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Abstract— Close relationships between guessing functions and
length functions are established. Good length functions lead to
good guessing functions. In particular, guessing in the increasing
order of Lempel-Ziv lengths has certain universality properties
for finite-state sources. As an application, these results show that
hiding the parameters of the key-stream generating source in a
private key crypto-system may not enhance the privacy of the
system, the privacy level being measured by the difficulty in
brute-force guessing of the key stream.

I. INTRODUCTION

We consider the problem of guessing the realization of a
random variable and relate the required number of guesses to
a lossless code’s length function. Specifically, we sandwich the
number of guesses on either side by a suitable length function.
This directly establishes Arikan’s result [1] that the best value
of the guessing exponent is close to the average exponential
coding length for Campbell’s coding problem which is given
by Rényi entropy of appropriate order. Our approach also
shows that guessing based on lossless universal compressors
leads to good universal guessing strategies. Indeed, guessing
in the increasing order of Lempel-Ziv lengths for finite-state
sources and increasing description lengths for unifilar sources
achieves optimality in a sense made precise in the sequel.

In Section II we establish the relationship between guessing
and compression. In Section III we show that guessing based
on Lempel-Ziv lengths is universal. We end with an application
in Section IV where we show that hiding parameters of a key-
stream generating source, even if the source comes from a
fairly large uncertainty set, does not enhance the privacy of
the crypto-system.

Detailed proofs and extensions to guessing with key rate
constraints can be found in a more recent work [2].

II. GUESSING AND SOURCE COMPRESSION

Let X be a finite alphabet set. A guessing function

G : X→ {1, 2, · · · , |X|}
is a bijection that denotes the order in which the elements of
X are guessed. IfG(x) = i, then theith guess isx. A length
function

L : X→ N

is one that satisfies Kraft’s inequality
∑

x∈X
exp{−L(x)} ≤ 1. (1)

To each guessing functionG, we associate a probability mass
function (PMF)QG onX and a length functionLG as follows.

Definition 1: Given a guessing functionG, we say

QG(x) = c−1 ·G(x)−1, ∀x ∈ X, (2)

is the PMF onX associated withG. The quantityc in (2) is
the normalization constant. We sayLG defined by

LG(x) = d− log QG(x)e , ∀x ∈ X, (3)

is the length function associated withG.
Observe that

c =
∑

a∈X
G(a)−1 =

|X|∑

i=1

1
i
≤ 1 + ln |X|, (4)

and therefore the PMF in (2) is well-defined. We record the
intimate relationship between these associated quantities in the
following theorem.

Theorem 2:Given a guessing functionG, the associated
quantities satisfy

c−1 ·QG(x)−1 = G(x) ≤ QG(x)−1, (5)

LG(x)− 1− log c ≤ log G(x) ≤ LG(x). (6)

Proof: The first equality in (5) follows from the definition
in (2), and the second inequality from the fact thatc ≥ 1.

The upper bound in (6) follows from the upper bound in
(5) and from (3). The lower bound in (6) follows from

log G(x) = log
(
c−1 ·QG(x)−1

)

= − log QG(x)− log c

≥ (d− log QG(x)e − 1)− log c

= LG(x)− 1− log c.

We now associate a guessing functionGL to each length
function L.

Definition 3: Given a length functionL, the associated
guessing functionGL guesses in the increasing order ofL-
lengths. Sequences with the sameL-length are ordered using
an arbitrary fixed rule, say the lexicographic order. We also
define the associated PMFQL on X to be

QL(x) =
exp{−L(x)}∑

a∈X exp{−L(a)} . (7)



Theorem 4:For a length functionL, the associated PMF
and the guessing function satisfy the following:

1) GL proceeds in the decreasing order ofQL-
probabilities;

2)

log GL(x) ≤ log QL(x)−1 ≤ L(x). (8)

Proof: The first statement is clear from the definition of
GL and from (7).

Letting 1{E} denote the indicator function of an eventE,
we have as a consequence of statement 1) that

GL(x) ≤
∑

a∈X
1 {QL(a) ≥ QL(x)}

≤
∑

a∈X

QL(a)
QL(x)

= QL(x)−1, (9)

which proves the left inequality in (8). This inequality was
known to Wyner [3].

