at a faster rate.

V. RELATIONS BETWEEN [, AND OTHER DIVERGENCE
QUANTITIES

Having shown how L (P, Q) arises as a penalty function for
mismatched guessing and coding, we now study it in greater de-
tail and relate it to other divergence quantities. The relationships
we discover here will be useful in the sequel. Throughout this
section, 0 < a < oo, @ # 1. Accordingly, —1 < p < oo,
p # 0. Let P and Q be PMFs on X x Y.

1) Aswe saw before, L, (P, Q) > 0, with equality if and only

it P = Q.

2) Lo(P,Q) = oo if and only if Supp(P) N Supp(Q) = 0,
or a < 1 and Supp(P) ¢ Supp(Q).

3) Given the joint PMF P, let us define the “tilted” conditional
PMF on X as in (24) shown at the bottom of the page.

The above definition simplifies many expressions in the
sequel. The dependence on « in the mapping P — P’ is
suppressed.

4) When |Y| = 1, we interpret that no side information is
available. Then P and () may be thought of PMFs on X
with no reference to Y. P’ and Q' given by (24) are PMFs
in one-to-one correspondence with P and @ respectively.
Using the expression for Rényi entropy and (11), we have
that

La(P,Q) = log (Z P'a 1+P~Q'(z>”>
reX

:Dl/Oe(P “Q) (25)

where Dg(R || S) is the Rényi information divergence of

order (3
log (Z R /3 1 ﬁ)
reX

which is > 0 and equals 0 if and only if R = S. For the
case when |Y| = 1 we therefore have another proof of
Proposition 4.

5) The conditional Kullback-Leibler divergence is recovered

Dy(R | S) =
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where Q(- | y) and P(- | y) are the respective conditional
PMFs of X given Y = y.

6) In general, L, (P, Q) is not a convex function of P. More-
over, it is not, in general, a convex function of Q).

7) In general, L, (P, Q) does not satisfy the so-called data-
processing inequality. More precisely, if X" and Y’ are fi-
nite sets, and if f : X x Y — X’ x Y’ is a function, it is
not necessarily true that L, (P, Q) > Lo(Pf=1,Qf™1).

8) When |Y| = 1, i.e., in the no side information case, using
(24) we can write L, (P, Q) as follows:

La(P.Q) = %bg sign(p) - [;(P' | Q)] (6)

where I¢(R || S) is the f-divergence [17] given by

L(R|S) =" S() ( ‘”)> 27)
rzeX ."I?)
with
f(x) = sign(p) - x'**, x> 0. (28)

Since f is a strictly convex function for p # 0, an applica-
tion of Jensen’s inequality in (27) indicates that

-1<p<0

0< p < oo. (29)

L))z ={"

Moreover, when —1 < p < 0, we have the following
bounds:

—1<If(R| 8)<0. (30)

9) Let us define

£y <Z P(z,y)a> : .

yeY \zeX

The dependence of h on « is understood, and suppressed
for convenience. Clearly

Ho(P) = falogh(P). 31)

Motivated by the relationship in (26), let us write L,, in the

as follows: general case as follows:
lim L ( ZZPwy )lo Plzly) 1 .
= *\Q@ly) La(P,@Q) = ~logsign(p) - 1(P, Q)] (32)
/ a [P(@y)* ] Yaex Play)®, i3, cx Pla,y)* >0
Pz ]y) { 1/1X], e othervsfée. 24
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where I(P, Q) is given by
I(P,Q)
”lgn ZZPw MICACIED) %)
JEY reX
1 _ —
Slgn a) ZZP 20) Q' | 9) a1
yeY zeX
(34)

These expressions turn out to be useful in the sequel.
It is not difficult to show that

> w(y)- (P

yeyY

I(P,Q) = Gl Q1)

where w is the PMF on Y given by

w(y) (ZPmy )l.

Consequently, the bounds given in (29) and (30) are valid
for I(P, ), under corresponding conditions on «.

10) Inequalities involving L, result in inequalities involving
I with ordering preserved. More precisely, for » > 0, if
Lo(P,Q) < r, then I(P,Q) < t, for t = sign(p) - 2°".

11) From the known bounds 0 < H,(P) <
to see the following bounds:

L<h(P)<|X| =, for0<a<1 35)

and

<h(P)<1,forl <a< oo (36)
In both cases, we see that h(P) is bounded away from 0
and therefore (33) and (34) are well defined.

The quantity L, (P, Q) does not have many of the useful
properties enjoyed by the Kullback—Leibler divergence, or other
f-divergences, even in the case when |Y| = 1. See, for example,
comments 6 and 7 made earlier in this section. However, it be-
haves like squared distance and shares a “Pythagorean” property
with the Kullback—Leibler divergence. This is explored in Sec-
tion VIIL

VI. L.-CENTER AND RADIUS OF A FAMILY

In this section we identify the L,-center and radius of a
family. We first begin with a finite family and subsequently
study an arbitrary family (that satisfies some measurability
conditions). We finally conclude the section with a proof of
Theorem 10.

A. Lg-Center and Radius of a Finite Family

Let | T| be finite. For simplicity, assume that no side informa-
tion is available. We will therefore use X instead of the cum-
bersome X X Y. Our main goals here are to verify using known
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results that the L -center exists, is unique, and lies is in the clo-
sure of the convex hull of T. We then briefly touch upon con-
nections with Gallager exponents, capacity of order 1/, and
information radius of order 1/«. The development in this sec-
tion will suggest an approach to prove Theorem 10 for the case
when |T| is infinite.

Proof of Theorem 10 for a Finite Family of PMFs: Let
T = {P,...,P,} be PMFs on X. The problem of identi-
fying the L.-center and radius can be solved by identifying
the D;/,-center and radius of the tilted family of PMFs
{P! | 1 < i < m}, where the invertible transformation from
Q — Q' is given by (24). Moreover, from (25) and (26), we
have

1nf I<nax L,(P;,Q)
/ !
= 1gf 11S111ag):n D14, (P ]| Q")

(37
(38)

1 . .
=;10g <SIgn(p) inf max I (Pl Q’)) 39)

Csiszar considered the evaluation of (38) in [15, Prop. 1], and
the evaluation of the inf-max within parenthesis in (39) in [17].

From [17, Th. 3.2] and its Corollary (the required conditions
for their application are f is strictly convex and f(0) < oo; these
clearly hold since p # 0 and f(0) = 0 ) there exists a unique
PMF (Q')* on X, which minimizes maxi<;<m, If(P] || Q).
From the bijectivity of the ) — ()’ mapping, the infima in
(37)—(39) can all be replaced by minima. From the inverse of
the map Q — ', we obtain the unique minimizer Q* for (37).
This proves the existence and uniqueness result of Theorem 10
when |T| is finite.

