
Sequence Design for Symbol-Asynchronous CDMA
with Power or Rate Constraints

Jyothiram Kasturi and Rajesh SundaresanSenior Member, IEEE

Abstract— Sequence design and resource allocation for a
symbol-asynchronous chip-synchronous code division multiple
access (CDMA) system is considered in this paper. A simple
lower bound on the minimum sum-power required for a non-
oversized system, based on the best achievable for a non-spread
system, and an analogous upper bound on the sum rate are
first summarised. Subsequently, an algorithm of Sundaresan and
Padakandla is shown to achieve the lower bound on minimum
sum power (upper bound on sum rate, respectively). Analogous
to the synchronous case, by splitting oversized users in a system
with processing gainN , a system with no oversized users is easily
obtained, and the lower bound on sum power (upper bound
on sum rate, respectively) is shown to be achieved by usingN
orthogonal sequences. The total number of splits is at mostN−1.

Index Terms— asynchronous, code division multiple access,
resource allocation, sum capacity, uplink

I. INTRODUCTION

In code division multiple access (CDMA) communications,
users share the entire bandwidth with each other. The symbol
waveform of a user signal is generated by spreading the
chip waveform with its signature sequence. Due to CDMA
systems’ capability of offering high capacity, flexibility, and
security, such systems have become thede facto standard
for the third generation wireless systems and their immediate
successors (for example, 1xEV-DO and HSUPA). There have
been extensive researches on the impact of the signature
sequences on the sum rate achievable under a set of power
constraints, and the minimum sum power required to meet a
set of rate constraints, in a CDMA system. These researches
typically cover synchronous CDMA systems. The uplink of
a cellular system is however inherently asynchronous because
the users are spread over a large area and different users are
received with different delays at the base station. Moreover,
the clocks employed by the users are typically asynchronous
resulting in timing drift. In this paper, we focus on two types
of resource allocation problems for a simplistic asynchronous
physical layer model. Specifically, we consider two problems:

• Problem I: Given users’ power constraints, design sig-
nature sequences for users to maximise the sum rate
achieved.

• Problem II : Given users’ rate requirements, design sig-
nature sequences for users so that their sum power is
minimised.
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We will assume that the timing drift is slow enough with
respect to the duration of optimisation and frame times. This is
typically the case in today’s cellular systems supporting high
speed data; optimisation is done once every frame, roughly
about 2 milliseconds, whereas a clock error of 0.1 parts per
million (typical in current mobile phones) leads to a drift of
one chip every thousand frames in a 5 MHz bandwidth system.

For the symbol-synchronous CDMA system, Viswanath
and Anantharam [1] provide a solution for Problem I, while
Guess [2] provides a solution for Problem II. Troppet al.
[3] provide finite step algorithms for Problem I with reduced
computational complexity and pose the problem within the
framework of an inverse singular value problem where the
goal is to construct matrices with specified column norms
and singular values. Sundaresan and Padakandla [4] recently
provided new and unified algorithms for both these problems.
Their algorithm has complexity less than those of previous
algorithms reported by Viswanath and Anantharam [1], Guess
[2], is comparable with that of [3], and is computationally
stable.

One useful concept introduced by Viswanath and Anan-
tharam [1] is that of anoversizeduser. A user is oversized if
his power constraint or rate requirement is large with respect
to the other users. For example, if user 1 is the user with
the highest power constraintp1, he is oversized ifp1 >
ptot/N , the average power per dimension. A similar condition
holds for rate requirements. We say the system is oversized
if there exists one or more oversized users. Viswanath and
Anantharam [1] show that an oversized system incurs a loss
due to spreading,i.e., the sum capacity is strictly smaller than
that achievable with no spreading (N = 1). It is possible to
convert an oversized system into a system with more users
such that no user is oversized, if a mild splitting of users and
the consequent multi-dimensional signaling is allowed ([4],
[2]).

For the symbol-asynchronous chip-synchronous CDMA
system, Problem I was solved by Luoet al. [5]. In this
paper, we solve Problem II for the non-oversized symbol-
asynchronous chip-synchronous CDMA system, and more-
over, show that the algorithms of Sundaresan and Padakandla
[4] achieve the bounds in both problems. As shown in [4], the
oversized system can be reduced to a non-oversized system
by splitting the oversized users, a concept put forth by Guess
[2].

