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Abstract— Sequence design and resource allocation for a We will assume that the timing drift is slow enough with
symbol-asynchronous chip-synchronous code division multiple respect to the duration of optimisation and frame times. This is
access (CDMA) system is considered in this paper. A simple yyhica|ly the case in today’s cellular systems supporting high
lower bound on the minimum sum-power required for a non- ] N .
oversized system, based on the best achievable for a non-spreac?peed dat"fl*_ optimisation is done once every frame, roughly
system, and an analogous upper bound on the sum rate are @bout 2 milliseconds, whereas a clock error of 0.1 parts per
first summarised. Subsequently, an algorithm of Sundaresan and million (typical in current mobile phones) leads to a drift of
Padakandla is shown to achieve the lower bound on minimum one chip every thousand frames in a 5 MHz bandwidth system.
sum power (upper bound on sum rate, respectively). Analogous £ the symbol-synchronous CDMA system, Viswanath

to the synchronous case, by splitting oversized users in a system . . .
with processing gainN, a system with no oversized users is easily and Anantharam [1] provide a solution for Problem I, while

obtained, and the lower bound on sum power (upper bound Guess [2] provides a solution for Problem II. Tropep al.
on sum rate, respectively) is shown to be achieved by usiny [3] provide finite step algorithms for Problem | with reduced
orthogonal sequences. The total number of splits is at mosgy —1. computational complexity and pose the problem within the
framework of an inverse singular value problem where the
Index Terms—asynchronous, code division multiple access, goal is to construct matrices with specified column norms

resource allocation, sum capacity, uplink and singular values. Sundaresan and Padakandla [4] recently
provided new and unified algorithms for both these problems.
. INTRODUCTION Their algorithm has complexity less than those of previous

salgorithms reported by Viswanath and Anantharam [1], Guess

In code division multiple access (CDMA) communication . ) i .
b ( ) B?dr is comparable with that of [3], and is computationally

users share the entire bandwidth with each other. The sym
waveform of a user signal is generated by spreading t ble. . )

chip waveform with its signature sequence. Due to CDMA One use_ful concept mtro_duced by Vlswar]ath anpi An.an-
systems’ capability of offering high capacity, flexibility, an haram [1] is that .Of amverS|zedJ§er. A USer 1S over'S|zed i
security, such systems have become thee facto standard is power constraint or rate requwement is Iqrge with respgct
for the third generation wireless systems and their immediafﬁgethe other users. For exz_;\mple, |f_user 1 1S the_ user with
successors (for example, 1XEV-DO and HSUPA). There ha highest power constrainty, _he 'S over5|z_e<_j ifp: -
been extensive researches on the impact of the signat /N, the average power perd|men3|on.AS|m|Ia_r condmpn
sequences on the sum rate achievable under a set of po ES for rate requirements. we say the system is oversized
constraints, and the minimum sum power required to meeffat ere exists one or more overS|z'ed USETS. \ﬁ;wanath and
set of rate constraints, in a CDMA system. These researc ntharam [_1] _show that an over_5|z¢d sy_stem incurs a loss
typically cover synchronous CDMA systems. The uplink o‘ijue to spreadmg,e_z., the sum capacity Is strlc_tly sma_ller than

a cellular system is however inherently asynchronous becaﬁ@%t achievable V\."th no spreat;llngf(: 1. Itis POSSIbIe o

the users are spread over a large area and different userscgﬂ%qert an oversged systg m mto a _system .W'th More users
received with different delays at the base station. MoreovéH© that no user is Qvgr5|zeq, if a mlld s_phttmg of users and
the clocks employed by the users are typically asynchronol.f consequent multi-dimensional signaling is allowed ([4],

resulting in timing drift. In this paper, we focus on two type .

of resogrce aIIoc?ition problemg f(F))r a simplistic asynchr)(glramuslzor the symbol-asynchronous chip-synchronous C.:DMA

physical layer model. Specifically, we consider two problem§¥5tem’ Probllem l V\é?s S°|erd bﬁ' Luet al. [5].' lg thlsb |

o Problem I: Given users’ power constraints, design Sigp_)aper, we solve .Pro em |l for the non-oversized symbol

