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Abstract— Sequence design problems are considered in this
paper. The problem of sum power minimization in a spread
spectrum system can be reduced to the problem of sum capacity
maximization, and vice versa. A solution to one of the problems
yields a solution to the other. Subsequently, conceptually simple
sequence design algorithms known to hold for the white-noise
case are extended to the colored noise case. The algorithms yield
an upper bound of 2N — L on the number of sequences where
N is the processing gain and L the number of non-interfering
subsets of users. If some users (at most N — 1) are allowed to
signal along a limited number of multiple dimensions, then N
orthogonal sequences suffice.

I. INTRODUCTION

Consider a symbol-synchronous code-division multiple ac-
cess (CDMA) system. The kth user is assigned an N-sequence
sk € RY of unit energy, i.e., st.sy = 1. The processing gain
is NV chips, and the number of users is K. User k& modulates
the vector s, by its data symbol X, € R and transmits Xjsy
over N chips. This transmission interferes with other users’
transmissions and is corrupted by noise. The received signal
is modeled by

K
Y=Y siXk+Z,
k=1

where Z is a zero-mean Gaussian random vector with a
covariance matrix 3. We will consider the following two
sequence design problems.
Problem 1: User k& has a power constraint p units per chip,
i.e., E[X?] < Npy. The goal then is to assign sequences and
data rates to users so that the sum of the individual rates at
which the users can transmit data reliably (in an asymptotic
sense) is maximized. The maximum value Cs,,, is called the
sum capacity.
Problem I1, a dual to Problem I, is one where user & demands
reliable transmission at a minimum rate r;, bits/chip. The goal
is to assign sequences and powers to users so that despite their
mutual interference and noise, each of the users can transmit
reliably at or greater than their required rates, and the sum
of the received powers (energy/chip) at the base-station is
minimized.

Viswanath and Anantharam [1] have solved Problem | and
provided an explicit characterization for the sum capacity.
Guess [2] has solved Problem II for the particular case when
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Y = Iy. The similarity of characterizations of the solutions to
Problems I and Il when 3 = Iy suggests a close relationship
between the two problems. In this paper, we show that the two
problems can be reduced to a single optimization problem
by establishing a mapping between them. Furthermore, we
extend the algorithm of [3] to cover the colored noise case.
In particular, we show that 2.V — L sequences are sufficient,
where L is the number of non-interfering subsets of users.
By allowing a mild splitting, we show that N orthogonal
sequences are optimal. This greatly simplifies signaling of
parameters on the downlink to achieve optimality on the
uplink.

Since the work of Rupf and Massey [4], rate maximization
and power minimization for multiple access systems have
attracted considerable attention - Viswanath and Anantharam
[5], Guess [2], among other papers in the CDMA setting, and
Wunder and Michel [6] in the OFDM setting. Given a set
of rates whose sum is ry,;, Guess [2] shows the minimum
sum power required to achieve this set of rates is same as the
sum of power constraints that yield a sum capacity equal to
reot- IN [2], Guess also provides expressions for the set of all
achievable rate-tuples with a constraint on the sum power and
the set of all admissible power assignments to achieve a target
sum capacity. Our duality result goes a step further and shows
that a solution to one of the problems can be mapped to a
solution on the other. Tse and Hanly [7] indicate that the rate
maximization and power minimization for the no spreading
case are duals of each other by making use of the polymatroid
- contra-polymatroid duality. We show that a similar duality
holds with spreading. This suggests a similar unity between
such problems in all settings, CDMA or otherwise.

Several algorithms to identify an optimal set of sequences
have been proposed. Viswanath and Anantharam [5] provide
a recursive algorithm to identify sequences which achieve
sum capacity. The configuration that attains sum capacity
also minimizes a potential-like quantity called total squared
correlation (TSC). Anigstein and Anantharam [8] provide an
iterative algorithm suitable for distributed implementation. The
algorithm converges to the configuration that minimizes the
TSC. Our focus here is on finite-step algorithms. We refer
the reader to the work of Tropp and others [9] and references
therein for a summary of several finite-step algorithms. We



provide another finite-step algorithm that has an interesting
water-filling interpretation.