1) Minimizer is in the Convex Hull: Let £ be the convex hull
of T. That the minimizer Q™ is in the convex hull of the family,
ie., Q* € &, can be gleaned from the results of [17, eq. 2.25],
[17,Th. 3.2], and its Corollary. Indeed, [17, Th. 3.2] assures that

. ! /
min max If(P; || Q) (40)

= maxmanu O)Is(P] || Q")

" 1=1

(41)

where the max-min in (41) is achieved at (u*, Q"), and Q"* is
the PMF which attains the min-max in (40). We now seek to find
out the nature of Q’* and thence Q*.

For any arbitrary weight function p, we have from [17, eq.
2.25] that the Q" which minimizes

> u@iIi(P Q) 42)
=1
Q'(z) =c™! (Zu(i)(ﬂ’(x))l/“) (43)
=1
(i) e
=c” (; h(P,-)PZ(x)) (44)
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for every & € X, where c is the normalizing constant. From the
correspondence between the primed and the unprimed PMFs,
and (44), we obtain

_ -1 - 11(%) )
Qz)=d ; h(Pi)P,L(a:L Vr € X (45)
where d is the normalizing constant
W0
d_;h(m. (46)

Thus, for an arbitrary p, the (Q (obtained from @’ ) that mini-

mizes (42) is in the convex hull £. In particular, the minimizing

Q* corresponding to the p* that attains the max-min objective

in (41), and therefore the min-max objective in (40), is also in

£. This result will be proved in wider generality in Section VIIL.
With some algebra, we can further show that

(0]

¢ =min max La (P, Q) = log(d- h(Q*))  (47)

l1-«
where Q* is given by (45) and d by (46) with p = u*.

2) Necessary and Sufficient Conditions for Finding the
L-Center and Radius: From [17, Th. 3.2], a weight vector p
maximizes (41) if and only if

(P | Q) <K, i=1,2,...,m (48)
where equality holds whenever p(7) > 0, and @’ is given by
(43). Under this condition, clearly, the corresponding () given
by (45) is the L,-center and C' = (1/p) log(sign(p) - K) is the
L, -radius.

An interesting special case occurs when h(P;) is independent
of 7. Then we may simplify (45) to

Q= Z w(i) P; (49)
=1

i.e., the weights that make the optimum mixture (of PMFs) are
the same as the given weights that form the objective function
in (41).

3) Relationship With Gallager Exponent: For the set of
PMFs {P; | 1 <i < m} thetilted set {P/ | 1 < i < m} can
be considered as a channel with input alphabet {1,2,... m}
and output alphabet X. This channel will be represented as P’.

From the remarks in [15] on the connection between infor-
mation radius of order 1/« and the Gallager exponent of the
channel P’, and from [15, Prop. 1], we have

min max Lq(P;, Q) = max

1
Q 1<i<m 1 Eo(or—1, 1, ")

nooa—

where the right-hand side is the maximized Gallager exponent
of the channel P’. (1 < a < 2 is relevant in [18, p. 138],
l1<a<ooin[l8,p.157],and 0 < « < 1 in [19]).

4) The Max-Min Problem for L, : Thus far our focus has
been on the min-max problem of finding the L-center. We
briefly looked at identifying the max-min value of Iy in (41), but
only as a means to study the min-max problem. We now make
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some remarks about the max-min problem for the finite family
case. Its extension to arbitrary uncertainty sets is not considered
in this paper.

Suppose that our new objective is to find

max min ; (i) Lo (P;, Q). (50)

This problem is the same as identifying the “capacity of order
1/a ” of the channel P’ [15], i.e.

a . D N P! .
IHHXI%’Il;M(L) 1/ ( i ||Q)

[15, Prop. 1] solves this problem; the value is the same as the
min-max value

. / /

min max Do (P || Q-
Consequently, the max-min value of (50) is the same as the
L -radius of the family.

B. L,-Center and Radius for an Arbitrary Family

We are now back to the case with side information and an
infinite family T. The development in this subsection will be
analogous to Gallager’s approach [12] for source compression.
We first recall the technical condition indicated in Section IV.
T is a family of PMFs on X x Y, (T,7) a measurable space,
and for every (z,y) € X x Y, the mapping P — P(z,y) is
T -measurable.

Our focus will be on the following.

Definition 12: For0 < a < oo, @ # 1

K, £ minsup I(P,Q).

51
Q peT ©b

Taking @ to be the uniform PMF on X X Y it is easy to check
that K, is finite; indeed 1 < K, < |X|” when p > 0 and
-1 < Ky <0when -1 < p <0.

Let us define some other auxiliary quantities. Define the map-
: . XN .
ping f : T — R as follows:

f(P) & P/h(P).

For a probability measure p on (T,7), let

F2 /T du(P)f(P). (52)

We define the PMF pf € P(X x Y) as the scaled version of F',

pf &£ d'F (53)



where d as in the finite case is the normalizing constant

dé/
JT

These definitions are extensions of (45) and (46) to arbitrary T.
Moreover, let

du(P) _
WE) = > F(x).

zeX

(54)

D2 [ du(P) 1), (55)
T
Simple algebraic manipulations result in
J(n, T) =sign(p) - h(F) (56)
=sign(p) - d - h(uf) (57)
an extension of [17, eq. (2.24)] for arbitrary T.
The following auxiliary quantity will be useful.
Definition 13: For0 < a < oo, @ # 1
K_ ZsupJ(p,T). (58)

14

The quantity u f in (53) is analogous to the PMF at the output
of a channel represented by T when the input measure is .
J(u, T) in (55) is the analogue of mutual information; Csiszar
calls it informativity in his work on finite-sized families [17].

Proposition 14: K_ < K.
Proof: Fix an arbitrary PMF @ on X x Y. It is straight-
forward to show that [17, eq. 2.26] holds even when |T| is not
finite, and is given by

/ du(P) I(P.Q) = sign(p) - J(u, T) - I(uf. Q).

Since I(uf, Q) > sign(p), it follows that

/T du(P) - 1(P,Q) > J(u, ).

Consequently

T, T) = win [ du(P) 1(P.Q)

T

which leads to

K_=supJ(p,T)
m

sup min
m

/ au(P) I(P, Q)
JT

min sup
Q

[ ne)12.Q)
w JT

min sup I(P, Q)
Q PeT

K. n
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The following Proposition is similar to [12, Th. A]. The proof
largely runs along similar lines.

Proposition 15: A real number R equals K_ if and only if
there exist a sequence of probability measures (i, : n € N) on
(T,7) and a PMF Q* on X x Y with the following properties:

D) lim, J(pn, T) = R;

2) lim, pn f = Q%

3) I(P,Q*) < R, forevery P € T.