L asynchronous chip-synchronous CDMA system, and more-

natL_Jre sequences for users to maximise the sum "3 er, show that the algorithms of Sundaresan and Padakandla
achieved. . , . . . [4] achieve the bounds in both problems. As shown in [4], the

» Problem II: Given users’ rate reqwrements, design si yversized system can be reduced to a non-oversized system
na.ltl.”e. sequences for users so that their sum powerb?splitting the oversized users, a concept put forth by Guess
minimised. 2].
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subject to bandwidth constraints. While this is an interestifg,, 2, - ,rx) be the rate assignment that is achievable on
open problem, we address only the simpler chip-synchronahg symbol-asynchronous chip-synchronous Gaussian multiple
case in this paper. We also assume that the transmitters andess channel. The goal is to assign such a set of signature
receiver know the delay profiles of the users. The design %quences and rates to the users so that the sum]-tgaté
optimal sequences when the transmitters do not know the de@{ll i achievable is maximised.

profiles of users is of practical interest and still open. In our In Problem Il, we are given a set of rate requirements
mo_del, signature sequences take on real values as oppoge(daltp,a% .. ,r) nats/chip for theK users, and the goal is to
taking values from a finite-valued set. Fortunately, practicaksign signature sequences and power to users so that the sum
system,s sgch as the th!rd generation partnership ProjegiSwer at the receivep,o EY Zf:lpk is minimised, while
(3GPP’s) high speed uplink packet access allocate multii§syring reliable transmission at the specified rates.
sequences (or codes) to a user. In such a scenario, we will se@e first show that sum power is lower bounded in Problem
that the solution reduces to a time-division multiple-acce§sand sum rate is upper bounded in Problem | as follows.
system with signature sequences drawn from the standargroposition 1: The maximum sum rate achievable on a
basis and therefore the components take on values from §gnpol-asynchronous chip-synchronous CDMA system with
set {0,1}. This simplification is achieved because of th@ower constraintgp:,- - - , px) is upper bounded by log(1+
admittedly unrealistic and overly simplistic single path channg| ) nats/chip.

assumption. Nevertheless, our analysis provides some insighi\nalogously, the minimum sum of received powers to meet

into how resources may be divided and allocated in a cellulgrspeciﬁed rate constraifty,--- ,7x) is lower bounded by
system. exp {274, } — 1 energy-units/chip.
Proof: We simply map a strategy on this asynchronous
Il. SYSTEM MODEL AND BOUNDS system with processing gaitv to that on a synchronous

We consider a direct-sequence code division multiple accé¥$tem with processing gaih. Consider a code of length
(DS-CDMA) system where alK users transmit to a single ¥/ On the system with processing gahi. A user transmits

base-station and assume that the users signals are symBi§i-code inMN chips. Userk begins a new code symbol

asynchronous but chip-synchronous. The processing gain’isChiPs after the reference, whefe< 7, < N. Place a

N and each symbol last¥ chips. The power, rate, and unit-Prefix of 7. zeros prior to this user’s first symbol, and suffix

energy signature sequence for ugeare denoted by, 4, N — Tk Z€ros after all2M + 1 code symbol transmissions.
and s;,, respectively. We will assume that € RY, and that Doing the same for all users, we have convertedthéength

stsp=1. code on the asynchronous system with processing yaimo

Let the symbol delay for usek be 7;,, where 7, takes 2 code of lengthM N + N on a chip-synchronous uplink

on values from the sef0, 1, -- , N — 1}. This indicates that multiple access system (MAC) with processing gain 1. Since

MN+N __
the beginning of a symbol is delayed from a fixed referenddM—oo v - = 1, the sum rate of the asynchronous code

chip by 7 chips. The system designer is assumed to hal@ bits per chip) can be no larger than the sum capacity

knowledge of these delays. This is possible if these valugk the synchronous unit-processing gain system which is

change slowly with time in comparison to the optimisation(ll/2) log(1 + prot)- ) ] )
duration. The same code transformation technique shows that in a

Consider a frame consisting @f\/ + 1 symbols for all K system with rate constraints, to support a sum rate.gf
users with theith symbol of userk given by by[i], where the powers should be such that; < (1/2)log(1 + p:.:) and
1<k<K,and—M < i < M. We assume no specific N€reforeio; > exp {2rio } — 1. .
cons_tgllatlon .and lety[i]] € R. 2h‘ a power constraint is HI. A PPLICABILITY OF ALGORITHMS
specified, as in Problem I, thé[b7 [i]] < Npj,. The starting he Aldorith
point of a user's symbol, relative to the referencegiships. A. The Algorithms _