This paper is organized as follows. In Section Il we reduce
Problem 11 to Problem I and show how a solution to Problem |
can be mapped to a solution to Problem Il. Section 1l extends
the sequence design algorithms for colored noise. In Section
IV, we prove that 2N — L sequences for single dimensional
signaling and IV sequences for multidimensional signaling are
sufficient to achieve optimality on the colored noise channel.

Il. THE DUALITY

In this section, we reduce Problem Il to Problem I. We begin
with some preliminaries.

A. Preliminaries

Suppose user k is assigned sequence s; and is received
at power pg energy/chip. Let S be the N x K matrix
[s1 $2 sk] and P = diag(p1,p2, - ,pK). For any
J C{1,---, K}, we denote the N x |J| matrix [s;; j € J]
by S, and the |J| x |J| matrix diag(p;; j € J) by Pj. Then,
the capacity region can be written as (see, for example, [1])

cs, Py = )
Jc{1,--,K}

{(rl,--- JTK) ERf:

1
>k < gy log Iy + NE‘lSJPJSSI} !
keJ

where | A| denotes the determinant of the matrix A and ry is
user k’s data rate in nats/chip. In this paper all logarithms are
natural logarithms.
Definition 1: Let S denote the set of all sequence matrices
S={SeRV¥:(8'S) =1fori=1,2,--- K},

and P the set of all power allocation policies
P = {P e RE*X P diagonal}.

(@) We say that the pair (S, P) is valid if S € Sand P € P.
(b) Given a rate vector » € R, we say (S, P) is a design
for r on X if (S, P) is valid and r € C(S, P, %).
(c) We say (S, P) is a commuting design for r on X if (S, P)
is a design for » on ¥ and SPS* and ¥ commute.
|
We can now formulate Problem Il as follows.
Problem Il : Given r € R and a positive definite matrix %
find
(@) Pmin = min{trace(P) : (S, P) is a design for » on X},
and
(b) the (S, P) that attains the minimum. O
Guess [2] proves that the minimum exists for 3 = Iy. We
will show existence for any positive definite 3.
Let eig (A) denote the eigenvalues of a Hermitian matrix
A in the decreasing order of their values and eig, (A4) its ith

component. Observe that

trace (P) = trace (PS'S) = trace (SPSY)
= trace (X + SPS*) — trace (%)
N
Z eig; (X + SPS") — trace (X).

=1

Hence, Problem 1l can be restated as follows : Identify
(a) the vector in the set

{eig(T + SPS") : (S, P) is a design for r on X}

with the minimum sum; and
(b) the pair (S, P), a design for » on X, that achieves the
minimum.

As observed in many sequence design problems, majorization
turns out to be a useful tool to characterize this set.

B. Majorization

For x = (x1,---,2,) € R", let zyyy,--- , ) denote the
components of z in decreasing order, i.e., z;;] > -+ > x,).
Definition 2: Let z,y € R”}. We say 2 product majorizes

. ® .
y and denote the relation by = > y if

[Tz > Ihoiv
for j =1,--- ,n, with equality when j = n.
For z,y € R™, we say = sum majorizes y and denote by
e Ly if
Yim1 T 2 i Y

for j =1,--- ,n, with equality when j = n. O
For a € R} and b € R", define the vector

log a = (logay,- - ,logay)

and the vector

Note that if z,y € R, then
® @
x =y = logx >~ logy.
Conversely, if z,y € R™, then
® @
e’ =eY = a-y.

Definition 3: A function f : R™ — R is product-Schur
convex if

ey = f(2)>f(y).

A function g : R™ = R is sum-Schur convex if

TS y=g(@)>g(y).

A function h is Schur concave if —h is Schur convex in the
appropriate sense. O



C. The Reduction

Our goal in this subsection is to reduce Problem Il to that
of Problem 1. We do this by first identifying the following
relevant set that yields commuting designs. Let eig(X) =
(0%, ,01). Define

L=qpeRY: Ilis 5 2 [l V9,1 < j <N,

N K .
| 5_3 =1l 2N,

Lemma 4: For every p € L, there exists a commuting
design (S, P) for » on X with 1 = eig (SPS! + ). O

We provide only an outline of a proof. We first identify
a design for » on In. Then we apply a capacity-preserving
unitary transformation to the sequences to get another design
for » on I that in addition commutes with the given X. We
then apply another capacity preserving transformation to arrive
at a commuting design for » on X.