In our abstraction, asynchronism is modeled at the symbol
level and not at the chip level. Practical systems however
are chip asynchronous and optimisations of such systems
have to be done over signature sequences and chip waveform



subject to bandwidth constraints. While this is an interesting
open problem, we address only the simpler chip-synchronous
case in this paper. We also assume that the transmitters and
receiver know the delay profiles of the users. The design of
optimal sequences when the transmitters do not know the delay
profiles of users is of practical interest and still open. In our
model, signature sequences take on real values as opposed to
taking values from a finite-valued set. Fortunately, practical
systems such as the third generation partnership project’s
(3GPP’s) high speed uplink packet access allocate multiple
sequences (or codes) to a user. In such a scenario, we will see
that the solution reduces to a time-division multiple-access
system with signature sequences drawn from the standard
basis and therefore the components take on values from the
set {0, 1}. This simplification is achieved because of the
admittedly unrealistic and overly simplistic single path channel
assumption. Nevertheless, our analysis provides some insight
into how resources may be divided and allocated in a cellular
system.

II. SYSTEM MODEL AND BOUNDS

We consider a direct-sequence code division multiple access
(DS-CDMA) system where allK users transmit to a single
base-station and assume that the users signals are symbol-
asynchronous but chip-synchronous. The processing gain is
N and each symbol lastsN chips. The power, rate, and unit-
energy signature sequence for userk are denoted bypk, rk,
and sk, respectively. We will assume thatsk ∈ RN , and that
st

ksk = 1.
Let the symbol delay for userk be τk, where τk takes

on values from the set{0, 1, · · · , N − 1}. This indicates that
the beginning of a symbol is delayed from a fixed reference
chip by τk chips. The system designer is assumed to have
knowledge of these delays. This is possible if these values
change slowly with time in comparison to the optimisation
duration.

Consider a frame consisting of2M + 1 symbols for allK
users with theith symbol of userk given by bk[i], where
1 ≤ k ≤ K, and−M ≤ i ≤ M . We assume no specific
constellation and letbk[i] ∈ R. If a power constraint is
specified, as in Problem I, thenE

[
b2
k [i]

] ≤ Npk. The starting
point of a user’s symbol, relative to the reference, isτk chips.
Thus, in a set ofN chips starting from the reference, at
most two symbols appear. Lety(i) ∈ RN be theith vector
of received values withN components, starting from the
reference. We can writey(i) as

y(i) =
K∑

k=1

(
[sk,N−τk+1, · · · , sk,N , 0, · · · , 0]t bk[i− 1]

+ [0, · · · , 0, sk,1, · · · , sk,N−τk
]t bk[i]

)
+ w(i), (1)

where sk = [sk,1, sk,2, · · · , sk,N ]t, and w(i) is a zero-
mean white Gaussian noise process taking values inRN with
covariance matrixIN .

In Problem I, we are given a set of power constraints
p = (p1, p2, · · · , pK) energy-units/chipi.e., E

[
b2
k [i]

] ≤
Npk. For a given set of signature sequences, letr =

(r1, r2, · · · , rK) be the rate assignment that is achievable on
the symbol-asynchronous chip-synchronous Gaussian multiple
access channel. The goal is to assign such a set of signature
sequences and rates to the users so that the sum ratertot

∆=∑K
k=1 rk achievable is maximised.
In Problem II, we are given a set of rate requirementsr =

(r1, r2, · · · , rK) nats/chip for theK users, and the goal is to
assign signature sequences and power to users so that the sum
power at the receiverptot

∆=
∑K

k=1 pk is minimised, while
ensuring reliable transmission at the specified rates.

We first show that sum power is lower bounded in Problem
II and sum rate is upper bounded in Problem I as follows.

Proposition 1: The maximum sum rate achievable on a
symbol-asynchronous chip-synchronous CDMA system with
power constraints(p1, · · · , pK) is upper bounded by12 log(1+
ptot) nats/chip.

Analogously, the minimum sum of received powers to meet
a specified rate constraint(r1, · · · , rK) is lower bounded by
exp {2rtot} − 1 energy-units/chip.