Thus, in a set ofN chips starting from the reference, at We now reproduce here the algorithms of Sundaresan and
most two symbols appear. Leti) € RY be theith vector Padakandla [4] and highlight the essential properties needed in
of received values withNV components, starting from theour proof. The algorithms work in scenarios with no oversized

reference. We can writg(i) as users,i.e,
K Nz < x40, for everyk =1,2,--- | N,
y —_— e DY t ) —_ - - -
y(i) = Z <[Sk»N—Tk+1’ 8k, 0,00, 0] g i = 1] wherez = r or p as the case may be. The interpretation is
=1 . that the rate or power per user does not exceed the average
+10, 0,851, 5 Sk, N—7) bk[i]) +w(i), (1) per dimension. If it does for a particular user, such a user is
. . deemed an oversized one.
where s = [sp1,5k2, -+ ,skN], and w(i) is a zero- Let Ay = Ay_1 + Npgsgst, for k = 1,--- | K, and set
mean white Gaussian noise process taking valu@hinwith 4. — 7. The matrix 4, is of size N x N and represents
covariance matrixy . the covariance matrix after the firstusers are added into the

In Problem I, we are given a set of power constrainigstem. The algorithm builds a sequence of eigenvalues, of
p = (p1,p2. - ,pK) €energy-unitsichipi.e., E [b7 [i]] < N ®\ A
Npi. For a given set of signature sequences, rtet= AV = (M y AN ) = eig(Ag),



fork =1,---, K, where the vector of eigenvalues is arranged «
in decreasing order,

k k k
AR > AP > s )

The algorithm proceeds in such a way that adjacent sets of
eigenvalues\(¥) and \(*+1) satisfy the interlacing inequality,

. ()

Moreover, if energy is poured into a dimension, then all the
previous dimensions are completely filled up to a specified
maximum level\ ., i.e,, the corresponding eigenvalues with
lower indices have attained their maximum targgf.x. The

k41 k k+1 k k+1 k
AFFD > A0 > A8 >\ > > AT >

Step 2 (b) If ATV - exp {2N7e} = Amax, then set
/\Slj) — Amax fOor j=k,--- /K. Setn «— n+1 and go
to Step 3

Step 2 (©) If A¥ Y . exp {2Nrk} > Amax, then set
A A fOr j = k- K, and A% — ATV

exp {2N7rg} /Amax. AlsO setn —n+1

« Step 3 Identify the vectorc, = c(Ay_1,A®). Then

sets, «— ci/llckll, pr < (chex) /N. This provides the
sequence and power for uderFinally, setd, «— A,_1+
cxch, k— k+1, and go toStep 1

O

Remark Once again, it should be easy to see that at each

interlacing inequality constraint ensures that gncan be Step,

found after each step, and the filling up of a dimension

before subsequent dimensions are poured ensures that there

is always space to pour a new user’s energy without affecting
the reachability of the optimal target s&t’).

k
|Ag| = exp QNZTj fork=0,1,---,

j=1

K, 3

The following algorithms assume the existence of a subrowhere| - | denotes the determinant of the argument.

tine ¢(A, \) that takes in a matrid, a set of target eigenvalues

A so thath and eid A) satisfy the interlacing inequality. It then

outputs a vector such that eig4 + cc') = X. The operation

of this subroutine was discussed in [4] and is summarise

immediately after the description of the algorithms.
Algorithm 2 ([4]): Problem |

« Initialisation : Set /\g“) <~ 1 for k =0,1,--- ,K and
n = 1,---,N. Set the user index < 1, dimension
n < 1, Amax < 1+ piot, and Ag «— Iy.

o Step X If k> K, stop.

. Step 2 (@) If A(k R Npr < Amax, then set\\F
AF=D Npy and go toStep 3

« Step 2 (b) If AEY 1 N = Aaxs then setn)
Amax fOor j =k,--- K. Also setn «— n + 1 and go to
Step 3

. Step 2 (c) If AL Npir > Amax, then set\V) —

Amax fOrj =k,--- | K, and)\nl 1+)\(k 1)+Npk
Amax- Also setn «— n + 1.