Furthermore Q* is unique, attains the minimum in (51), and

Kf == K+. D
Proof:
<: Observe that on account of 1), 3), and Proposition 14,
we have
K_>R
> sup I(P, Q")
PeT
> min sup I(P, Q)
Q PeT
=K,
>K_

where the first inequality follows from 1), the second from
3), and the last from Proposition 14. Consequently, all the
inequalities are equalities, R = K_ = K, and the use of
“min” in the definition of K is justified.

=:Since R = K_ < K; < oo, it follows from the
definition of K _ that there exists a sequence (p, : n € N)
such that lim,, J(p,, T) = R.

Now consider the sequence of vectors in RXIY! given by
F, = [;du,(P)f(P). This is a sequence of scaled PMFs
given by F,, = d,, - i f, where d,, is given by (54). The se-
quence resides in a compact space of scaled PMFs and therefore
has a cluster point F™* which can be normalized to get the PMF
Q*. Moreover we can find a subsequence of (F,, : n € N) such
that limy, F,, = F™*. We redefine the sequence f,, as given by
this subsequence, and properties 1) and 2) hold.

Suppose now that there is a Py € T such that 3) is violated,
ie.

I(Py, Q%) > K_.
Consider the convex combinations of measures
Una = (1 =N pn + (X)op, (59)

where ¢ p, is the atomic distribution on F.
From (59), (52), and (56), we have
$0(A) 2 J(vnr, T)
=sign(p) - h (1 = A F, + Af(P)) -

Since sign(p)h(-) is a concave and therefore continuous func-
tion of its vector-valued argument, s, () converges point-wise
to

s(A) = sign(p) - h (1 = N EF" + Af (1)),

for A € [0, 1]. In particular, s(0) = lim, s,(0) = K_. s(\)
is a concave function of A since sign(p)h(-) is concave and the
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argument is linear in A. Let $(0) be the one-sided derivative of
s(A) evaluated at A = 0 (i.e., limit as A | 0). We can straight-
forwardly check that

$(0) =I(Py, Q") — K_>0
with the possibility that the value (slope at A = 0 ) may be +oc0.
We have therefore established that s(\) has s(0) = K_,
is concave and therefore continuous in [0, 1], and has strictly
positive slope at A\ = 0. Consequently, s(A) > K_ for some
0 < A < 1. Since

J(Wna, T) = s,(A) = s(A) > K_
contradicts the definition of K_, 3) must hold.

To show uniqueness of Q*, suppose there were another R*
and another sequence of measures (7, : n € N) satisfying
1), 2) and 3). We can get two cluster points F™* and G* that
when normalized lead to Q* and R*, respectively. Then with
Uy = %un + %ﬂ'n, we have

1 1
J(Vn,T) —>sjgn(p) -h <§F* + 5ka)

L. N x
> 5 -sigu(p) - h (F") + 5 - sign(p) - h (G7)
1 1
=-K_+-K_
2 + 2
=K_
a contradiction. The strict inequality above is due to strict con-
cavity of sign(p)h(-) when p > —1 and p # 0. ]

C. Proof of Theorem 10
Proof: From (32), it is clear that

1 .
C= ;bg (sign(p) - K4) .

( attains the min-sup value K in Definition 12 if and only if
@ attains the min-sup value C in Definition 9. Proposition 15
guarantees the existence and uniqueness of such a Q. [ |

VII. EXAMPLES

In this section, we look at two example families of PMFs,
and identify their L,-centers and radii. We focus on guessing
without side information. We also take a closer look at the bi-
nary memoryless channel and obtain tighter upper bounds on
redundancy than those obtained via Theorem 11. Throughout
this section, therefore, 0 < o < 1 and |Y| = 1. The uncertainty
set will thus be PMFs in X (with no reference to |Y|).

A. The Family of Discrete Memoryless Sources

Let A be a finite alphabet set, n a positive integer, and X =
A™. We wish to guess n-strings with letters drawn from A. Let
a”™ = (ay,...,an) € A" Let P(X) denote the set of all PMFs
on X.

Let T be the set of all discrete memoryless sources (DMS) on

A,ie.

T= {Pn e P(A") | Pu(a") =[] P(a:), Va™ € A™,
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The parameters of the source P’ are unknown to the guesser.
Arikan and Merhav [6] provide a guessing scheme for this un-
certainty set. The scheme happens to be independent of p. More-
over, their guessing scheme has the same asymptotic perfor-
mance as the optimal guessing scheme. Their guessing order
proceeds in the increasing order of empirical entropies; strings
with identical letters are guessed first, then strings with exactly
one different letter, and so on. Within each type of sequence,
the order of guessing is inconsequential. Denote this guessing
list by G,,. Arikan and Merhav [6, Th. 1] showed that for any
P, €T,

lim lR(Pn, G,) =0.
n—oo N
The above result is couched in our notation. This indicates that
T, the family of all DMSs on A, is not rich enough in the sense
that there exists a “universal” guessing scheme. The following
result makes this notion more precise.

Theorem 16 (Family of DMSs on A): Let m = |A|. The
L -radius C,, of the family of discrete memoryless sources on
A satisfies

m—1
C, < 1
T2
where u,, = log(T'(1/2)™/T(m/2)), a constant that depends
on the alphabet size, and ¢,, is a sequence in 7 that vanishes as
n — 00. O

Proof: Recall that p > 0. P, is the joint PMF of the
n-string with individual letter probabilities P. Let P,, — P,
according to the mapping given in (24). It is easy to verify that
P! is the joint PMF of the n-string with individual letter prob-
abilities P’, where P +— P’ according to the mapping (24),
and therefore f’,; also belongs to T. Furthermore, for a fixed
a™ € A", let S,~» be the PMF of letter frequencies in a”, and
define

n
og% + Um + En,

San (@) & T[ San (1)
=1

for every ™ € A™. Note that S‘anm is not necessarily a PMF.
Xie and Barron [20, Th. 2] show that there is a PMF on A", say

', and a vanishing sequence &,,, such that for every discrete
memoryless source P, the following holds:

P! (a™) S n(a™)
N n < e

S 108 B amy S 108 0 () (€0

<rn

-1

2 m2 log o+t + en. (61)

Define the PMF @,, as follows:

1/«
Qn (") o (Qu(N™,

the inverse of the mapping in (24). We then have the following
series of inequalities:

Lo (P, Qn)

:%bg( AR (P"i‘;?)>p> 62)

am™ EAH
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= (1og IRACH -exp{prn}>

a™ emn

1
p log (exp{prn})
(63)

:’[‘n

where (62) follows from (25) and (63) from (61). Taking the
supremum over all P, yields the theorem. [ |

Remark: Redundancy in guessing is thus upper bounded by
rn + log(1 + nln |A|). Since the L,-radius grows with n as
O(logn), the normalized redundancy C,, /n vanishes. This im-
plies that we can get a “universal” guessing strategy. Theorem
16 suggests the use of ), which in general may depend on
p. Arikan and Merhav’s technique of guessing in the order of
increasing empirical entropy is another universal guessing tech-
nique.

