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Abstract— We study the problem of decentralized sequential
change detection with conditionally independent observations.
The sensors form a star topology with a central node called fusion
center as the hub. The sensors transmit a simple function of
their observations in an analog fashion over a wireless Gaussian
multiple access channel and operate under either a power
constraint or an energy constraint. Simulations demonstrate
that the proposed techniques have lower detection delays when
compared with existing schemes. Moreover we demonstrate that
the energy-constrained formulation enables better use of the total
available energy than a power-constrained formulation.

I. INTRODUCTION

Wireless sensor networks can benefit from the broadcast and
multi-access nature of wireless channels. Keeping this in mind,
we design analog communication schemes over a discrete-
time Gaussian multiple access channel (GMAC). In particular,
we are interested in using such a scheme for decentralized
change detection, i.e, detection of a change in hypothesis
over a wireless channel. While we focus on sequential change
detection, our algorithms can be easily extended to sequential
hypothesis testing. We consider a star topology with a central
node called the fusion center as the hub. For simplicity, we
assume a change from one Gaussian distribution to another,
where both distributions have the same variance but different
means. Our development in this paper can be extended to M
hypotheses and arbitrary (known) distributions for the different
hypotheses.

In order to exploit the superposition available in the GMAC,
the sensors make an affine transformation of the observed
data and transmit the output in an analog fashion over the
GMAC. The motivation for using an affine transformation,
even though it may be suboptimal in the present setting, is
that the log-likelihood ratio is a sufficient statistic for the cen-
tralized change detection problem; for Gaussian observations,
this turns out to be an affine function of the observations.
Superposition in the GMAC provides a noisy version of this
sufficient statistic.

We consider two cases: the sensors operate under either a
power constraint or an energy constraint. The latter one is a
better model for optimization because each sensor in reality is
endowed with a constant total energy E and each transmission
expends a certain amount of energy from this energy bank.
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This effectively captures both performance requirements and
system costs in the optimization problem.

We now discuss relevant prior work. Page [1] studied change
detection in a centralized setting. Shiryayev [2] studied the
same problem in a Bayesian setting and provided a Markov
decision framework. Veeravalli [3] used dynamic program-
ming to solve the decentralized change detection problem with
communication constraints that model transmission across a
channel. Prasanthi [4] (see also [5]) considered the overall
delay due to both random access and decision making. Our
work differs from that of Veeravalli [3] and Prasanthi [4],
[5] because we propose an analog communication strategy
that exploits correlation in sensor observations and reduces
decision delay.

Mergen and Tong [6] proposed a physical layer fusion
technique called type-based multiple access for estimating
a parameter over a GMAC. Their scheme also exploits the
superposition available in the GMAC in a parameter estima-
tion setting. Ertin and Potter [7] considered generalized cost
functions that combine both the relative risks of decisions
and the computational burden incurred in computing test
statistics for automatic target recognition algorithms. This is
mathematically similar to the energy-constrained formulation
in Section IV.

The paper is organized as follows. In Section 1l, we for-
mulate the change detection problem and solve it when the
sensors have a power constraint. In Section Ill, we compare
our scheme with that of Veeravalli [3]. In Section IV, we
consider the energy-constrained formulation and compare this
with the constant power case of Section II.

Il. PHYSICAL LAYER FUSION FRAMEWORK

In this section, we focus on the change detection problem in
a Bayesian setting. We obtain an optimal stopping rule and op-
timal parameters of the affine transformation for transmission
over a GMAC, subject to a power constraint.

A. Mathematical Formulation
X ~ N(6,0?) indicates that X is Gaussian with mean ¢
and variance o2,

o The system has L sensors. At time k, sensor .S; makes an
observation X , ~ N (6, ogbs), where 6y, is mq before



the change and m; after the change, i.e,
Xk =0k + Zik, @

where Z; , ~ N(0,0%,), 1=1,...,L.

Each sensor transmits a function of its observation
é1.16(X1.1k) = Y1 k. The function ¢; ;. is an affine transfor-
mation that is the same for all sensors, i.e.

b1k () = ap(x — ck). @)

ay, and ¢ are parameters for optimal control.
The GMAC output received at the fusion center is

L

Y = > Yk + Zwacks ®)
=1

where Zyac k ~ /\/’(O,o,%,AC), is independent and iden-
tically distributed (iid), and is independent of all other
guantities.