« Step 3 Identify the vectorc, = c(Ay_1,A*®). Then
setsy «— Ck/HCkH, T < ﬁ10g|Ak| — ﬁlog\Ak_ﬂ.
This provides the sequence and rate for useFinally,
setAy « Ax_1 +¢pcl, k— k+ 1, and go toStep 1

O

Remarks User ordering does not matter in achieving the

bounds. It is also easy to check via induction that

k
traceAk:NJrNij, fork=0,1,---, K.
j=1

Algorithm 3 ([4]): Problem I

« Initialisation : Set)w(f) —1forall k=0,1,--- , K and
n = 1,---,N. Set the user index < 1, dimension
n — 1, Anax < exp {270}, and Ag «— In.

o Step 1 If k> K, stop.

« Step 2 (@) If APV exp {2N7} < Amax, then set
AR A=) -exp{2Nry} and go toStep 3

We now make some remarks about the subroutifig).
Sundaresan and Padakandla [4] show the sufficiency of iden-
gnng and storing the orthogonal matrices

Uy = {ug’“) ug\f;)}
that diagonalizel;,, and the eigenvalues®). Note thatl/; can
be taken as any arbitrary orthogonal matrix sidge= Iy, the
identity matrix. Computation of (Aj_1, A*)) utilizes only
Up—1, A\*=1 and A\(*), and is done as follows. If only one
eigenvalue changes as in Stepa)agr 2(b), then

Up = Ug-1,

cr = ( A%’“) — A’ELkl)) ug"),

wheren is the index before it is updated to+ 1 in case of
Step 2p).

For Step 2¢) exactly two eigenvalues change in going from
Ar_1 to Ag. So the two matrices sha¥ — 2 eigenvectors
and exactly two eigenvectors change. These are computed via
a rotation in the(n, n + 1)st plane as follows:

“4)

®)

[ ] =[] LG 7] @
where
o = (%"_Af’“) <A”_X"“>, @)
()‘n - )\n+1) (/\n - )‘n+1)
B = Vi—at= Il <X"_A"), (®)

(j\n - Xn+1) ()\n - )\71,-1—1
with A 2 X(5=1) and A £ A®) for simplicity. Furthermore,

9)

_ k-1
Ck = Yn Ugtk U Yn+1 U;H )7



where

T 0 1 J Nj N1 N
A — An An—an’ o | —t
Yn = 10 lg | i ——t—
" [An = Ant1] ’ (10) I | Lo
N N ([ [ L
Aot — Al Aogr — Anﬂ‘ o ) B
Ynt1 = . (12) [ [ L
! [An = At I | SR

G
In all three cases, we have : : : : A : :
P = >\n+1 + An - ()\n-‘rl + An) ) l ! l l l !
1 )\nJrl An . ) )
Tk = ﬁ log ﬁ . Fig. 1. A snapshot of symbol asynchronous CDMA system showing different
n+14n groups

As further remarked in [4], the algorithms’ complexity is only
O(K N) floating point operations.

. K .
We will later see that these algorithms are applicable even inTheorem 4 ([5])- Given a vectorz € R, there exists a

the symbol-asynchronous case provided we start@ijth- Iy~ time labeling7" = [Gl,Gz, e 7GN}1 such that for allg
and use an appropriate time labeling as described in the negtisfyingl < g < IV, we have
subsection. g g

Z_:lféj < N Lot (12)

B. Time Labeling . i o Proof. The projoilc is identical to the proof of [5, Theorem
The goal of choosing a good time labeling is to choos§ except for a change in indexing. It is provided in the
a good reference where users with defgyrelative to this  apnendix for completeness. Note that the theorem holds even

reference havey,, = 0 forn = N — 7, +1,---, N. This o systems with oversized users. [ ]
property is beneficial because the first term in (1) is zero and
the system reduces to a symbol-synchronous system. This islenceforth we may assume that the labeli6g, - - - , G|

not valid for any arbitrary time reference, and therefore a gosatisfies (12). The intuition is now as follows. The particular

choice has to be made. The idea was first used bydtah.[6] choice of time labeling ensures that as users are allocated rate

in the context of decision feedback detection and subsequeri@ly power) one after another in the order of the groups in the

exploited by Luoet al. in [5]. Our approach is essentiallytime labeling, all the users in groups up to and including

the same as that of Luet al. in [5] except for a change in do not need more thap dimensions. Consequently;+1 and

indexing. beyond carry no energy and the signature sequence values for
Let 7,--- ,7x be the delays in chips with respect to afhese locations are zeros. This is true for every group index

arbitrary reference. Define grou@; for j = 1,--- , N, to be g. This is proved formally in the next section.