The last inequality in (8) follows from (7) and Kraft’s
inequality (1) as follows:

QL(x)−1 = exp{L(x)} ·
∑

a∈X
exp{−L(a)} ≤ exp{L(x)}.

The inequalities between the associates in (6) and (8)
indicate the direct relationship between guessing moments and
Campbell’s coding problem [4] and that the Rényi entropies
are the optimal growth exponents for guessing moments.
They also establish that the minimum expected value of the
logarithm of the number of guesses is close to the Shannon
entropy.

We now demonstrate other relationships between guessing
moments and average exponential coding lengths which will
be useful in establishing universality properties.

Theorem 5:Let L be any length function onX, GL

the guessing function associated withL, P a PMF on
X, ρ ∈ (0,∞), L∗ the length function that minimizes
E [exp{ρL∗(X)}], where the expectation is with respect to
P , G∗ the guessing function that proceeds in the decreasing
order ofP -probabilities and therefore the one that minimizes
E [G∗(X)ρ], andc as in (4). Then

E [GL(X)ρ]
E [G∗(X)ρ]

≤ E [exp{ρL(X)}]
E [exp{ρL∗(X)}] · exp{ρ(1 + log c)}. (10)

Analogously, letG be any guessing function, andLG its
associated length function. Then

E [G(X)ρ]
E [G∗(X)ρ]

≥ E [exp{ρLG(X)}]
E [exp{ρL∗(X)}] ·exp{−ρ(1+log c)}. (11)

Proof: Observe that

E [exp{ρL(X)}]
≥ E [GL(X)ρ] (12)

≥ E [G∗(X)ρ]
≥ E [exp{ρLG∗(X)}] exp{−ρ(1 + log c)} (13)

≥ E [exp{ρL∗(X)}] exp{−ρ(1 + log c)},
where (12) follows from (8), and (13) from the left inequality
in (6). The result in (10) immediately follows. A similar
argument shows (11).

We end this section by recording the following rather
obvious corollary to Theorems 2 and 4. We use the short form
{L(x) ≥ B} to denote the set{x ∈ X | L(x) ≥ B}.

Corollary 6: For a givenG, its associated length function
LG, and anyB ≥ 1, we have

{LG(x) ≥ B + 1 + log c}
⊆ {G(x) ≥ exp{B}}
⊆ {LG(x) ≥ B} . (14)

Analogously, for a givenL, its associated guessing function
GL, and any positiveB ≥ 1, we have

{GL(x) ≥ exp{B}} ⊆ {L(x) ≥ B}. (15)

III. U NIVERSAL GUESSING

In this section, we give an application of the above in-
clusions to conclude a universality property of guessing in
the increasing order of Lempel-Ziv lengths [5]. We also
show that universality for Campbell’s coding problem implies
universality for guessing.

Let xn = (x1, · · · , xn) be a string taking values inXn,
where|X| < ∞. The stringxn needs to be guessed. Letsn =
(s1, · · · , sn) be another sequence taking values inSn where
|S| < ∞. Let s0 ∈ S be a fixed initial state. A probabilistic
sourcePn is finite-state with|S| states [6] if the probability
of observing the sequence pair(xn, sn) is given by

Pn(xn, sn | s0) =
n∏

i=1

P (xi, si | si−1),

where P (xi, si | si−1) is the joint probability of letterxi

and statesi given the previous statesi−1. Typically, the letter
sequencexn is observable and the state sequencesn is not.
We will let H denote the entropy-rate of a finite-state source,
i.e.,

H
∆= − lim

n→∞
n−1

∑

xn∈Xn

Pn(xn | s0) log Pn(xn | s0).

Let ULZ : Xn → N be the length function for the Lempel-
Ziv code [5]. The following theorem due to Merhav [6] indi-
cates that the Lempel-Ziv algorithm is asymptotically optimal
in achieving the minimum probability of buffer overflow.

Theorem 7 (Merhav [6]):For any length functionLn,
every finite-state sourcePn, everyBn ∈ (nH, n log |X|) where



H is the entropy-rate of the sourcePn, and all sufficiently
largen,

Pn{ULZ(Xn) ≥ Bn + nε(n)}
≤ (1 + δ(n)) · Pn{Ln(Xn) ≥ Bn} (16)

where ε(n) = Θ(1/
√

log n) is a positive sequence that
depends on|X| and |S|, andδ(n) = n2 exp{−nε(n)}.