A change from hypothesis H, to H; occurs at random
time I'. T has the geometric distribution,

Pr{l =kl >0} =p(1—p)k L, k>0, (4)

and Pr{l' = 0} = v is the probability that the change
occurred before the first observation is made.

The observations at each sensor are independent, condi-
tioned on the change time. Furthermore, the observations
are independent from sensor to sensor, conditioned on the
change time. R

At the fusion center, form Y}, as follows:

~ 1 s~
Y., = — (Yk + Lakck) (5)
LOLk
= O+ Zvac,k; (6)
where
= 1 & ZMAC, k
Z ==Y Z == O N(0, 02
MACk = T ; Lk + Lo N(0,0%),
and ) )
2 _ %ob IMAC
Tk = jzs aiLQ' )

The fusion center chooses an action ax_; € A at time
k — 1 from set of actions (controls) available

A = {stop} U {(continue, a,¢) : & € Ry, c € R}.

If a1 = stop, the fusion centre decides to stop. If
ar—1 = (continue, oy, ¢y ), the fusion center decides to
take another sample (the kth), and all sensors transmit
é1,16(X1,1) with parameters (o, k).

As explained in [8], we assume a quasi-classical infor-
mation structure, i.e., the action a;_; depends on

Iy = {Go,f/l,(ll,?m---7(11@—2,?1@—1}- (8)

Even though the sensors may have local memory of past
observations, our framework does not make use of this

additional information. The fusion center feeds back the
action parameters a1 to the sensors.
o The average power constraint at each sensor is given by

E[of (Xip — ) la| < P, )
which simplifies to
O‘i [Ugbs +E [(ek - Ck)2 |Ik_1H <P

In Section 1V, we will relax this and impose an expected
total energy constraint.

o The fusion center policy 7 is a sequence of proposed
(deterministic) actions m = (mx—1,k > 1), where mj_4
is a function m,_1 : Ir_1 — A. Let 7 be the first instant
when the fusion center decides to stop.

Problem 1 (Change Detection with Delay Penalty):
Minimize the expected detection delay, Epp = E (7 — F)*,
where z+ = max(0,z), subject to an upper bound on the
probability of false alarm Pra = Pr{r < T'} and the power
constraint in (10). O

In order to solve Problem 1, Shiryayev [2] proves that it is
sufficient to solve Problem 2 given below. The optimal policy
for Problem 1 is a solution to Problem 2 at an appropriate
value of A in (11).

Problem 2 (Change Detection with a Bayes Cost):
Minimize the Bayes cost, R(X), over all admissible policies
m, where

(10)

R(A) = Pea+ AEpp
T—1
= Pr{l'>7}+)E | Y Pr{l'< klk}] (11)
k=0

and A > 0 is the cost of unit delay. The expectation is taken
with respect to the probability measure induced by the policy
. ]
The equality in (11) follows from a result proved by Shiryayev
in [2, pp.195-196]. This additive (with time) form of the
Bayes cost in (11) along with the assumption of quasi-classical
information structure makes Problem 2 amenable to a solution
based on dynamic programming.

B. Solution to Problem 2

We first restrict the stopping time 7 to a finite horizon 7.
Using the result from Bertsekas [9, Ch.1, Prop.3.1] %, the cost-
to-go functions can be written as

Ji(Ir) = Pr{l'>T|Ir}, (12)
JT(L) = min { Pr{l" > k|I;}, A\Pr{T < k| ;)
+ omin B[ Teln] ) @9
Ok41,Ck+1

for 0 <k <T — 1. We use “min” here anticipating Theorem
4 below which identifies a minimizing set of controls. We
use J to denote cost-to-go functions of the state I and let

1The above problem can be cast into a Markov decision problem with
complete observations; this is implicitly shown in [3].



J denote cost-to-go functions of a sufficient statistic given in
the following lemma.