the set of all the users whose symbol delayMs- j chips,

ie., C. Applicability of algorithms

Gi={k|1<k<Kandn =N -j}, We now state and prove the main result of this paper.
for j = 1,2,---,N. We will denote this choice of ref- Theorem 5:Consider a symbol-asynchronous systentof
erence, also calledime labeling by the orderingT = non-oversized users. For the time labeling satisfying (12),
[G1,Ga,---,Gn]. See Fig. 1 for a depiction of the groupsindex the users in groufy; as
Any other choice of reference can be represented by a J—1 j—1 j
cyclic permutation of the time labeling:;, Gz, --- ,Gn]. The Z 1G4 + 1, Z |G| +2,- - 72 |Gl (13)
groupsGi, Ga, - - - , G partition the se{1,2,--- , K}. As an = = =

example, the time labeling@’ = [Ga, - -, G, G1] indicates leading to an indexing of all’ users. After setting/, =

that the reference is delayed by 1 chip unit. . Iy, an execution of Algorithms 2 or 3 results in sequences for
For a given rate- or power-tuple denoted generically t} e symbol-synchronous system with the property that users
the vectorz = (1,22, - ,2k), and for a subsetz C ;, group G, have zeros in locationg+ 1,5 +2,--- , N, for
{1,2,---, K} we let the aggregate sum rate or sum pow%r: 1.2, N,
to be A Furthermore, there is a mapping from this set of sequences
rta = Z Tk on the symbol-synchronous system to a set of sequences on the

ked symbol-asynchronous system such that the resulting sequences

~ Following the proof of [5, Theorem 5] we show the exare optimal for the symbol-asynchronous systém, they
istence of a good time labeling. This labeling will have thgchieve the sum power lower bound or the sum rate upper
property that users i; have signature sequences with zerasound given in Proposition 1.

in positions;j +1,--- , N, effectively resulting in a symbol- Proof: As remarked earlier, the algorithms pour a user’s
synchronous system (see Fig. 1). energy in the dimension with the lowest possible index



A — :
max ! ! !
1 I 1
I
1 I 1
1 I 1

i i i : Do

1 y | . T T 1

1 2 ﬂ n(ky \ "N’

n(k)-1 n(k)+1
Fig. 2. lllustration of power across dimensions after k& user is added.

Substitution of the two obvious inequalities
1< /\Elk()k) < Amax = exp{2riot}
in (18) yields

k
exp{(n(k) —1)-2r} < exp 2NZTJ'

j=1
exp {n(k) - 2riot},

and thus the claim in (15) is verified for Algorithm 3 after
taking logarithms.

<

The lemma below shows that the sequence for ksgrans
only the firstn(k) dimensions. More precisely,

Lemma 6:Let ¢, be the output of the subrouting-,-),
a scaled version of the sequence for ukelLet U, be the

subject to the condition that the eigenvalues do not exceg@hogonal matrix of sizeV x N that diagonalisesi;. Then

Amax- See Fig. 2 for an illustration of the algorithm. Letk)
be defined as (see once again Fig. 2)

n(k) 2 max{n |1<n<NandA® > 1}7 (14)

the dimension with the highest index containing energy from

userk. We first claim that

{N Z§:1 331—‘

Ttot

n(k)

(15)

We show that this is the case for both algorithms (with
replaced byp or r, as the case may be). For Algorithm 2,

k
N - ij
j=1

traceA, — N

N
STAR - N

=1
n(k) - 1) : ()‘max - 1) + )\;k&) - 1(16)
(n(k) = 1) pro + Aoy =1, (A7)

where (16) follows from the fact that(k) — 1 eigenvalues
have attained their maximum valug,... From (14), we have