We next show that we may restrict our search to commuting
designs.

Lemma 5: If (S, P) is a design for r on 3, there exists a
commuting design (S, P) for r on X that satisfies trace(P) <
trace(P) O

In order to prove this lemma, we start from the design
(S, P) for r on X and apply a sequence of capacity-preserving
transformations to designs on Iy and then transform the
result back to a design on X that matches the eigenvectors
of the received signal covariance matrix with those of X. The
eigenvalues of the signal matrix in increasing order match with
those of X in decreasing order, a property that makes the same
capacity region achievable with a reduced power.

The following lemma now highlights the importance of L.

Lemma 6: If (S, P) is a commuting design for ~ on %, then
there exists a . € IL such that Zfil u; < trace(X + SPSY).
|

Thus, every vector in L leads to a commuting design for r
on X and conversely, every design for » on X can be replaced
by a possibly better commuting design for » on ¥ whose
eig(X + SPSY) belongs to L. It is therefore sufficient to
search for an optimal design within this set. Hence we have
the following partial restatement of Problem II.

Theorem 7: P,y = min{zzj.vzl Wit € ]L} — trace (X).

This theorem easily follows from Lemmas 4, 5, and 6.

The set IL is related to a set " whose sum-Schur minimal
element yields the sum capacity value in the power constrained
problem studied by Viswanath and Anantharam in [1]. L’ is

given by
11—7712 2071217 aNa
ZLl li—nt> szzl D)

leRY: (1)
1<j<N,

L' =

sz'vzl li—n; = NZiIil Pra-
We now show the precise duality between the power min-
imization and sum capacity maximization problems. Without
loss of generality, we may assume o2 > 1 for 1 <i < N.
Theorem 8: Given the vectors 7 and % = (0%, -+ ,0%),
if u € L, then [ = logpu € " with n? = logo? and p = 2r.
Furthermore, the sum power minimization can be written as

N
Prin = min {Ze“ e L’} — trace (X).
i=1

Conversely, for a given 5 and p, if I € I, then u = ¢! € LL
with o2 = e and r = p/2. 0

It is well-known that g(I) = SV e is a sum-Schur
convex function. If we can identify a sum-Schur minimal
element [* of L/, then P,,;,, = g(I*)—trace (X). Moreover the
corresponding element /" would be a product-Schur minimal
element of L. The existence of the sum-Schur minimal element
of I’ is established by means of a finite-step algorithm in [1].
We thus have the following reduction.

Theorem 9: The minimum value P,,;, is given by g(I*) —
trace (), where [* is the sum-Schur minimal element of the
set I’ given in (1). O

A similar reduction of the sum capacity maximization
problem to the sum power minimization problem holds.

Having found the minimum sum power value, we now show
how to find a valid design for » on X that achieves this
minimum value.

I1l. SEQUENCE DESIGN ALGORITHMS

In this section, we describe an algorithm to get a commuting
design (.S, P) for r on 3. The proposed algorithm is a finite-
step algorithm which is numerically stable. There are several
other finite-step algorithms [1], [9], but ours admits a water-
filling interpretation. Moreover, it provides an upper bound on
the number of required sequences in a rather direct fashion.

Definition 10: We say X and » admit a water-filling solu-
tion if the product-Schur minimal element p* of I has equal
components. O

Without loss of generality, we may assume that X is
diagonal. If X and » do not admit a water-filling solution,
from the results of Viswanath and Anantharam [1], the optimal
solution partitions the set of users and associates a disjoint set
of dimensions for each subset of the partition. The r and X
restricted to any one subset of the partition does indeed admit
a water-filling solution over its associated set of dimensions.
We may thus assume for purposes of sequence allocation that
r and X admit a water-filling solution.