Theorem 7 is a variant of [6, Th. 1]. Merhav states [6, Th.
1] for Bn = nB for a constantB ∈ (H, log |X|), but his proof
is valid for any sequenceBn ∈ (nH, n log |X|).

Let GLZ be the short-hand notation for the more cum-
bersomeGULZ

, the guessing function associated withULZ .
We show thatGLZ has the following asymptotic optimality
property for large deviations performance. Letcn be as given
in (4) with Xn replacingX.

Theorem 8:For any guessing functionGn, every finite-
state sourcePn, every B ∈ (H, log |X|) where H is the
entropy-rate of the sourcePn, and all sufficiently largen,

Pn

{
n−1 log GLZ(Xn) ≥ B + ε(n) + γ(n)

}

≤ (1 + δ(n)) · Pn

{
n−1 log Gn(Xn) ≥ B

}
(17)

whereε(n) and δ(n) are the sequences in (16), andγ(n) =
(1 + log cn)/n = Θ(n−1 log n).

Proof: Observe that

(1 + δ(n))Pn {Gn(Xn) ≥ exp{nB}}
≥ (1 + δ(n))Pn {LGn(Xn) ≥ nB + 1 + log cn} (18)

≥ Pn {ULZ(Xn) ≥ nB + 1 + log cn + nε(n)} (19)

≥ Pn {GLZ(Xn) ≥ exp{n(B + ε(n) + γ(n))}}, (20)

where (18) follows from the first inclusion in (14), and (19)
from (16) withBn = nB+1+log cn. The last inequality (20)
follows from (15). This proves the theorem.

Observe thatε(n) + γ(n) = Θ(1/
√

log n). For unifilar
sources (wheresi is a deterministic function of(xi, si−1),
and given givensi−1 this function is a bijection), a stronger
statement can be made when the number of states|S| is known.
In particular, ε(n) + γ(n) = Θ(n−1 log n), and guessing
for this class of sources proceeds in the order of increasing
description lengths.

We now demonstrate a competitive optimality property for
GLZ . From [6, eqn. (28)] extended to finite-state sources, we
have for any competing codeLn

Pn{ULZ(Xn) > Ln(Xn) + nε(n)}
≤ Pn{ULZ(Xn) < Ln(Xn) + nε(n)} (21)

whereε(n) = Θ((log log n)/(log n)). From (8), we get

ULZ(xn) ≥ log GLZ(xn),

and from (6), we obtain

log G(xn) ≥ LG(xn)− 1− log cn.

We therefore conclude that

{log GLZ(xn) > log G(xn) + n(ε(n) + γ(n))}
⊆ {ULZ(xn) > LG(xn) + nε(n)}

and that

{ULZ(xn) < LG(xn) + nε(n)}
⊆ {log GLZ(xn) < log G(xn) + n(ε(n) + γ(n))}.

From these two inclusions and (21), we easily deduce the
following result.

Theorem 9:For any finite-state source and any competing
guessing functionG, we have

Pn{log GLZ(Xn) > log G(Xn) + nε′(n)}
≤ Pn{log GLZ(Xn) < log G(Xn) + nε′(n)}

whereε′(n) = ε(n) + γ(n).
Yet again, for unifilar sources, the above sequence of

arguments for minimum description length coding and [6, eqn.
(28)] imply that we may takeε′(n) = Θ(n−1 log n).

We now show that universality in the average exponential
coding rate sense implies the existence of a universal guess-
ing strategy that achieves the optimal exponent for guessing
moments.

Consider a class of sources. For each source in the class,
let Pn be its restriction to strings of lengthn and let L∗n
denote an optimal length function that attains the minimum
value E [exp {ρLn(Xn)}] among all length functions, the
expectation being with respect toPn. On the other hand, let
Ln be a sequence of length functions for the class of sources
that does not depend on the actual source within the class.
Suppose further that the length sequenceLn is asymptotically
optimal, i.e.,

lim
n→∞

1
nρ

logE [exp{ρLn(Xn)}]

= lim
n→∞

1
nρ

logE [exp{ρL∗n(Xn)}] .

for every source belonging to the class.Ln is thus “universal”
for (i.e., asymptotically optimal for all sources in) the class.
An application of (10) and the fact(1+log cn)/n → 0 indicate
that the sequence of guessing strategiesGLn is asymptotically
optimal for the class, i.e.,

lim
n→∞

1
nρ

logE [GLn(Xn)ρ]

= lim
n→∞

1
nρ

logE [G∗(Xn)ρ] .