Given any guessing scheme, how do we “measure” the set
of DMSs which result in relatively large redundancy? The fol-
lowing theorem answers this question, and uses a strong version
of the redundancy capacity theorem of universal coding in [21]
and [22].

Theorem 17 : Let (),, be any PMF on A™. Let 1 be a proba-
bility measure on (T,7) and let P, , = [} du(P},) P},. Then
for any DMS P,,, we have

La(Pa,Qn) > D(PL || Py, ) — An

except on a set B of p-probability u{B} < 27",
Proof: Observe that p > 0. An application of Jensen’s
inequality to the concave function log(-) yields
)
P ican

> ma (
y
_D(P, || @)).

a™ EAR
< P(a”)
Q. (a")

The theorem then follows from [22, Th. 2] which states that
the redundancy in source compression D( P}, || @Q’,) is atleast as
large as D(P,, || P, ,) — An except on a set B of pi-probability
upper bounded by 27", ]

Pi(a")

Ela)\ Qn @)

n

Lo(Pr,Qn) = % log <

1
>— 3 Pi(a")log

Remark: In particular, we may do the following. We choose
p such that D(P,, || P, ) ry,. (This can be done since
the inf-sup value of infg, supp, D(P), || Q) is r,, as re-
marked in [20, Remark 5 after Theorem 2]. We may then choose
A, such that n)\, — oo so that 2~"*» vanishes with n, but
An is negligibly small compared to r,,. (For example, for the
family of DMSs, r, = O(logn) and therefore we may set
An = (loglogn)/(logn)). Then, the set of sources P for which
L.(Pn,Qn) < r,— A, has negligible p-probability for all suf-
ficiently large n. Equivalently, with high p-probability (at least
L =272 Lo(PoyQn) > 10 — A

Since L, quantifies the redundancy in Campbell’s coding
problem to within unity, the above remark leads us to conclude
that the redundancy in that problem is tightly bounded as
=1 (logn) (up to a constant).
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In the guessing context, since the nuisance term log(1 +
nlnm) grows as logn + loglnm for large n, we deduce that
with high p-probability (at least 1 — 27"* ), the guessing
redundancy of any strategy is at least r,, — A,, —log(14+nlnm),
which for large n is

m—3 m—1

log n+um + log(27)—loglum+e,—\,. (64)
This fact and Theorem 16 immediately lead us to conclude that
form > 4, the redundancy is between 2 log n and " log n
for large n (ignoring constants and smaller order terms). For
m = 2 and m = 3, the lower bound in (64) is useless, and the
upper bound mTH log n may not be tight. The case of m = 2
is addressed in the next subsection. Tighter upper bounds for
m = 3 remain to be found.

B. Guessing an Unknown Binary Memoryless Source

The L,-based bounding technique suggested by Theorem 11
provides good bounds on guessing redundancy for large n when
the DMSs alphabet size m > 4. In this subsection, we identify
tighter upper bounds on the guessing redundancy of a binary
memoryless source using a more direct approach.

Let A = {0,1}. There is only one unknown parameter, i.e.,
p = P(1). The probability of any n-string is given by

N(z™)
P =¥ = N =1 ()
L—p

where IV (z") is the number of 1s in the string ™. Since P, (z")
is monotonic in N (z™), it immediately follows that when p >
1/2, the optimal guessing order is to guess the string of all 1’s,
followed by all strings with exactly one 0, followed by all strings
with exactly two 0’s, and so on, viz., in the decreasing order
of number of 1’s in the string. Note that the optimal guessing
sequence is the same for all sources whose p > 1/2. Exactly
the opposite is true when p < 1/2—the guessing proceeds in
the increasing order of number of 1’s, the first guess being the
string of all 0’s.

Thus there are only two optimal guessing lists for the bi-
nary memoryless source. By guessing one element from each
list, skipping those already guessed, we obtain a guessing list
that requires at most twice the optimal number of guesses, i.e.,
G(z") < 2Gp, (z™) for every ™ € A™. This guessing list is
one of those that proceed in the increasing order of empirical
entropy. Clearly then, the redundancy is upper bounded by the
constant log 2, a bound tighter than Theorem 16. C,, /n there-
fore vanishes as (log 2)/n. It is not known if this is the tightest
upper bound.

C. Arbitrarily Varying Sources

For the family of DMSs, we saw in Section VII-A that the
redundancy is upper bounded by O(logn). In this section we
look at the example of finite-state arbitrarily varying sources
(FS-AVS) for which the redundancy grows linearly with n. Yet
again, for exposition purposes, we assume |Y| = 1.

As before, let X = A™. Let S be a finite set of states, and
for each s € S, let P(- | s) be a PMF on the finite set A.
An arbitrarily varying source (AVS) is a sequence of A -valued
random variables X7, X5, ..., such that X;’s are independent
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and the probability of an n-string ™ is governed by an arbitrary
state sequence s™ € S™ as follows:

n

Pa(z™ | s") =[] Plai | 50).

=1

Observe that for a fixed n, there are only |S|™ sources in the
uncertainty set. Let Ts» be the subset of all sequences in S™ with
the same letter-frequencies as s™. Ty~ is also referred to as the
type of the sequence s™ [23]. If the letter frequencies are given
by a PMF U on S, we refer to Ty as the type of sequences. Let
V be a stochastic matrix givenby V' (z | s) forz € Aand s € S.
Then for a particular sequence s™, we refer to Ty (s™), the set of
sequences that are of conditional type V' given s™, as the V -shell
of s™.

Proposition 18: Let 0 < a < 1. Let Ty be a type of se-
quences on S™. Let the uncertainty set T be given by T =
{P.(- | s™) | s" € Ty}. The L,-radius of this family is given
by

Rn<TU>éHa<Qz>—|Ti S Hu(Pa(-]57)  (65)

sneTy

where the L -center Q7 is given by

sneTy

(66)

O

Remarks:

1) It will be apparent from the proof that the quantity
H,(P,(- | s™)) in (65) depends on s™ only through its
type, and hence the average over all sequences in the type
may be replaced by the value for any specific s™ € Ty .

2) All PMFs in the uncertainty set are spaced equally apart (in
the sense of L, -divergence) from the L,-center Q.

3) Guessing in the decreasing order of Q) -probabilities re-
sults in a redundancy in guessing that is upper bounded by
R, (Ty) + log(1 4+ nln |A|).