Proof: We simply map a strategy on this asynchronous
system with processing gainN to that on a synchronous
system with processing gain1. Consider a code of length
M on the system with processing gainN . A user transmits
his code inMN chips. Userk begins a new code symbol
τk chips after the reference, where0 ≤ τk < N . Place a
prefix of τk zeros prior to this user’s first symbol, and suffix
N − τk zeros after all2M + 1 code symbol transmissions.
Doing the same for all users, we have converted theM -length
code on the asynchronous system with processing gainN into
a code of lengthMN + N on a chip-synchronous uplink
multiple access system (MAC) with processing gain 1. Since
limM→∞ MN+N

MN = 1, the sum rate of the asynchronous code
(in bits per chip) can be no larger than the sum capacity
of the synchronous unit-processing gain system which is
(1/2) log(1 + ptot).

The same code transformation technique shows that in a
system with rate constraints, to support a sum rate ofrtot,
the powers should be such thatrtot ≤ (1/2) log(1+ ptot) and
thereforeptot ≥ exp {2rtot} − 1.

III. A PPLICABILITY OF ALGORITHMS

A. The Algorithms

We now reproduce here the algorithms of Sundaresan and
Padakandla [4] and highlight the essential properties needed in
our proof. The algorithms work in scenarios with no oversized
users,i.e.,

Nxk ≤ xtot, for everyk = 1, 2, · · · , N,

wherex = r or p as the case may be. The interpretation is
that the rate or power per user does not exceed the average
per dimension. If it does for a particular user, such a user is
deemed an oversized one.

Let Ak
∆= Ak−1 + Npkskst

k, for k = 1, · · · ,K, and set
A0 = IN . The matrixAk is of sizeN × N and represents
the covariance matrix after the firstk users are added into the
system. The algorithm builds a sequence of eigenvalues ofAk:

λ(k) ∆=
(
λ

(k)
1 , · · · , λ

(k)
N

)
∆= eig(Ak) ,



for k = 1, · · · ,K, where the vector of eigenvalues is arranged
in decreasing order,

λ
(k)
1 ≥ λ

(k)
2 ≥ · · · ≥ λ

(k)
N .

The algorithm proceeds in such a way that adjacent sets of
eigenvaluesλ(k) andλ(k+1) satisfy the interlacing inequality,

λ
(k+1)
1 ≥ λ

(k)
1 ≥ λ

(k+1)
2 ≥ λ

(k)
2 ≥ · · · ≥ λ

(k+1)
N ≥ λ

(k)
N . (2)

Moreover, if energy is poured into a dimension, then all the
previous dimensions are completely filled up to a specified
maximum levelλmax, i.e., the corresponding eigenvalues with
lower indices have attained their maximum targetλmax. The
interlacing inequality constraint ensures that ansk can be
found after each step, and the filling up of a dimension
before subsequent dimensions are poured ensures that there
is always space to pour a new user’s energy without affecting
the reachability of the optimal target setλ(K).

The following algorithms assume the existence of a subrou-
tine c(A, λ) that takes in a matrixA, a set of target eigenvalues
λ so thatλ and eig(A) satisfy the interlacing inequality. It then
outputs a vectorc such that eig(A + cct) = λ. The operation
of this subroutine was discussed in [4] and is summarised
immediately after the description of the algorithms.

Algorithm 2 ([4]): Problem I

• Initialisation : Set λ
(k)
n ← 1 for k = 0, 1, · · · ,K and

n = 1, · · · , N . Set the user indexk ← 1, dimension
n ← 1, λmax ← 1 + ptot, andA0 ← IN .

• Step 1: If k > K, stop.
• Step 2 (a): If λ

(k−1)
n + Npk < λmax, then setλ(k)

n ←
λ

(k−1)
n + Npk and go toStep 3.

• Step 2 (b): If λ
(k−1)
n + Npk = λmax, then setλ(j)

n ←
λmax for j = k, · · · , K. Also setn ← n + 1 and go to
Step 3.

• Step 2 (c): If λ
(k−1)
n + Npk > λmax, then setλ(j)

n ←
λmax for j = k, · · · ,K, andλ

(k)
n+1 ← 1+λ

(k−1)
n +Npk−

λmax. Also setn ← n + 1.
• Step 3: Identify the vectorck = c

(
Ak−1, λ

(k)
)
. Then

set sk ← ck/||ck||, rk ← 1
2N log |Ak| − 1

2N log |Ak−1|.
This provides the sequence and rate for userk. Finally,
setAk ← Ak−1 + ckct

k, k ← k + 1, and go toStep 1.

¤

Remarks: User ordering does not matter in achieving the
bounds. It is also easy to check via induction that

traceAk = N + N

k∑

j=1

pj , for k = 0, 1, · · · ,K.