(k)
0< )\n(k)

Substitution of these two inequalities in (17) yields

-1< )\max -1 = Ptot-

k
(n(k) = 1) - pror < szj < n(k) - prot,

j=1
which substantiates the claim in (15) for Algorithm 2.
For Algorithm 3, observe that

k
exp 2NZ7°j | Ak
j=1

N

A
I

(/\InaX)n(k)_l : /\Etk()k)
exp{(n(k) — 1) 2ript} - )\Elk()k).
(18)

cr € spanf{er, - e} (19)

wheree; € RY is the standard basis vector with 1 in tia
position and zeros elsewhere, and

By, O

V= [ O In-nw)
where By, is a real-valued submatrix of sizek) x n(k).

Proof: We use the notatiol/,, = [sgk), . ,u§§> . The
proof is by induction onk. For k = 1, because there are no
oversized users, we clearly haw¢l) = 1. Upon addition of
user 1, only one eigenvalue will chang\%,l), and because we
begin withU, = I, we have

= (\/)\gl) - 1) e1 € spafe;}

Furthermore,U; = Uy, and therefore the lemma is true for
k=1 with n(1) =1 andB; = [1].
Assume now that the lemma is true fér— 1. We may
therefore write
B 1

o= [

As userk is not oversized, clearly(k) is eithern(k — 1) or
n(k — 1) 4+ 1. Since columm(k — 1) of Uy_,, i.e. u;ké;i)l),
is the column corresponding to the last columni®f_;, we
have

(20)

O ] : (21)

In_n-1)

ull (22)

because column(k — 1) of Uy_; has only the firstu(k — 1)
terms possibly nonzero. th(k) = n(k — 1), then only one
eigenvalue changes, and by (4) and (&)= U1,

B ® D
cp, = < An(k) — )‘n(kl)) U
€ sparfer, -, en-1)}

and the lemma holds. li(k) = n(k — 1) + 1, then from (6)
it is easy to see that

€ Span{€17 e aen(k—l)} )

(k=1)
n(k—1)

O

Lnk—1)-1

Uy = Up_1- , (23)

O

In_nw)



wherea andg are as in (7) and (8). From (9) and after definingnatrix is composed of only;, i = 1,--- , N; time-division

n2 n(k), we get multiplexing with shared time-slots is therefore sufficient for
(k—1) (k1) optimality. Users sharing a time-slot are decoded via the
Ck =Yn—1 Uy 1 T Yn Uy 7, (24)  successive interference cancelation technique.

wherey,_; andy, are scalars as defined in (10) and (11). If an SSP does not exist, it is easy to engineer one by

From (22), the fact that'* ") = ¢,,, and (24), it is clear that SPlitting users that straddle two dimensions,, those that

(19) is verified. By multiplying the right side of (23) it is easy'®duire an execution of StepJ(|If the original system has

to verify thatU,, is of the form (20) withB; of sizen x n. N0 oversized users, at most — 1 of these users get split

This concludes the proof of the lemma. m into exactly two virtual users each. The resulting enlarged

vector z has an SSP. However, such split users pour their

We have thus verified thaj, and therefore, is in the span energy into two time-slots instead of one, and therefore use

of the standard basis vectofs, - - - ,e, ) }. Consequently, two-dimensional signaling.

s, has only zeros in locations(k) +1,--- , N. If there are oversized users in the system, a time labeling
Let g(k) be the index of the group to which uskibelongs  satisfying (12) can still be found since Theorem 4 holds for

i.e., g(k) = g if and only if k € G,. From (15) and the fact this case as well. We then index the users as in (13), look at

that the time labeling satisfies (12), we have the cumulative constraink, for k = 1,--- , K, and divide
- NZL ; NZ?S? ze, those Eseric whose inclusion makeX, exceed(g/N)xtot,
n(k) = < < g(k), for g = 1,--- N — 1. These users are then split (perhaps
Ttot Ttot multiple times) to obtain an enlargedthat has an SSP. Note

where the last inequality follows because the inequality holdisat there are at mosY — 1 splittings. The resulting sequence
without the ceiling function due to the time ordering, af{@) matrix for the enlarged system is simply composed of elements
is an integer. Consequently;, has only zeros in locations from the standard basis.

g(k) + 1,--- /N, and the first part of the main theorem is The above remarks are easy to verify and their proofs
proved. The upper bound on sum rate or lower bound on sumitted.
power is achieved on the symbol-synchronous system by virtue

of the property of the algorithms for non-oversized systems.