4) sign(p) - h(P) is a concave function of P. It follows from
(31) that H,(P) is also a concave function of P for 0 <
a < 1. By Jensen’s inequality, R,,(Ty) > 0. (For a > 1,
H, (P) is neither concave nor convex in P ).

5) For any guessing strategy, there exists at least one sequence
s™ € Ty for which the redundancy is lower bounded by
R, (Ty)—log(1+n1n |A]). We will see later in Proposition
20 that if the U sequence (parameterized by n ) converges
asn — oo to a PMF U* € P(S), then 1R, (1) con-
verges to a strictly positive constant. Thus R,,(1y7) grows
linearly with n, thereby making the converse meaningful;
the nuisance term log(1+n In |A]) grows only logarithmi-
cally in n.

Proof: Note that given an n, the uncertainty set is finite.
We will simply show that the candidate L-center satisfies the
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necessary and sufficient condition (48) given in Section VI-A2.
From (33), it is sufficient to show that

Yonenn Palam |57 (@ @)
WP T57)

If(PL( | s | Q5) =

=K (67)
where K is some constant that depends only on n and Ty. We
will show that the numerator and denominator in (67) do not
depend on the actual s”, so long as s™ € Ty.

Observe that the stochastic matrix that defines the conditional
PMF is given by P(z | s) forz € A and s € S. Consider
h(Py,(- | s™)). First

> (Paa™ ] sM)"

=D Ty (") exp {—na [D(V || P | U)+ H(V | U)]}

where the sum is over all conditional types V. All the quantities
inside the summation, including |7y (s™)|, depend on s™ only
through Ty, and therefore h(P,(- | s™)) depends on s™ only
through Tys.

Next, Q% (z™) depends on z" only through 7. This is
easily seen via a permutation argument. Given two A -se-
quences of the same type, let 7 be a permutation that takes
(:I?n, Sn) to ((x,r(l), R ,x,r(n)), ( m(1)s - Sﬂ-(n))), where s"
and (Sx(1),---,5x(n)) are the two given A-sequences. This
permutation 7 leaves P, (z™ | s™) unchanged. Moreover, the
sum continues to be over

TU:{(S.,r(l),s.,r(g),...,Sﬂ(n))egn sn:(sl7...7sn)ETU} .

Thus Q* (") and therefore Q* (™) depend on 2™ only through
Tyn.

Finally, given two A-sequences of the same type Ty, the
above permutation argument indicates that the numerator of (67)

> e |57 (@ (@)
znEeAn
depends on s™ only through T7;.

That R, (Ty) is given by (65) follows from (45)—(47), the fact
that h(P,(- | s™)) is a constant over all s € Ty, and (31). This
concludes the proof. ]

The number of different types of sequences grows polynomi-
ally in n, in particular, this number is upper bounded by (n +
1)ISI. We can use this fact to stitch together the guessing lists
for the different types of sequences on S™ and get one list that
does only marginally worse than the list obtained by knowing
the type of the state sequence.

Proposition 19: Let 0 < « < 1. Let the uncertainty set
T be given by T = {P,(- | s") | s € S$™}. There is
a guessing strategy such that for every Ty, the redundancy is
upper bounded by

R,.(Ty) +log(1 + nin |A]) + |S|log(n + 1)

whenever s™ € 1. O
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Proof: Let N be the number of types. N is upper bounded
by (n + 1)II. Fix an arbitrary order on these types. Let the
kth type be Ty;. Set Gy, = G, , where Gy, is the guessing
strategy that is obtained knowing that s™ € Ty, via Proposition
18. It proceeds in the decreasing order of probabilities of the
L-center of the uncertainty set indexed by T .

We now stitch together the guessing lists G1, G, ..., Gy to
get a new guessing list G, as follows. Think of G, as a column
vector of size |[A"| x 1 and let H be the column vector of
size N - |A™| x 1 obtained by reading the entries of the matrix
[G1 G2 --- G] in raster order (one row after another). Every
A would have figured exactly once in the G, list, and therefore
occurs exactly IV times in the H list. Next, prune the H list. For
each 7, if there exists an index j with 7 < ¢ and H; = H, set
H; = 6. This indicates that the ith string already figures in the
final guessing list. Finally remove all 6’s to obtain the desired
guessing list G : A" — {1,2,...,]|A|"}, where G(z") is the
unique position at which z™ occurs in the pruned H list.

Clearly, for every 2™ and for every k such that 1 < k < N,
we have G(z") < NGg(z™). Indeed, 2™ occurs in the position
(Gr(z™), k) in the matrix constructed above. It therefore occurs
in position (G (z™) — 1) N +k and therefore before the position
NG(z™) in the unpruned H list. It cannot be placed any later
in the pruned H list, and thus G(z™) < NGg(z").

The above observation leads to

1 1

;log[E [G(X™)P] < p log E [Gr(X™)?] + log N.
The proposition follows from Theorem 6, Proposition 18, and
the bounding N < (n + 1)IS. [ ]

We finally remark that the min-sup redundancy for the fi-
nite-state arbitrarily varying source grows linearly with n under
some circumstances.

Proposition 20: For a fixed n, let U be a PMF on S and 1y
the corresponding type. Let the sequence U (as a function of n)
converge to a PMF U* € P(S) as n — oo. Then

1
lim—R,(Ty) = R
non
where R > 0. O
Proof: The second term in the right-hand side of (65), after
normalization by n, converges to a nonnegative real number as
seen below:

1 n
EHa(Pn(' | S ))
= log Z HP x; | 8i)
l—a znEAn i=1
nU(s)
= 10gH (Z P(z|s) )
1 - Oé s€S \zeA
=Y U(s)Ha(P(- | 9))
sES
= > U*(s)Ha(P(- ] 9)). (68)
sES

We next consider the first term on the right-hand side of (65)
after normalization, i.e., H, (Q})/n, where Q7 is given by (66).
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Lemma 21: For a fixed n, let U be a PMF on S and T}, the
corresponding type. Let the sequence U (as a function of n) con-
verge to a PMF U* € P(S) as n — oo. Let V' be the output
PMF when the input PMF on S is U and the channel is P. Fur-
thermore, let V'* be the limiting output PMF as n — oo. Then
lim,, 2 H(Q3) = Ha(V7). 0

As a consequence of this lemma and (68), we have

)= U

s€eS

iR (Tv) — Ha(V P(-|s) 2 R.

By the strict concavity of H,(-) for 0 < « < 1, and Jensen’s
inequality, we have R > 0. This concludes the proof of the
theorem. ]

Remarks: R = 0 if and only if either (i) U(s) = 1 for some
s € S, or (ii) P(- | s) does not depend on s, i.e., the state
does not affect the source. Thus, for all but the trivial finite-
state arbitrarily varying sources, the min-sup redundancy grows
linearly with n at arate R. This means that the guessing strategy
that achieves the min-sup redundancy has an exponential growth
rate strictly bigger than that of the best strategy obtained with
knowledge of the state sequence.