Algorithm 3 ([4]): Problem II

• Initialisation : Setλ(k)
n ← 1 for all k = 0, 1, · · · ,K and

n = 1, · · · , N . Set the user indexk ← 1, dimension
n ← 1, λmax ← exp {2rtot}, andA0 ← IN .

• Step 1: If k > K, stop.
• Step 2 (a): If λ

(k−1)
n · exp {2Nrk} < λmax, then set

λ
(k)
n ← λ

(k−1)
n · exp {2Nrk} and go toStep 3.

• Step 2 (b): If λ
(k−1)
n · exp {2Nrk} = λmax, then set

λ
(j)
n ← λmax for j = k, · · · , K. Setn ← n + 1 and go

to Step 3.
• Step 2 (c): If λ

(k−1)
n · exp {2Nrk} > λmax, then set

λ
(j)
n ← λmax for j = k, · · · , K, and λ

(k)
n+1 ← λ

(k−1)
n ·

exp {2Nrk} /λmax. Also setn ← n + 1.
• Step 3: Identify the vectorck = c

(
Ak−1, λ

(k)
)
. Then

set sk ← ck/||ck||, pk ← (ct
kck) /N . This provides the

sequence and power for userk. Finally, setAk ← Ak−1+
ckct

k, k ← k + 1, and go toStep 1.

¤

Remark: Once again, it should be easy to see that at each
step,

|Ak| = exp



2N

k∑

j=1

rj



 for k = 0, 1, · · · ,K, (3)

where| · | denotes the determinant of the argument.

We now make some remarks about the subroutinec(·, ·).
Sundaresan and Padakandla [4] show the sufficiency of iden-
tifying and storing the orthogonal matrices

Uk =
[
u

(k)
1 · · · u

(k)
N

]

that diagonalizeAk, and the eigenvaluesλ(k). Note thatU0 can
be taken as any arbitrary orthogonal matrix sinceA0 = IN , the
identity matrix. Computation ofc

(
Ak−1, λ

(k)
)

utilizes only
Uk−1, λ(k−1), andλ(k), and is done as follows. If only one
eigenvalue changes as in Steps 2(a) or 2(b), then

Uk = Uk−1, (4)

and

ck =
(√

λ
(k)
n − λ

(k−1)
n

)
u(k)

n , (5)

wheren is the index before it is updated ton + 1 in case of
Step 2(b).

For Step 2(c) exactly two eigenvalues change in going from
Ak−1 to Ak. So the two matrices shareN − 2 eigenvectors
and exactly two eigenvectors change. These are computed via
a rotation in the(n, n + 1)st plane as follows:

[
u(k)

n u
(k)
n+1

]
=

[
u(k−1)

n u
(k−1)
n+1

] [
α −β
β α

]
, (6)

where

α =

√√√√√
(
λ̂n − λn+1

)(
λn − λ̂n+1

)
(
λ̂n − λ̂n+1

)
(λn − λn+1)

, (7)

β =
√

1− α2 =

√√√√√
(
λ̂n+1 − λn+1

)(
λ̂n − λn

)
(
λ̂n − λ̂n+1

)
(λn − λn+1)

, (8)

with λ
∆= λ(k−1) and λ̂

∆= λ(k) for simplicity. Furthermore,

ck = yn u(k−1)
n + yn+1 u

(k−1)
n+1 , (9)



where

yn =

√√√√
∣∣∣λn − λ̂n

∣∣∣
∣∣∣λn − λ̂n+1

∣∣∣
|λn − λn+1| , (10)

yn+1 =

√√√√
∣∣∣λn+1 − λ̂n

∣∣∣
∣∣∣λn+1 − λ̂n+1

∣∣∣
|λn − λn+1| . (11)

In all three cases, we have

pk = λ̂n+1 + λ̂n − (λn+1 + λn) ,

rk =
1

2N
log

(
λ̂n+1λ̂n

λn+1λn

)
.

As further remarked in [4], the algorithms’ complexity is only
O(KN) floating point operations.

We will later see that these algorithms are applicable even in
the symbol-asynchronous case provided we start withU0 = IN

and use an appropriate time labeling as described in the next
subsection.