We still have to show how to map these to a set of
sequences on the asynchronous system. But this is easily donEhe work in this paper was motivated by a need to abstract
via a time-reversal technique. Referring to Fig. 1, we sé€rtain imperfections in the physical layer into a model suit-
that users inG; last only one chip, users if¥s two chips, able enough for higher layer optimisation. Towards this end,
and so on. We simply deﬁn@‘%,psiga e 73;_9,0, ...,0) we modeled asynchronism inherent in uplink multiple access
as (Sk.gs Sk.g—1," »5k1,0,---,0). Indeed, this is equivalent Systems. Our model is the same as that of etal. [S]. The
to looking at the N chips time-reversed starting from themodel has certain drawbacks - for example, the assumption of
reference, and we have converted the symbol-asynchron6b#-synchronism - but provides some insights to the system
system into a symbol-synchronous system. This concludes gisigner for optimal use of resources. In particular, we looked
proof that the algorithm results in an optimal allocationm at two optimisation problems. In the first problem our goal

) ) was to maximise the achievable sum rate subject to a power
Sequences which achieve the sum rate upper bound h@¥@straint. In the second, the goal was to minimise the received

been named Generalised Asynchronous Welch Bound Equalifyyn power subject to meeting a rate constraint. Sum rate is a
(GAWBE) sequences by Luet al. in [5]. good measure to optimise if all users pay the same rupees per
successfully transmitted bit. It maximises the revenue collected
IV. MULTI-DIMENSIONAL SIGNALING AND SUFFICIENCY by the service provider. The total received power is also a good
OF N ORTHOGONAL SEQUENCES guantity to minimise because it is indicative of interference at

Let the time labeling satisfy (12). Furthermore index the neighbour cell when users are placed at random (uniform)
users as given in (13). Defingy 2 Z;?:l xk, the cumulative within the cell. It also represents battery utilisation of all users
constraint, fork = 1,2, --- , K. We say that aymmetric sum in a collective fashion. The delays are assumed to be static
partition (SSP) exists for this time labeling and indexing ibver the optimisation interval, a realistic assumption since
we can find integergq, ks, --- , ky such thatl < k; < ko < clock drifts result in a shift of a chip roughly once every

- < kny = N, and Xy, = (9/N)xsot, for g = 1,--- ,N. 1000 frames, where a frame is roughly 2 milliseconds and
In other words, there is a partition such that the partial suis considered one optimisation unit.
up to k4 correctly fills g dimensions, forg = 1,2,--- , N. We then showed that the finite-step algorithms proposed
This definition is more restrictive than the definition given byy Sundaresan and Padakandla [4] can be utilised to design
Sundaresan and Padakandla in [4] because the definitiorojdimal sequences and allocate rates or powers. The time
based on a specific user ordering; however, the specialisatiabeling idea of [6] provided a good time reference; if we
is necessary to handle symbol-asynchronism. ordered users in the decreasing order of delays relative to this

If an SSP exists, it is clear that during the execution d@fme reference, the cumulative requirements (rate or power)
either of the algorithms, Step @(is never entered. Conse-satisfied a boundedness condition given precisely in (12).
quently, U, = Iy for k = 0,1,--- , K, and the sequenceWe then showed that the algorithms of [4] led to a design

V. CONCLUDING REMARKS



with at least as many trailing zeros as the delay from thgpplying backward rotationV — g,.x(71) times to the time
chosen reference. We then recognised this as a sequdabeling7}, we get the new time labeling

assignment on the symbol-asynchronous system. The upshot
is that we converted the symbol-asynchronous system into a

symbol-synchronous system without suffering a penalty in OWenaming the groupd, — |Gy,--- G|, (28) may be
measures of performance. The last step is similar to that of Lug . ; : C '
: : IR rewritten in the new time labeling as

et al, but the sequence design algorithms studied in this papér
are simpler, use fewer computations, and are computationally - < Ttot
stable. Zxéj STy