We now prove the rather technical Lemma 21.

Proof:

a) We first show that lim,, 2 H,(Q}) < H,(V*). Let U,
be the PMF on S™ given by U, (s") = []_, U(s;). Let
U, {T'} denote the U,,-probability of the set 7". From (66),
we may write

> Qi

rreAn
S (; 5 Pn(x%n))
o\l 2,
5 (o S 5 o)
zneAn wATv} [Tyl sneTy

:m 2 <Z Un<s”)Pn(:v”|s")) (69)
" smeTy

mneAn
<(n+1)8l 3 ( A ™ | s")) (70)
aneAn \snesn
=+ 1B Y V(x
ameAn
= (n+ 1) (Z V(az)“) : (71)
z€A
where (69) follows from the observation that U, (s") =

U.{Tv}/|Ty| for all s™ € Ty, (70) from U, {Ty} >
(n + 1)~ISI (see proof of [23, Lemma 2.3]) and by en-
larging the sum over 17 to all of S™.

From (71) and (31), we have

1 N alS| log(n +1
Ha(Qn) S%M

— H,(V*).

+ H,(V)

n
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n

given PMF U on S and conditional PMF P, let V' be the
induced PMF on X and W the reverse conditional PMF,
i.e., W(s | z) is the probability of a state s given x.

b) We now show that lim,, £ H,(Q}) > H,(V*). For a

Continuing from (69), we may write

> QnE")

x™ eAn

1
:mquE:(

xm GATL

> Un(s™)Pu(x

steTy

> Z < Z Upn(s™) P, (2" | s")) (72)
arely \smely

>y [T vew ] a3
ar€lg \s"€Tq(am)CTy

= 3 (Vala™)Wa {T5(z™) | 2" })" (74)
J:"ET6

where (72) follows because U,,{Ty}* < 1 and the sum over
A™ is restricted to a sum over a type T35 to be chosen later; (73)
follows because U, (s™)Pp(z" | s™) = Vp(a™)W,(s™ | ™)
and the sum over s™ is now restricted over a nonvoid W -shell
of 2™, where W will be appropriately chosen later.

We next observe that for ™ € T@’ the following hold:

V( ny =9 n(H(Q)+D(QlV))
W, {Tr(a™) | 2™} > (n + 1)7181%1 . g nD(WIWIQ)
|T | > (n+ 1)~ onH(Q)

Substitution of these inequalities into (74) yields

> Qi

xn eAn

> (n 4 1)~ XI(+als)

9[1=0)H@)~a(D(QIV)+D(WI[W[Q))]

and therefore

Lu Q)

2@~ [D@IV)+D (7 W)
_ [X|(A + afS]) log(n + 1)

l—« n

(75)

for any type Q of sequences and for any W such that Ti(z
Ty is a nonvoid shell for an 2™ € T@'

Clearly, the last term in (75) vanishes as n — oo.

If we can choose @ = V' and W = W, we will be done
since Ho (V) = H(V') — %D(V’ || V). We cannot do this if
V' is not a type of sequences, or if W' is not a conditional type
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given an z™. But we will show that as n — oo, we can get close
enough. The following arguments make this idea precise.
Define

§ 2 min{W(s|z) | W(s|z)>0,s€S,zecX}

and consider D(W (- | x) || W(- | )). We may restrict our
choice of W to those that are absolutely continuous with re-
spect to W, ie., W(- | ) < W(- | z) for every x € X. For
sufficiently large n, we can choose such a W that in addition
satisfies

Yo W(s|e) -

sES

W(s|x)|<€ l

< 2Va:EX

and g,, — 0.
We then have

DW(- | =) | W( | x))

e |x>)—H(W(-|x)
+ Z (s|x)—W(s| :1:)) logW(s | z)
sES
< [HW(|2) - HW( | )]
— (log6) > |W (s |z) = W(s | =)
s€S
< —e,log T§_n| —¢enlogé (76)

where (76) follows from [23, Lemma 2.7]. After averaging, we
get

—En logg—n —enlogd — 0.

DWW || W |Q
W W1Q) < §

A similar argument shows that

H(Q) - %D(@ V) = Ho(V) + [H(@Q) - H(V")]
_ %[D @1V) =DV | V)]
— H,(V¥)

where we have made use of the fact that H, (V) = H(V') —
(1/p)D(V' || V). This concludes the proof of Lemma21 ®

VIII. L.-PROJECTION

In this section we look at an interesting geometric property
of L, divergence that makes it behave like squared Euclidean
distance, analogous to the Kullback—Leibler divergence.
Throughout this section, we assume o > —1 and « # 0.

We proceed along the lines of [5]. Let X and Y be finite al-
phabet sets. Let P(X x Y) denote the set of PMFs on X x Y.
Given a PMF R on X x Y, the set

B(R,r) 2 {PeP(XxY)|Ly(P,R) <7}, 0<r<oo
is called an L -sphere (or ball) with center R and radius 7. The
term “sphere” conjures the image of a convex set. That the set
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is indeed convex needs a proof since L, (P, R) is not convex in
its arguments.

Proposition 22: B(R, ) is a convex set. d

Proof: Let P; € B(R,r) fori = 0,1. For any A € [0,1],

we need to show that Py = (1 — A\)Py + AP, € B(R,r). With
a=1/(1+ p),and ¢t = sign(p) - 2°", we get from (32) that

I(P,R)<t, i=0,1. (77)

The proof will be complete if we can show that I(Py, R) < t.
To this end

I(P\,R)
Slgz;}\_a ;{gﬂ\ﬂﬂ/ ‘| ) a1
_ sign(l — ) oct
=Ty ZZPU (x| y))
sign(l — ) ) e
Tary M2 L Al (R )
_ (L= Nh(Po)I(Po, R) + Ah(Py)I(P1, R) -
h(Px)
(1= X)h(Po) + Ah(P1)
h(Py) (79)
= |t (1 —A)-sign(l — a)h(Py) + A -sign(1 — a)h(Py)
h(Py)
sign(1 — a)h(Py)
SOy
=! (80)

where (78) follows from (34), (79) from (77), and (80) from the
concavity of sign(1 — a)h. ]

Proposition 22 shows that L, (P, R) is a quasi-convex func-
tion of P, its first argument.

When we talk of closed sets, we refer to the usual Euclidean
metric on RXIYI. The set of PMFs on X x Y is closed and
bounded (and therefore compact).

If £ is a closed and convex set of PMFs on X x Y intersecting
B(R, ), i.e., there exists a PMF P such that L, (P, R) < co
then a PMF Q € & satisfying

Lo(Q,R) = min Lo(P, R)

is called the L, -projection of R on £.