B. Time Labeling

The goal of choosing a good time labeling is to choose
a good reference where users with delayτk relative to this
reference havesk,n = 0 for n = N − τk + 1, · · · , N . This
property is beneficial because the first term in (1) is zero and
the system reduces to a symbol-synchronous system. This is
not valid for any arbitrary time reference, and therefore a good
choice has to be made. The idea was first used by Luoet al. [6]
in the context of decision feedback detection and subsequently
exploited by Luoet al. in [5]. Our approach is essentially
the same as that of Luoet al. in [5] except for a change in
indexing.

Let τ1, · · · , τK be the delays in chips with respect to an
arbitrary reference. Define groupGj for j = 1, · · · , N , to be
the set of all the users whose symbol delay isN − j chips,
i.e.,

Gj = {k | 1 ≤ k ≤ K andτk = N − j} ,

for j = 1, 2, · · · , N . We will denote this choice of ref-
erence, also calledtime labeling, by the orderingT =
[G1, G2, · · · , GN ]. See Fig. 1 for a depiction of the groups.
Any other choice of reference can be represented by a
cyclic permutation of the time labeling[G1, G2, · · · , GN ]. The
groupsG1, G2, · · · , GN partition the set{1, 2, · · · ,K}. As an
example, the time labelinĝT = [G2, · · · , GN , G1] indicates
that the reference is delayed by 1 chip unit.

For a given rate- or power-tuple denoted generically by
the vector x = (x1, x2, · · · , xK), and for a subsetG ⊂
{1, 2, · · · ,K} we let the aggregate sum rate or sum power
to be

xG
∆=

∑

k∈G

xk.

Following the proof of [5, Theorem 5] we show the ex-
istence of a good time labeling. This labeling will have the
property that users inGj have signature sequences with zeros
in positionsj + 1, · · · , N , effectively resulting in a symbol-
synchronous system (see Fig. 1).

Fig. 1. A snapshot of symbol asynchronous CDMA system showing different
groups

Theorem 4 ([5]): Given a vectorx ∈ RK
+ , there exists a

time labeling T̂ =
[
Ĝ1, Ĝ2, · · · , ĜN

]
, such that for allg

satisfying1 ≤ g ≤ N , we have
g∑

j=1

xĜj
≤ g

N
· xtot. (12)

Proof: The proof is identical to the proof of [5, Theorem
5] except for a change in indexing. It is provided in the
Appendix for completeness. Note that the theorem holds even
for systems with oversized users.

Henceforth we may assume that the labeling[G1, · · · , GN ]
satisfies (12). The intuition is now as follows. The particular
choice of time labeling ensures that as users are allocated rate
(or power) one after another in the order of the groups in the
time labeling, all the users in groups up to and includingg
do not need more thang dimensions. Consequently,g +1 and
beyond carry no energy and the signature sequence values for
these locations are zeros. This is true for every group index
g. This is proved formally in the next section.

C. Applicability of algorithms

We now state and prove the main result of this paper.
Theorem 5:Consider a symbol-asynchronous system ofK

non-oversized users. For the time labeling satisfying (12),
index the users in groupGj as

j−1∑

i=1

|Gi|+ 1,

j−1∑

i=1

|Gi|+ 2, · · · ,

j∑

i=1

|Gi|, (13)

thus leading to an indexing of allK users. After settingU0 =
IN , an execution of Algorithms 2 or 3 results in sequences for
the symbol-synchronous system with the property that users
in groupGj have zeros in locationsj + 1, j + 2, · · · , N , for
j = 1, 2, · · · , N .

Furthermore, there is a mapping from this set of sequences
on the symbol-synchronous system to a set of sequences on the
symbol-asynchronous system such that the resulting sequences
are optimal for the symbol-asynchronous system,i.e., they
achieve the sum power lower bound or the sum rate upper
bound given in Proposition 1.

Proof: As remarked earlier, the algorithms pour a user’s
energy in the dimension with the lowest possible indexn



Fig. 2. Illustration of power across dimensions after thekth user is added.

subject to the condition that the eigenvalues do not exceed
λmax. See Fig. 2 for an illustration of the algorithm. Letn(k)
be defined as (see once again Fig. 2)

n(k) ∆= max
{

n | 1 ≤ n ≤ N andλ(k)
n > 1

}
, (14)

the dimension with the highest index containing energy from
userk. We first claim that

n(k) =

⌈
N

∑k
j=1 xj

xtot

⌉
. (15)

We show that this is the case for both algorithms (withx
replaced byp or r, as the case may be). For Algorithm 2,

N ·
k∑

j=1

pj = traceAk −N

=
N∑

i=1

λ
(k)
i −N

= (n(k)− 1) · (λmax − 1) + λ
(k)
n(k) − 1(16)

= (n(k)− 1) · ptot + λ
(k)
n(k) − 1, (17)

where (16) follows from the fact thatn(k) − 1 eigenvalues
have attained their maximum valueλmax. From (14), we have

0 < λ
(k)
n(k) − 1 ≤ λmax − 1 = ptot.