We now describe the intuition behind Algorithm 11 below.
The algorithm is a generalization of the algorithm for the
white noise case given in [3]. One of the facets of the water-
filling solution in Definition 14 is that every user can be
accommodated in the least noisy dimension in the absence
of other users. We assign sequences to users in a sequential
fashion. At any stage, the algorithm attempts to fit the user
in the noisiest dimension. If this user’s rate requirement
forces us to exceed the water filling level in this dimension,
the algorithm pours the remaining energy in the next noisy
dimension, and so on. Note that this pouring has to be done
within the constraint of the interlacing inequality, i.e., the new
set of eigenvalues \(¥) after the user & is added satisfies

AP S AFTY AW > AF D > a0 >,

The results of [3, Prop. 1] guarantee the existence of a
subroutine ¢ that takes as input a matrix A with eigenvalues
A5=1) and a set of prescribed eigenvalues A\(¥) that interlace
AE=1) “and outputs ¢ = ¢ (A4, A®)) such that eig(A + cc*) =
M%) We use this subroutine at each execution of Step 3 in
the following algorithm to put out a sequence.

Algorithm 11: Algorithm for Problem 1I

o Inputs: K < number of users, N « processing gain,

7 < user rate requirements, (0%, - ,01) « eig(¥).

« Initialization: Set

K N ~
Amax Hexp{QZrk} <H 0?) ,
i=1

k=1

Set AP o2 fork=0,1,--- ,K,andn =1,--- N
and A§5>H — Amax fOr k = 0,1,---, K. Set the user
index ¥ «— 1, d <« N. (The quantity d indexes the
dimension with the highest noise plus interference at the
current stage of design with value less than Ap,.,). Set
Ag « V, the unitary matrix that diagonalizes .

o Step 1. If k > K, stop.

o Step 2: Let

*
k =
n* (k) arg max_

{/\gﬁ_l) exp {2Nry} < )\max}
indicate the most noisy dimension in which user k fits.

. Case 2a): If n* (k) = d and A} Vexp {2Nr} =
Amax, then set Agj) — dmax TOr j = kk+1,--- K,
and d «— d — 1. Go to Step 3.

o Case 2(b): If n*(k) =d and

/\((ikfl) exp {2N7;} < Amaxs
then set
AD) A=)

Go to Step 3.

o Case 2(c): Else if n*(k) < d and

A exp{2NTy} = Ama,

-exp{2Nr} forj =k k+1,--- | K.

then set ) <—)\ff+_11) forn=d,d—1,--- ,n*(k),j =
k,---,K,and d — d— 1. Go to Step 3.

o Case 2(d): Else if n*(k) < d, and

/\Elk?kl)) - exp{2N7} < Amax,
then set )\ﬁlj) — Afﬁ:ll) forn=d,d—1,--- ,n*(k) +1,
j=k,---,K,and

)
A (k)
forj=k,--- K. Alsosetd«—d—1.

+ Step 3: Identify the vector ¢, = ¢ (Ap—1,A*®)). Then
set s, — ci/l|ckll, pr < (chex) /N. This provides the
sequence and power for user k. Finally, set A, «— Ax_1+
ckclh, k—k+1, and go to Step 1.

k—1 k—1
= AN exp{2Nre} - AN L Amae

]

A similar generalization holds for the sum capacity max-
imizing sequence allocation algorithm. The proof of validity
of these algorithms is omitted for brevity.

Algorithm 11 has a complexity of O(K N) floating point
operations and is numerically stable. This fact is proved for [3,
Algorithm 3] and can be extended to Algorithm 11. Tropp and
others [9] also provide a numerically stable sequence design
algorithm for Problem | whose complexity is O(K N) floating
point operations. An interesting property of Algorithm 11 is
that it guarantees optimality with at most 2.V —1 sequences, as
discussed in the next section, and will work for any ordering
of users.

IV. BOUNDS ON NUMBER OF SEQUENCES AND
MULTI-DIMENSIONAL SIGNALING

In this section we study the number of sequences for optimal
design.

A. 2N — 1 sequences suffice

We first argue, using the water-filling interpretation, that
2N — 1 sequences suffice regardless of the number of users
K. If K > 2N — 1, then some users share the same sequence
and hence will completely overlap with each other. But a
successive cancellation receiver enables us to receive data from
all such users if powers or rates are suitably assigned.