We then remarked as in [4] that splitting will result in
sequences taken from the standard basis. So as to renfairther, form = N — giax(Th) + 1 tom = N — gmax (T1) +
optimal, however, the ordering of users and the initial choigg,in(71) — 1
Uy turned out to be important. m N—gmax(T1) m

The results of this paper are applicable in a wireless sce- Z Z

g, = g, D). g,

narios with slow and frequency-flat fading. These assumptions

T = [Ggmax(T1)+1v o, GN, Gy, 7Ggmax(T1)} :

I1<m< N — gmax(Tl) (29)
j=1

: T R = j=1 =N gmax(T1)+1

validate a constant channel assumption within the optimisation Tror

period. User delay constraints are such that users will have < (V= gmax(Th)) =

to transmit every symbol period, and are therefore always on. Tiot

Channel and timing offset information were assumed available. +(m = (N = gmax(T1))) = (30)

It would be of practical interest to relax the assumptions — g Ftet

on perfect channel and timing offset knowledge, and on N’

frequency-flat fading. where (30) follows from (29) and an application of (12) for

g < gmin(T1) which in turn follows from the definition of

APPENDIX] gmin(T1). Consequently,

PROOF OFTHEOREM4
Gmin (TQ) 2 N — gmaX(Tl) + Gmin (Tl) > gmin(T1)7

Proof: Consider a time labelin@}, = [G1,Ga, -+ ,GN]
that does not satisfy (12). We can find a minimum indexnd the proof is complete. [ ]
9gmin(T1) satisfyingl < gnin(T1) < N, such that (12) is
satisfied for allg < gmin(71), and REFERENCES
gmin (T1) z [1] P. Viswanath and V. Anantharam, “Optimal sequences and sum capacity
Z 26, > Gumin(T1) - tot (25) of synchronous CDMA systems|EEE Trans. Inform. Theoryol. 45,
— N no. 6, pp. 1984 — 1991, Sep. 1999.
I= [2] T. Guess, “CDMA with power control and sequence design: The capacity
We can also find the maximum index,. (%), such that region with and without multidimensional signalingEE Trans. Inform.
Theory vol. 50, no. 11, pp. 2604 — 2619, Nov. 2004.
gmax(T1) " [3] J. A. Tropp, I. S. Dhillon, and J. R. W. Heath, “Finite-step algorithms for
tot . ' X
T T - 26 constructing optimal CDMA signature sequencdEEE Trans. Inform.
Z G; > gmax(Th) N (26) Theory vol. 50, no. 11, pp. 2916-2921, Nov. 2004.
J=1 [4] R.Sundaresan and A.Padakandla, “The size of optimal sequence sets for

i i i synchronous CDMA systemsgubmitted to the IEEE Transactions on
Clearly, gmax(T1) < N since (12) holds with equality for Inform. Theory http://arxiv.org/abs/cs.IT/0606015, Jun. 2006.

9= N-_ ) . . ) _ [8] J. Luo, S. Ulukus, and A. Ephremides, “Optimal sequences and sum
The idea of the proof is to begin with an unsatisfactory time capacity of symbol asynchronous CDMA systemEEE Trans. Inform.
| ling th n i 12) an nstr new ti Theory vol. 51, no. 8, pp. 2760-2769, Aug. 2005.
abe. g that dO(?Z‘S. ot satisfy ( ) and co S'.: L.ICt a .e. trﬂtﬁ J.Luo, K.Pattipati, P.Willett, and F.Hasegawa, “Optimal user ordering and
labeling that satisfies (12). To this purpose, it is sufficient {0' fime labeling for decision feedback detection in asynchronous CDMA,"
get a time labelingl; from the time labelingl} such that IEEE Trans. Communvol. 51, no. 11, pp. 1754 — 1757, Nov. 2003.
9min(T2) > gmin(T1). As the sequencey,, of the obtained
sequence of time labelings is monotonically increasing, and
because an unsatisfactory time labelifidhas g.in(T) < N,
the construction has to end in a finite number of iterations at
a satisfactory time labeling.
By assumption,

Imax(T1)+m

> 26, < gD ) T2 (20)

j=1
for 1 <m < N — gmax(T1). From (26) and (27)
max(T1)+m
Ttot
Z TG, Sme e 1<m <N — gmax(T1)
J=Ymax(T1)+1

(28)



