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Abstract— Close relationships between guessing functions and To each guessing functiofd, we associate a probability mass
length functions are established. Good length functions lead to fynction (PMF)Q¢ onX and a length functiorL.; as follows.

good guessing functions. In particular, guessing in the increasing Definition 1: Given a guessing functiof, we say
order of Lempel-Ziv lengths has certain universality properties ) '

for finite-state sources. As an application, these results show that Qc(z) = 1. G(l‘)_l Vr € X 2)
hi(_:iing the parameters of the key-stream generating_source in a ’ ’
private key crypto-system may not enhance the privacy of the s the PMF onX associated withG. The quantityc in (2) is

system, the privacy level being measured by the difficulty in the normalization constant. We sdy: defined b
brute-force guessing of the key stream. ) y

I. INTRODUCTION La(z) = [~logQc(@)], Vo €X, )
We consider the problem of guessing the realization ofi@ the length function associated wigi O
random variable and relate the required number of guesses t&bserve that
a lossless code’s length function. Specifically, we sandwich the IX| 1
number of guesses on either side by a suitable length function. c= Z G(a)™' = Z - <1+ mn|X|, 4)
This directly establishes Arikan’s result [1] that the best value a€X im1 !

of the guessing exponent is close to the average exponeng‘iﬁlb therefore the PMF in (2) is well-defined. We record the

coding length for Campbell's coding problem which is givefhimate relationship between these associated quantities in the
by Rényi entropy of appropriate order. Our approach a|3r8||owing theorem.

shows that guessing based on lossless universal COMPresso§§ o orem 2:Given a guessing function, the associated
leads to good universal guessing strategies. Indeed, guesﬂﬂgntities satisfy ’
in the increasing order of Lempel-Ziv lengths for finite-state

sources and increasing description lengths for unifilar sources ! Qa(x) ™ =G(x) < Qglx)™t, (5)

achieves optimality in a sense made precise in the sequel. Le(x) —1—loge < log G(z) < La(x). (6)
In Section Il we establish the relationship between guessing

and compression. In Section Il we show that guessing based U

on Lempel-Ziv lengths is universal. We end with an application ~ Proof: The first equality in (5) follows from the definition
in Section IV where we show that hiding parameters of a ket (2), and the second inequality from the fact that 1.
stream generating source, even if the source comes from dhe upper bound in (6) follows from the upper bound in
fairly large uncertainty set, does not enhance the privacy &) and from (3). The lower bound in (6) follows from
the crypto-system. _ 1 1

Detailed proofs and extensions to guessing with key rate logG(x) = log(c™ - Qa(x)™)
constraints can be found in a more recent work [2]. —log Qg(x) —logc

> ([~logQc(x)] — 1) —loge
Il. GUESSING AND SOURCE COMPRESSION
= Lg(z)—1-loge.
Let X be a finite alphabet set. A guessing function
|
G:X—{1,2,-- X[} We now associate a guessing functié, to each length

fblpction L.
Definition 3: Given a length functionL, the associated
guessing functionG; guesses in the increasing order bf

is a bijection that denotes the order in which the elements
X are guessed. I€/(x) = 4, then theith guess isc. A length

function
I X lengths. Sequences with the saidength are ordered using
X —=N . . - -
an arbitrary fixed rule, say the lexicographic order. We also
is one that satisfies Kraft's inequality define the associated PMF;, on X to be
> exp{—L(x)} <1. 1) Qn(x) = exp{—L(z)} @

vex Yaexexp{-L(a)}’



| Proof: Observe that

Theorem 4:For a length functionZ, the associated PMF E [exp{pL(X)}]

and the guessing function satisfy the following: > E[GL(X)"] (12)
1) G proceeds in the decreasing order d@dy- > E[G*(X)]
2) probabilities; > Elexp{pLe-(X)} exp{—p(1 +1logc)} (13)
> —
log G, (2) < log Q1 (x)~) < L(x). ®) > Efexp{pL™(X)}] exp{—p(1 +log )},
where (12) follows from (8), and (13) from the left inequality
“lin (6). The result in (10) immediately follows. A similar
Proof: The first statement is clear from the definition ofrgument shows (11). n
G and from (7). o _ We end this section by recording the following rather
Letting 1{£} denote the indicator function of an evelit obvious corollary to Theorems 2 and 4. We use the short form
we have as a consequence of statement 1) that {L(x) > B} to denote the sefz € X | L(z) > B}.
Corollary 6: For a givenG, its associated length function
Gr(z) < Z 1{Qr(a) > Qr(2)} L¢, and anyB > 1, we have
aeX
< Z a {Lg(xz) > B+1+logc}
S Q) C {G(x) = exp{B}}
= Qi)Y ©) € {Lg(z) = B}. (14)

Analogously, for a giverL,, its associated guessing function

which proves the left inequality in (8). This inequality was %, and any positive3 > 1, we have

known to Wyner [3].