Arikan and Merhav [7] provide a universal guessing strategy
for the class of discrete memoryless sources (DMS). For
the class of unifilar sources with a known number of states,
the minimum description length encoding is asymptotically
optimal for Campbell’s coding length problem (see Merhav
[6]). It follows as a consequence of the above argument that
guessing in the increasing order of description lengths is
asymptotically optimal for this class. The left side of (10)
is the extra factor in the expected number of guesses (relative
to the optimal value) due to lack of knowledge of the specific
source in class. Our prior work [8] characterizes this loss as
a function of the uncertainty class.



IV. A N APPLICATION

Consider a crypto-system using which Alice wishes to send
a secret message to Bob. The message is encrypted using
a private key stream. Alice and Bob share this private key
stream. The key stream is generated using a random and
perhaps biased source. The cipher-text is transmitted through a
public channel. Eve, the eavesdropper, guesses one key stream
after another until she arrives at the correct message. Eve can
guess any number of times, and she knows when she has
guessed right. She might know this, for example, when she
obtains a meaningful message.

The expected number of Eve’s guesses grows exponentially
with an optimal growth exponent given by the Rényi entropy
of the source of order1/2 [1]. From Alice’s and Bob’s points
of view, this growth exponent is a measure of goodness of
their key stream generating source. Merhav and Arikan [9]
have generalized this result to systems with specified key rates.
Recently, in [8] we looked at the scenario where Alice and Bob
have abag of sourcesfrom which the source that generates
the key stream is chosen. While the sources in the bag are
known to Eve, she is unaware of the exact source chosen.

For example, Alice and Bob may realize that they have a
bad source, but have no other option than to use this source
to generate their private key stream. The following question
then arises naturally: does hiding the parameters of this source
enhance privacy.

We showed in [8] that even if the source is any discrete
memoryless source whose parameters are unknown to Eve, she
has a guessing strategy that is asymptotically optimal. In other
words, Eve’s number of guesses to arrive at the correct key
stream grows exponentially with the length of the key stream
with an exponential growth rate asymptotically the same as
that obtainable with knowledge of source statistics. Eve’s lack
of knowledge of the chosen memoryless source’s parameters
makes the crypto-system marginally more secure, but the extra
work Eve has to do to guess right is asymptotically negligible.
In the sense of the growth exponent of the expected number
of guesses,

lim inf
n→∞

1
n

logE [Gn(Xn)] , (22)

the system is not any more secure due to Eve’s lack of
knowledge of the source parameters. This negative result does
not change if the measure of security is modified to moments
of guessing of orderρ ∈ (0,∞) as measured by their exponent
([8], [7])

lim inf
n→∞

1
nρ

logE [Gn(Xn)ρ] , (23)

or even when the measure of security is modified to large
deviations performance [7] as indicated by the rate at which
the tail probability vanishes:

F (B; G) = − lim inf
n→∞

1
n

log Pr {Gn(Xn) ≥ exp{nB}} ,

(24)
whereG = {Gn : n ≥ 1}, andGn is a guessing strategy on
strings of lengthn.

Our universality results of this paper imply that the crypto-
system cannot be made more secure, based on the above
quantitative measures, even if the key stream generating source
comes from a wider class of sources. Specifically, we showed
that the attacker has an asymptotically optimal guessing strat-
egy when the key stream generating source is chosen from
unifilar sources of given order in the senses of (23) and (24).
A similar negative result holds in the sense of (24) for finite-
state sources of arbitrary order.

As shown in [8] there does exist an uncertainty set for which
hiding the information enhances privacy in the sense of (22).
The set of arbitrarily varying sources is one example. Sources
from this uncertainty set are not finite-state sources and hence
results from this paper are not applicable to such sources.
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