Substitution of these two inequalities in (17) yields

(n(k)− 1) · ptot < N

k∑

j=1

pj ≤ n(k) · ptot,

which substantiates the claim in (15) for Algorithm 2.
For Algorithm 3, observe that

exp



2N

k∑

j=1

rj



 = |Ak|

=
N∏

i=1

λ
(k)
i

= (λmax)
n(k)−1 · λ(k)

n(k)

= exp {(n(k)− 1) · 2rtot} · λ(k)
n(k).

(18)

Substitution of the two obvious inequalities

1 < λ
(k)
n(k) ≤ λmax = exp{2rtot}

in (18) yields

exp {(n(k)− 1) · 2rtot} < exp



2N

k∑

j=1

rj





≤ exp {n(k) · 2rtot} ,

and thus the claim in (15) is verified for Algorithm 3 after
taking logarithms.

The lemma below shows that the sequence for userk spans
only the firstn(k) dimensions. More precisely,

Lemma 6:Let ck be the output of the subroutinec(·, ·),
a scaled version of the sequence for userk. Let Uk be the
orthogonal matrix of sizeN ×N that diagonalisesAk. Then

ck ∈ span
{
e1, · · · , en(k)

}
, (19)

whereei ∈ RN is the standard basis vector with 1 in theith
position and zeros elsewhere, and

Uk =
[

Bk ©
© IN−n(k)

]
, (20)

whereBk is a real-valued submatrix of sizen(k)× n(k).
Proof: We use the notationUk =

[
u

(k)
1 , · · · , u

(k)
N

]
. The

proof is by induction onk. For k = 1, because there are no
oversized users, we clearly haven(1) = 1. Upon addition of
user 1, only one eigenvalue will change,λ

(1)
1 , and because we

begin withU0 = IN , we have

c1 =
(√

λ
(1)
1 − 1

)
e1 ∈ span{e1}

Furthermore,U1 = U0, and therefore the lemma is true for
k = 1 with n(1) = 1 andB1 = [1].

Assume now that the lemma is true fork − 1. We may
therefore write

Uk−1 =
[

Bk−1 ©
© IN−n(k−1)

]
. (21)

As userk is not oversized, clearlyn(k) is eithern(k − 1) or
n(k − 1) + 1. Since columnn(k − 1) of Uk−1, i.e. u

(k−1)
n(k−1),

is the column corresponding to the last column ofBk−1, we
have

u
(k−1)
n(k−1) ∈ span

{
e1, · · · , en(k−1)

}
, (22)

because columnn(k− 1) of Uk−1 has only the firstn(k− 1)
terms possibly nonzero. Ifn(k) = n(k − 1), then only one
eigenvalue changes, and by (4) and (5)Uk = Uk−1,

ck =
(√

λ
(k)
n(k) − λ

(k−1)
n(k−1)

)
· u(k−1)

n(k−1)

∈ span{e1, · · · , en(k−1)},
and the lemma holds. Ifn(k) = n(k − 1) + 1, then from (6)
it is easy to see that

Uk = Uk−1 ·




In(k−1)−1 ©[
α β
β −α

]

© IN−n(k)


 , (23)



whereα andβ are as in (7) and (8). From (9) and after defining
n

∆= n(k), we get

ck = yn−1 · u(k−1)
n−1 + yn · u(k−1)

n , (24)

whereyn−1 and yn are scalars as defined in (10) and (11).
From (22), the fact thatu(k−1)

n = en, and (24), it is clear that
(19) is verified. By multiplying the right side of (23) it is easy
to verify that Uk is of the form (20) withBk of size n × n.
This concludes the proof of the lemma.

We have thus verified thatck and thereforesk is in the span
of the standard basis vectors{e1, · · · , en(k)}. Consequently,
sk has only zeros in locationsn(k) + 1, · · · , N .