Proposition 23: (Existence of L,-projection) Let £ be a
closed and convex set of PMFs on X x Y. If B(R,00) N & is
nonempty, then R has an L,-projection on £.

Proof: Pick a sequence P, € & with L,(P,,R) < oo
such that L,(P,,R) — infpes Lo(P,R). This sequence
being in the compact space £ has a cluster point () and
a subsequence converging to (). We can simply focus on
this subsequence and therefore assume that P, — (@ and
L.(P.,R) — infpcg Lo (P, R). £ is closed and hence Q € &.
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The continuity of the logarithm function, wherever it is finite,
and the condition L, (P,, R) < co imply that

1
lim Lo (P, R) = - log (sign(p) Nim I(P,, R))
n p n

= La(Qv R)

where (81) follows from the observation that (34) is the ratio of
a continuous linear function of P and the continuous concave
function sign(1 — «)h that is bounded, and moreover bounded
away from 0.

From the uniqueness of limits we have that L,(Q,R) =
infpegs Lo(P, R). Q is then an L -projection of R on &. [ ]

We next state generalizations of [5, Lemma 2.1, Th. 2.2]
which show that L, (P, Q) plays the role of squared Euclidean
distance (analogous to the Kullback-Leibler divergence).

81)

Proposition 24: Let0 < o < 00, v # 1.

1) Let Lo(Q, R) and L, (P, R) be finite. The segment joining
P and @ does not intersect the L,-sphere B(R,r) with
radius r = L,(Q, R), i.e

L(I(P>\7 R) 2 La(Q7R)

for each

Py=AP+(1-))Q, 0<A<I1

if and only if

Lo(P.R) > La(P,Q) + La(Q, R). (82)
2) (Tangent hyperplane) Let
Q=P+ (1-XN)S, 0<A<L (83)

Let L, (Q, R), Lo (P, R), and L, (S, R) be finite. The seg-
ment joining P and S does not intersect B(R,r) (with
L.(Q, R)) if and only if

T =

L.(P,R)

= La(P7 Q) + LQ(QR) (34)

Remarks:

1) Under the hypotheses in Proposition 24.1, we deduce that
L.(P,Q) < oo as a consequence.

2) The condition (83) implies that P < A~!'Q (e,
every component satisfies the inequality), and therefore
supp(P) C supp(Q).If 0 < @ < 1, and Lo (Q, R) < o0,
then we have supp(P) C supp(Q) C supp(R). Thus
both L,(P,R) and L,(P, Q) are necessarily finite. For
a € (0,1), the requirement that L, (P, R) be finite



SUNDARESAN: GUESSING UNDER SOURCE UNCERTAINTY

can therefore be removed. The requirement is how-
ever needed for 1 < a < oo because even though
supp(P’) C supp(Q) and supp(Q) N supp(R) # 0,
we may have supp(P) N supp(R) = @ leading to
La(P,R) =

3) Proposition 24.2 extends the analog of Pythagoras the-
orem, known to hold for the Kullback—Leibler divergence,
to the family L, parameterized by o > 0.

4) By symmetry between P and S, (84) holds when P is re-
placed by S.

Proof: 1) =. Since L,(P, R) and L,(Q, R) are finite,
from (33), we gather that both > > P(z,y)R'(z | y)=°
and)_, >, Q(z,y)R (z | y)~* are finite and nonzero.Observe

that Py = @, and L, (P, R) > L, (Py, R) implies that
I(P\,R) > I(Py, R).
Thus
I(Py, —I(Py,

for every A € (0, 1]. The limiting value as A | 0, the derivative
of I( Py, R) with respect to A evaluated at A = 0, should be > 0.
This will give us the necessary condition.

Note that the derivative evaluated at A = 0 is a one-sided
limit since A € [0,1]. We will first check that this one-sided
limit exists.

From (33), I( Py, R) can be written as s(\)/¢()\), where ¢(\)
is bounded, positive, and lower bounded away from 0, for every
. Let 5(0) and £(0) be the derivatives of s and ¢ evaluated at
A = 0. Clearly

(0) — Tim ) = 5(0)
i) = 5

=sign(p) (ZZP($7Z/) (R'(z|y)™"
-3 S Q) (R (| y))‘P> -

Similarly, it is easy to check that

ZZPa:y

with the possibility that it is 400 (only when 0 < « < 1 and
supp(P) ¢ supp(Q)).

Since we can write

(6 -30)

(@ |9)™" = (0)
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it follows that the derivative of s(A)/¢()) exists at A = 0 and is
given by (£(0)$(0) — s(0)£(0)) /t3(0), with the possibility that
it might be +o00. However, (85) and #(0) > 0 imply that

5(0) — 8(0);(—) > 0.

Consequently, £(0) is necessarily finite. In particular, when 0 <
a < 1, we have ascertained that L, (P, Q) is finite. After sub-
stitution of s(0), ¢(0), $(0), and ¢(0) we get

ZZP z,y) (R (x| y)) "

> sign(p (ZZPwy " | y)” )

2, 2. Qay) (R ([ y)™"
Q) '

sign(p

(86)

When —1 < p < 0, clearly

D ILEIC

cannot be zero, due to the nonzero assumptions on the other
quantities in (86). This implies that L, (P, @) is finite when 1 <
a < oo as well. An application of (32) and (33) shows that (86)
and (82) are equivalent. This concludes the proof of the forward
implication.

The reader will recognize that the basic idea is quite simple:
evaluation of a derivative at A = 0 and a check that it is nonneg-
ative. The technical details above ensure that the case when the
derivative of the denominator is infinite is carefully examined.

1) <=. The hypotheses imply that L, (P, R), L.(Q, R), and
L. (P, Q) are finite. As observed above, (86) and (82) are equiv-
alent. Observe that both sides of (86) are linear in P. This prop-
erty will be exploited in the proof. Clearly, if we set P = @ in
(82) and (86), we have the equalities

Q' |y)™"

La(Q7 R) = La(Q7 Q) + La(Q7 R) (87)
and
sign(p) - Z Z Q(a,y)(R' (x| y))™"
=sign(p <ZZQ$U (= 1y)” p)
5, X, Q) (R | )™ -

hQ)

A A-weighted linear combination of the inequalities (86) and
(88) yields (86) with P replaced by P,. The equivalence of (82)
and (86) result in

La(kaR) ZLa(P)\vQ) +

LOL (Q? R) :
This concludes the proof of the first part.