The last inequality in (8) follows from (7) and Kraft's {G(z) > exp{B}} C {L(z) > B}. (15)
inequality (1) as follows: .
Qr(x)™" =exp{L(z)}- D _exp{~L(a)} < exp{L(2)} lIl. UNIVERSAL GUESSING
aeX

In this section, we give an application of the above in-
] N ) ) B (lusions to conclude a universality property of guessing in
The inequalities between the associates in (6) and @k increasing order of Lempel-Ziv lengths [5]. We also

indicate the direct relationship between guessing moments &g that universality for Campbell's coding problem implies
Campbell's coding problem [4] and that theef®/i entropies unlversallty for guessing.

are the optimal growth exponents for guessing moments. et ;n — (z,,.--,x,) be a string taking values K",

They also establish that the minimum expected value of tWhere|X\ < co. The stringz™ needs to be guessed. L&t =

logarithm of the number of guesses is close to the Shann@n ., sn) be another sequence taking valuesSihwhere

entropy. _ _ [S| < oo. Let sy € S be a fixed initial state. A probabilistic
We now demonstrate other relationships between guessiifiirce P, is finite-state with|S| states [6] if the probability

moments and average exponential coding lengths which Wil observing the sequence pgit™, s”) is given by
be useful in establishing universality properties.

Theorem 5:Let L be any length function onX, Gp P(z", 5" | so) = Hp i, 8i | sic1),
the guessing function associated with, P a PMF on ’
X, p € (0,00), L* the length function that minimizes

. where P(x;,8; | s; is the joint probability of letterz;
Elexp{pL"(X)}], where the expectation is with respect ¢ d statés glve|n thelz)rewous Jstatﬁp Typlczlly the letter
P, G* the guessing function that proceeds in the decreasift g ‘ L ’

order of P-probabilities and therefore the one that minimize\%\lguemz I;Sdgszte;\{cﬁzliring theagzag]? Sfegligaﬁgfe n(())t ce
E[G*(X)?], andc as in (4). Then w ropy-r afintte-s SOUrce,

ie.,
E[GL(X)?] _ Elexp{pL(X)}]
E[G*(X)r] ~ E [exp{pL*(X)}]

Analogously, letG' be any guessing function, anfl; its Let Uy : X" — N be the length function for the Lempel-

-exp{p(1 +1logc)}. (10) H2 — lim n? Z x" | s0)log P (z" | so)-

anexn

associated length function. Then Ziv code [5]. The following theorem due to Merhav [6] indi-
EIG(X)? E Lo (X cates that the Lempel-Ziv algorithm is asymptotically optimal
E [G*( X)P] > ]E[eXp{po( )}] -exp{—p(1+logc)}. (11) in achieving the minimum probability of buffer overflow.
(G (X)7] [exp{pL*(X)}] Theorem 7 (Merhav [6]):For any length functionL,,

[0 every finite-state sourck,, everyB,, € (nH,nlog |X|) where



H is the entropy-rate of the sourde,, and all sufficiently and that

largen,
. {Urz(x") < Lg(z™) + ne(n)}
Prllnz(X7) 2 Bu + et} C {logGrz(a") <105 G(a") + n(e(n) +7(n))}.
< (146(n)) - Po{Ln(X™) = By} (16) . . .

) N From these two inclusions and (21), we easily deduce the
where e(n) = O(1/+/logn) is a positive sequence thatfollowing result.
depends onX| and|S|, andd(n) = n* exp{—ne(n)}. “l " Theorem 9:For any finite-state source and any competing

Theorem 7 is a variant of [6, Th. 1]. Merhav states [6, T uessing functiorG, we have

1] for B,, = nB for a constanB € (H, log |X]), but his proof ’

is valid for any sequenc®,, € (nH,nlog|X]). P {logGrz(X™) > log G(X™) + ne'(n)}

Let G1z be the short-hand notation for the more cum- < P{logGrz(X") <log G(X™) + ne'(n)}
bersomeGy, ,, the guessing function associated wiih, z.
We show thatG;, has the following asymptotic optimality Wheree’(n) = (n) +~(n). O
property for large deviations performance. lgtbe as given ~ Yet again, for unifilar sources, the above sequence of
in (4) with X" replacingX. arguments for minimum description length coding and [6, eqn.