Theorem 12: There is an optimal sequence allocation with
at most 2V — 1 distinct sequences for both Problems | and I1.
Furthermore, if the Schur-minimal element results in L non-
interfering subsets of users, then there is an optimal sequence
allocation with at most 2N — L distinct sequences. O

To see this, observe that in Algorithm 11, at most two
eigenvalues differ in value after the addition of a user. A new
sequence is put out when either a dimension gets exceeded,
or when a first step is made in a new dimension. Since there
are at most N — 1 possible crossings, and N first steps, the
number of sequences is upper bounded by 2N — 1. If  and 3
do not admit a water-filling solution, then an execution of this
algorithm for the non-interfering subset j over its associated
N; dimensions yields at most 2V; — 1 distinct sequences.
Summing them across L partitions we get the upper bound
2N — L.



B. Two dimensional signaling and sufficiency of IV orthogonal
signals

We now show how to achieve sum capacity (respectively,
minimum sum power) by using at most N orthogonal se-
quences. The above algorithms confine each user to signal
along a single dimension. It is possible in some cases that
Algorithm 11 leads to a set of orthogonal sequences. The
following example illustrates this.

Example 13: Consider N = 3, ¥ = diag(8,5,2), and
K = 5. Let the five users have power constraints p =
(p1,p2,P3,P4,05) = (3,2,2,4,1) units/chip. Allocate rates
and sequences to these users so that the sum rate is maximized.

0
Assigning sequences in the increasing order of their indices,
Algorithm 11 results in the following sequence assignment.
User 1 is assigned the sequence (1,0, 0)¢, users 2 and 3 share
the sequence (0, 1,0)*, and users 4, 5 share (0,0, 1)*. Hence in
this example we achieve sum capacity through an orthogonal
sequence assignment. The key to attaining orthogonality is the
fact that on adding each user exactly one eigenvalue changes.
This property is captured precisely in the following definition.

Definition 14: Letz € R and y € RV. The vector z has a
water-filling partition of size NV over y if there is a partition of

the users {1,2 ,K} into N subsets Sy, Ss,---, Sy, such
that
e Tt i Yn
Z Tk + Yn — N 5
keS,
for n=1,2,---, N. The subsets Si,Ss,---,Sy will be re-

ferred to as the water filling partition. O

If the rate vector r has a water filling partition of size N over
7iv log (eig (X)), then ¥ and r admit a water filling solution.
Analogously if the power constraint vector p has a water filling
partition of size IV over eig (X), then X and p admit a water
filling solution.

Proposition 15: If the rate vector » has a water filling
partition of size N over 5% log (eig (X)), then N orthogonal
sequences are sufficient to attain the minimum sum power,
which is given by

K N ~ ZN o2
o 2 _ i=1 %
Prin = exp {2 ; Tk } <Zl:[1 o; ) =N 2

Analogously if the power constraint vector p has a water filling
partition of size IV over eig (X), then IV orthogonal sequences
are sufficient to attain the sum capacity given by

7271]—\71‘%) ——1og <nl:[10 )

@)

0

An execution of the algorithm that assigns sequences and
powers to all users in subset Sy before all users in subset
Sn_1, and so on, results in an orthogonal allocation. This is
because each subset fills exactly one dimension, after taking
into account the noise level in that dimension. The proposition

1
Csum = 5 1Og <ptot +

can also be proved directly. For user k£ € S, assign the
sequence e,. This will ensure users from across subsets do
not cause interference to each other. Power assigned to user
k is exactly equal to that needed to meet his rate requirement
via a successive interference cancellation scheme. It can be
shown that this orthogonal allocation achieves minimum sum
power. We omit the details.

Having derived a sufficient condition for optimality of NV
orthogonal sequences, we now discuss how to obtain this
condition from any arbitrary set of rate requirements. An
analogous statement holds for a set of power constraints.

Proposition 16: If ¥ and r admit a water-filling solution,
then r can be cast into a vector v’ of size K’ virtual users
where K < K' < K+ N — 1, and ' has a water-
filling partition of size N over ;% log eig (). Moreover 7/
is obtained by splitting K’ — K users into exactly two virtual
users each. O

Users are allocated sequences in decreasing order of their
rates. Power is poured to the required level in dimensions that
go in increasing order of noise power. It can be shown that
such a procedure ensures that a split user uses at most two
dimensions and therefore at most two sequences. Moreover,
at most N — 1 users are split into two virtual users each.

If ¥ and r do not admit a water-filling solution, at most N —
1 splits are required for a water-filling optimal solution. Some
users may signal along multiple dimensions. The resulting set
of sequences is orthogonal and of size N.
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