Let g(k) be the index of the group to which userk belongs
i.e., g(k) = g if and only if k ∈ Gg. From (15) and the fact
that the time labeling satisfies (12), we have

n(k) =

⌈
N

∑k
i=1 xi

xtot

⌉
≤

⌈
N

∑g(k)
i=1 xGi

xtot

⌉
≤ g(k),

where the last inequality follows because the inequality holds
without the ceiling function due to the time ordering, andg(k)
is an integer. Consequently,sk has only zeros in locations
g(k) + 1, · · · , N , and the first part of the main theorem is
proved. The upper bound on sum rate or lower bound on sum
power is achieved on the symbol-synchronous system by virtue
of the property of the algorithms for non-oversized systems.

We still have to show how to map these to a set of
sequences on the asynchronous system. But this is easily done
via a time-reversal technique. Referring to Fig. 1, we see
that users inG1 last only one chip, users inG2 two chips,
and so on. We simply define(s′k,1, s

′
k,2, · · · , s′k,g, 0, · · · , 0)

as(sk,g, sk,g−1, · · · , sk,1, 0, · · · , 0). Indeed, this is equivalent
to looking at theN chips time-reversed starting from the
reference, and we have converted the symbol-asynchronous
system into a symbol-synchronous system. This concludes the
proof that the algorithm results in an optimal allocation.

Sequences which achieve the sum rate upper bound have
been named Generalised Asynchronous Welch Bound Equality
(GAWBE) sequences by Luoet al. in [5].

IV. M ULTI -DIMENSIONAL SIGNALING AND SUFFICIENCY

OF N ORTHOGONAL SEQUENCES

Let the time labeling satisfy (12). Furthermore index the
users as given in (13). DefineXk

∆=
∑k

j=1 xk, the cumulative
constraint, fork = 1, 2, · · · ,K. We say that asymmetric sum
partition (SSP) exists for this time labeling and indexing if
we can find integersk1, k2, · · · , kN such that1 ≤ k1 < k2 <
· · · < kN = N , and Xkg = (g/N)xtot, for g = 1, · · · , N .
In other words, there is a partition such that the partial sum
up to kg correctly fills g dimensions, forg = 1, 2, · · · , N .
This definition is more restrictive than the definition given by
Sundaresan and Padakandla in [4] because the definition is
based on a specific user ordering; however, the specialisation
is necessary to handle symbol-asynchronism.

If an SSP exists, it is clear that during the execution of
either of the algorithms, Step 2(c) is never entered. Conse-
quently, Uk = IN for k = 0, 1, · · · ,K, and the sequence

matrix is composed of onlyei, i = 1, · · · , N ; time-division
multiplexing with shared time-slots is therefore sufficient for
optimality. Users sharing a time-slot are decoded via the
successive interference cancelation technique.

If an SSP does not exist, it is easy to engineer one by
splitting users that straddle two dimensions,i.e., those that
require an execution of Step 2(c). If the original system has
no oversized users, at mostN − 1 of these users get split
into exactly two virtual users each. The resulting enlarged
vector x has an SSP. However, such split users pour their
energy into two time-slots instead of one, and therefore use
two-dimensional signaling.

If there are oversized users in the system, a time labeling
satisfying (12) can still be found since Theorem 4 holds for
this case as well. We then index the users as in (13), look at
the cumulative constraintXk for k = 1, · · · ,K, and divide
those usersk whose inclusion makesXk exceed(g/N)xtot,
for g = 1, · · · , N − 1. These users are then split (perhaps
multiple times) to obtain an enlargedx that has an SSP. Note
that there are at mostN −1 splittings. The resulting sequence
matrix for the enlarged system is simply composed of elements
from the standard basis.

The above remarks are easy to verify and their proofs
omitted.

V. CONCLUDING REMARKS

The work in this paper was motivated by a need to abstract
certain imperfections in the physical layer into a model suit-
able enough for higher layer optimisation. Towards this end,
we modeled asynchronism inherent in uplink multiple access
systems. Our model is the same as that of Luoet al. [5]. The
model has certain drawbacks - for example, the assumption of
chip-synchronism - but provides some insights to the system
designer for optimal use of resources. In particular, we looked
at two optimisation problems. In the first problem our goal
was to maximise the achievable sum rate subject to a power
constraint. In the second, the goal was to minimise the received
sum power subject to meeting a rate constraint. Sum rate is a
good measure to optimise if all users pay the same rupees per
successfully transmitted bit. It maximises the revenue collected
by the service provider. The total received power is also a good
quantity to minimise because it is indicative of interference at
a neighbour cell when users are placed at random (uniform)
within the cell. It also represents battery utilisation of all users
in a collective fashion. The delays are assumed to be static
over the optimisation interval, a realistic assumption since
clock drifts result in a shift of a chip roughly once every
1000 frames, where a frame is roughly 2 milliseconds and
is considered one optimisation unit.