La(Q7 R)
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2) This follows easily from the first statement. For the
forward implication, indeed, (86) holds for P. Moreover, (86)
holds when P is replaced by S. If either of these were a strict
inequality, the linear combination of these with the A given
by (83) will satisfy (88) with strict inequality replacing the
equality, a contradiction. The reverse implication is straightfor-
ward. [ |

Let us now apply Proposition 24 to the L,-projection of a
convex set. For a convex £, we call () an algebraic inner point
of £ if forevery P € &, there exist S € £ and A satisfying (83).

Theorem 25 (Projection Theorem): Let 0 < a < 00, a # 1
and X a finite set. APMF Q € ENB(R, 00) is the L, -projection
of R on the convex set £ if and only if every P € £ satisfies

La(P,R) > La(P,Q) + La(Q, R). (89)

If the L, -projection () is an algebraic inner point of £, then

every P € £N B(R, co) satisfies (89) with equality. .
Proof: This follows easily from Proposition 24. For the

case when L, (P, R) = oo not covered by Proposition 24, (89)
holds trivially. u

Corollary 26: Let0 < a < 1,andaPMF Q € ENB(R, o)
be the L,-projection of R on the convex set £. If ) is an al-
gebraic inner point of £, then every P € & satisfies (89) with
equality.

Proof: Clearly, for any P € &, we have supp(P) C
supp(Q) C supp(R), and therefore £ C B(R,0). The
corollary now follows from the second statement of Theorem
25. |

While existence of L -projection is guaranteed for certain
sets by Proposition 23, the following talks about uniqueness of
the projection.

Proposition 27: (Uniqueness of Projection): Let 0 < o <
00, a # 1. If the L, -projection of R on the convex set £ exists,
it is unique.

Proof: Let Q1 and Q)5 be the projections. Then

OC>L0(Q17R) LW(Q27R) ZLG(Q27Q1)+LG(Q17R)7

where the last inequality follows from Theorem 25. Thus
La(Q2,Q1) = 0,and Q2 = Q. .

Analogous to the Kullback—Leibler divergence case, our next
result is the transitivity property.

Theorem 28: Let £ and & C &£ be convex sets of PMFs on
X. Let R have L -projection  on £ and (); on £, and suppose
that (89) holds with equality for every P € £. Then @), is the
L, -projection of ) on &;.

Proof: The proof is the same as in [5, Th. 2.3]. We repeat
it here for completeness.

Observe that from the equality hypothesis applied to Q1 €
&1 C &, we have

L(y(Ql; R) = La(le Q) + Lﬂ(Q? R) (90)

Consequently L, (Q1, @) is finite.
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Furthermore, for a P € £, we have

Lo(P,R)
ZLQ(P:Q1)+LQ(Q1;R) (91)
:La(PQ1)+La(Q1,Q) +La(Q1R) (92)

where (91) follows from Theorem 25 applied to £;, and (92)
follows from (90).

We next compare (92) with L, (P, R)
L.(Q, R) and cancel L,(Q, R) to obtain

Lo(P,Q) +

LQ(P7 Q) > La(P:Ql) + LQ(QI;Q)

forevery P € £;. Theorem 25 guarantees that ()1 is the L -pro-
jection of @@ on &. ]

As an application of Theorem 25 let us characterize the
L -center of a family.

Proposition 29: 1If the L,-center of a family T of PMFs ex-

ists, it lies in the closure of the convex hull of the family.
Proof: Let & be the closure of the convex hull of T. Let Q*

be an L,-center of the family, and C, which is at most log | X,
the L, -radius. Our first goal is to show that Q* € £.

By Proposition 23, Q* has an L, -projection () on £, and by
Proposition 27, the projection is unique on £. From Theorem
25, for every P € T, we have

La(PvQ*) Z La(PvQ) + LQ(QQ*)

Thus

= sup La(PvQ*)
PeT

sup Lo (P, Q) + La(Q, Q%)
PeT
>C+ La(Q, Q).

Thus L, (Q,Q*) = 0, leading to Q* = Q € &. [ |

For the special case when |T]| m is finite, i.e.,
T = {P,...,P,}, we found the weight vector w such
that Q* Yo w(i)P; and Y0 w(f) = 1. This was
done in an explicit fashion in Section VI-A2 using results on
f-divergences.

>

IX. CONCLUDING REMARKS

We conclude this paper by applying some of our results to
guessing of strings of length n with letters in A. Let X = A",
m = |A|, and P a PMF on A. Let

n

=1

P,(z™)

denote the PMF of the discrete memoryless source (DMS)
where the n-string ™ = (x1, 2, . .., Z5). Theorem 5 says that
for p = 1, the minimum expected number of guesses grows
exponentially with n; the growth rate is given by Hy 5(P).



SUNDARESAN: GUESSING UNDER SOURCE UNCERTAINTY

If the only information that the guesser has about the source
is that P,, € T, the guesser suffers a penalty (interchange-
ably called redundancy); growth rate of the minimum expected
number of guesses is larger than that achievable with knowledge
of P, . The increase in growth rate is given by the normalized re-
dundancy R(P,, G)/n, where G is the guessing strategy chosen
to work for all sources in T. This normalized redundancy equals
the normalized L /2-radius of T,i.e., C,/n, where C,, is given
by (21), to within log(1 + nlnm).

When P,, is a DMS, and the PMF P on A is unknown to
the guesser, Arikan and Merhav [6] have shown that guessing
strings in the increasing order of their empirical entropies is a
universal strategy. Their universality result is implied by the fact
that the normalized L, /»-radius of the family of DMSs satisfies
Cy/n — 0. The family of DMSs is thus not rich enough from
the point of view of guessing. Knowledge of the PMF P is not
needed; the universal strategy achieves, asymptotically, the min-
imum growth rate achievable with full knowledge of the source
statistics.

Suppose now that A = {0, 1}; we may think of an n-string
as the outcome of independent coin tosses. Suppose further that
two biased coins are available. To generate each X;, one of
the two coins is chosen arbitrarily, and tossed. The outcome of
the toss determines X;. This is a two-state arbitrarily varying
source. We may assume S = {a,b}. Let us assume that as
n — o0, the fraction of time when the first coin is picked ap-
proaches alimit U*(a). Let us further assume that for each n, the
receiver knows how many times the first coin was picked, i.e., it
knows the type of the state sequence. If the two coins are not
statistically identical, the normalized L ,-radius approaches
a strictly positive constant as n — oo. This implies that the
growth rate in the minimum expected number of guesses for a
strategy without full knowledge of source statistics is strictly
larger than that achievable with full knowledge of source statis-
tics. We note that in order to maximize the expected number of
guesses, the right solution may be to pick one coin, the one with
the higher entropy, all the time.

The guesser’s lack of knowledge of the number of times
the first coin is picked results in additional redundancy. How-
ever this additional redundancy asymptotically vanishes. The
guesser “stitches” together the best guessing lists for each type
of state sequences.
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