Theorem 8:For any guessing functioi?,,, every finite- (28)] imply that we may take’(n) = ©(n""logn).
state sourceP,, every B € (H,log|X|) where H is the ~ We now show that universality in the average exponential
entropy-rate of the sourcg,, and all sufficiently larges, coding rate sense implies the existence of a universal guess-
_ n ing strategy that achieves the optimal exponent for guessing
P, {n~Mlog Grz(X") > B1+ e(n) +7(n)} moments.
< (146(n))- Po{n 'logG,(X") > B} (17)  Consider a class of sources. For each source in the class,

wheres(n) and §(n) are the sequences in (16), anth) = let P, be its restriction to strings of length and let L},

(1+logey)/n = O(n~'logn).  denote an optimal length function that attains the minimum
Proof: Observe that value E [exp {pL,(X™)}] among all length functions, the
expectation being with respect #8,. On the other hand, let
(14 0(n) P {Gn(X") = exp{nB}} L., be a sequence of length functions for the class of sources

>(1+d6n)P{Lg, (X")>nB+1+loge,} (18) that does not depend on the actual source within the class.
> P {Upz(X") > nB+1+loge, +ne(n)}  (19) Suppose further that the length sequeiigels asymptotically

n optimal, i.e.,
> P {Grz(X") = exp{n(B+<(n) +(n)}}, 20)
L - .1 n
where (18) follows from the first inclusion in (14), and (19) Jim o log E [exp{pLy(X")}]
from (16) with B,, = nB+1+log c,,. The last inequality (20) o
follows from (15). This proves the theorem. [ | = lim — logE [exp{pL; (X™)}].
n—oo NP

Observe thatz(n) + y(n) = ©(1/yIogn). For unifilar
sources (wheres; is a deterministic function ofz;,s; 1), for every source belonging to the clags, is thus “universal”
and given givens;_; this function is a bijection), a strongerfor (i.e., asymptotically optimal for all sources in) the class.
statement can be made when the number of st8tésknown. An application of (10) and the fa€t +logc,)/n — 0 indicate
In particular, e(n) + v(n) = O(n~!'logn), and guessing that the sequence of guessing strategigs is asymptotically
for this class of sources proceeds in the order of increasiagtimal for the class, i.e.,
description lengths.

. 1 n
We now demonstrate a competitive optimality property for nlggo " log E[G, (X™)”]
Grz. From [6, egn. (28)] extended to finite-state sources, we P 1
have for any competing codg,, = lim e log E[G*(X™)"].

Pu{Upz(X") > Ln(X") + ne(n)} Arikan and Merhav [7] provide a universal guessing strategy
< P {Urz(X") < Ln(X")+ne(n)}  (21) for the class of discrete memoryless sources (DMS). For
the class of unifilar sources with a known number of states,

wheree(n) = O((loglogn)/(logn)). From (8), we get > > Wi !
the minimum description length encoding is asymptotically

Urz(z") = log Grz(z"), optimal for Campbell's coding length problem (see Merhav
and from (6), we obtain [6]). It follows as a consequence of the above argument that
guessing in the increasing order of description lengths is
log G(2") > Lg(z™) — 1 —logcy. asymptotically optimal for this class. The left side of (10)
We therefore conclude that is the extra factor in the expected number of guesses (relative
to the optimal value) due to lack of knowledge of the specific
{log Grz(2") > log G(z"™) + n(e(n) +v(n))} source in class. Our prior work [8] characterizes this loss as

C {Upz(x") > Lg(z™) +ne(n)} a function of the uncertainty class.



IV. AN APPLICATION Our universality results of this paper imply that the crypto-
System cannot be made more secure, based on the above

Consider a crypto-system using which Alice wishes to se L . .
ntitative measures, even if the key stream generating source

a secret message to Bob. The message is encrypted usiH - o
a private key stream. Alice and Bob share this private k es from a wider class of sources. Specifically, we showed

stream. The key stream is generated using a random Ihat the attacker has an asymptotically optimal guessing strat-

perhaps biased source. The cipher-text is transmitted throug‘FQé(,IWhen the ke}y ;treamdgeqerzﬁing source fis chosedn from
public channel. Eve, the eavesdropper, guesses one key strggm ar sources ot given order in the senses of (23) an . (_24)'
after another until she arrives at the correct message. Eve £aijimilar negative result holds in the sense of (24) for finite-
guess any number of times, and she knows when she fifde sources of arbitrary order.

guessed right. She might know this, for example, when she”s shown in [8] there does exist an uncertainty set for which

obtains a meaningful message. hiding the info_rma_tion en_hances privqcy in the sense of (22).
The expected number of Eve’s guesses grows exponentiz%l_ e seF of arb|trquly varying sources Is one example. Sources

with an optimal growth exponent given by thémi entropy rom this uncer.tamty set are not f|n|t_e-state sources and hence

of the source of ordet /2 [1]. From Alice’s and Bob's points results from this paper are not applicable to such sources.

of view, this growth exponent is a measure of goodness of ACKNOWLEDGMENT
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