We then showed that the finite-step algorithms proposed
by Sundaresan and Padakandla [4] can be utilised to design
optimal sequences and allocate rates or powers. The time
labeling idea of [6] provided a good time reference; if we
ordered users in the decreasing order of delays relative to this
time reference, the cumulative requirements (rate or power)
satisfied a boundedness condition given precisely in (12).
We then showed that the algorithms of [4] led to a design



with at least as many trailing zeros as the delay from the
chosen reference. We then recognised this as a sequence
assignment on the symbol-asynchronous system. The upshot
is that we converted the symbol-asynchronous system into a
symbol-synchronous system without suffering a penalty in our
measures of performance. The last step is similar to that of Luo
et al., but the sequence design algorithms studied in this paper
are simpler, use fewer computations, and are computationally
stable.

We then remarked as in [4] that splitting will result in
sequences taken from the standard basis. So as to remain
optimal, however, the ordering of users and the initial choice
U0 turned out to be important.

The results of this paper are applicable in a wireless sce-
narios with slow and frequency-flat fading. These assumptions
validate a constant channel assumption within the optimisation
period. User delay constraints are such that users will have
to transmit every symbol period, and are therefore always on.
Channel and timing offset information were assumed available.
It would be of practical interest to relax the assumptions
on perfect channel and timing offset knowledge, and on
frequency-flat fading.

APPENDIX I
PROOF OFTHEOREM 4

Proof: Consider a time labelingT1 = [G1, G2, · · · , GN ]
that does not satisfy (12). We can find a minimum index
gmin(T1) satisfying 1 ≤ gmin(T1) < N , such that (12) is
satisfied for allg < gmin(T1), and

gmin(T1)∑

j=1

xGj > gmin(T1) · xtot

N
(25)

We can also find the maximum indexgmax(T1), such that

gmax(T1)∑

j=1

xGj > gmax(T1) · xtot

N
(26)

Clearly, gmax(T1) < N since (12) holds with equality for
g = N .

The idea of the proof is to begin with an unsatisfactory time
labeling that does not satisfy (12) and construct a new time
labeling that satisfies (12). To this purpose, it is sufficient to
get a time labelingT2 from the time labelingT1 such that
gmin(T2) > gmin(T1). As the sequencegmin of the obtained
sequence of time labelings is monotonically increasing, and
because an unsatisfactory time labelingT hasgmin(T ) < N ,
the construction has to end in a finite number of iterations at
a satisfactory time labeling.

By assumption,

gmax(T1)+m∑

j=1

xGj ≤ (gmax(T1) + m) · xtot

N
, (27)

for 1 ≤ m ≤ N − gmax(T1). From (26) and (27)

gmax(T1)+m∑

j=gmax(T1)+1

xGj ≤ m · xtot

N
, 1 ≤ m ≤ N − gmax(T1)

(28)

Applying backward rotationN − gmax(T1) times to the time
labelingT1, we get the new time labeling

T2 =
[
Ggmax(T1)+1, · · · , GN , G1, · · · , Ggmax(T1)

]
.

Renaming the groupsT2 =
[
Ĝ1, · · · , ĜN

]
, (28) may be

rewritten in the new time labeling as
m∑

j=1

xĜj
≤ m · xtot

N
, 1 ≤ m ≤ N − gmax(T1) (29)

Further, form = N − gmax(T1) + 1 to m = N − gmax(T1) +
gmin(T1)− 1

m∑

j=1

xĜj
=

N−gmax(T1)∑

j=1

xĜj
+

m∑

j=N−gmax(T1)+1

xĜj

≤ (N − gmax(T1))
xtot

N

+(m− (N − gmax(T1)))
xtot

N
(30)

= m
xtot

N
,

where (30) follows from (29) and an application of (12) for
g < gmin(T1) which in turn follows from the definition of
gmin(T1). Consequently,

gmin(T2) ≥ N − gmax(T1) + gmin(T1) > gmin(T1),

and the proof is complete.
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