Lemma 1: J,Z(Ik) depends on I only through the suffi-
cient statistic

pi = Pr{T' < K1}, (14)

the a posteriori probability that the change has occurred. We
may therefore write J' (1) = JI (ug). O
Observe that pg = v and that

A
B =Pr{l < k+1|I1} = px + (1 — px)p-

It can be shown that the following recursive equation holds
for py.

pk1 = Pr{l < k+ 1[I 41}

_ Br iy e (Gr11) (16)

/kamlyak+1 (?}k+1) + (1 - ﬂk)fm07ak+1 (ykJrl)
9(Ort1, et 1, k)
P(Gkt1, o1, k)

(15)

>

(17)

where

1>

1 1 gk 1 — mi)
fmi7(¥k+1 (yk-i-l) exp {_("'7

2
— (18)
A /27T0,3+1 207, }

k+1
for i = 1, 2. The variance a,%H depends on «ay11 as shown in
(7), and hence the dependence on a1 in (17). Note that (17)
depends on ¢y 1 only through a1 because of the processing
done in (5). Also, the optimal controls at time k+1, a1 and
ck+1, depend on I only through puy. Thus the fusion center
needs to keep only py € [0,1] in its memory instead of the
2k-tuple Ij.

As a consequence of the above lemma, we can write (12)
and (13) directly as functions of p as follows:

Ji(pr) = 1—pr, (19)
JE(ue) = min {1 — pe, M + AL ()}, (20)
where
AT :min/JT <M)h G, ) di (21
k(1) = mi LT\ ) (G, p) dy - (21)

for0<k<T-1.

To solve Problem 2, we let the horizon T — oo. From
results in [8] and [3], the following limit exists and is in-
dependent of k. The stationarity of the cost-to-go function
follows from the memoryless nature of geometric distribution.
The infinite horizon cost-to-go function is given by

J(p) = lm Ji () (22)
= min{l — g, \u+ Az}, (23)

where
Aﬂm_QPAJ<%%%%>h@QMW@ (24)

The following lemma gives some properties of the finite
horizon and infinite horizon cost-to-go functions.

Lemma 2: The functions J (1) and A7 (11) are nonnegative
and concave functions of 4, for 4 € [0,1]. Also, AT (1) =
JI(1) = 0. Similarly, the functions J(u) and A;(u) are
nonnegative and concave functions of u, for p € [0, 1], and
Ay;(1)=J(1)=0. O

We can show an interesting characterization of A () in
terms of an Ali-Silvey distance (defined in [10]), which is
useful in the sequel. Its proof is omitted for brevity.

Theorem 3: The minimization in (24) can be expressed as
maximization of an Ali-Silvey distance between the density
functions fy,, » and fi - O

The above theorem establishes the following intuitively ob-
vious fact: the optimal control at any time should be chosen to
maximize the Ali-Silvey distance between the two hypotheses
before and after the change. Since Ali-Silvey distances satisfy
the data processing inequality (see for example [11]), data
processing cannot improve our ability to detect a change.

We now identify the optimal stopping policy at the fusion
center as well as the optimal controls « and c.

Theorem 4: An optimal fusion center policy has stopping
time 7 given by

7 =inf{k: ux > a}, (25)
where a is the unique solution to
Aa+ Aj(a)=1-a. (26)
The optimal control at time & + 1 is given by
ckr1 = El0py1|lx] = mifr +mo(1 - Be), (27)
9 r
Ap = p)
Oobs + Var {0k+1|Ik}
P
= , 28
R T R T M
where [y, is as in (15). O
Proof: We only outline a proof. The first part follows

from (23) and Lemma 2. To show the second part, we first
show that the largest « that meets the power constraint is
the right choice. Indeed, any smaller choice results in an
output which is a stochastically degraded version of the output
obtained with the largest a. We then use the fact that A ; ()
is the maximum of an Ali-Silvey distance and that data
processing only degrades performance. [ ]

This theorem confirms yet another intuitively obvious con-
trol: set ci41 to remove any a posteriori bias in the observation
X k+1 and set a1 to utilize all the available power.

C. A Smpler Suboptimal Policy

The choice of an affine transformation ¢; 1. (z) = ax(z—ci)
in (2) may be suboptimal. Within the constraints of this affine
set of controls we have identified the optimal («,c) at each
stage. Let us now further restrict the controls to be of the
following form: the decision to stop or continue depends on
I, but the parameters of the affine transformation at time k+1
can only depend on I and by, € {stop, continue}. Iy denotes
the prior information before any observations are made and by,
is the decision of the fusion center at k.



As suggested by the structure of the controls in Theorem 4,
we propose the following new set of controls:

my B +mo(1 — Br), (29)
P

T 02 + (my —mo)2Bk(1— Br)’ (30)

where now g, = Pr{l' <k + 1|y} = 1— (1 —v)(1 —p)*+L,

Ck+1 =

2
Qpiq

I11l. COMPARISON OF PERFORMANCE

In this section we compare the performances of our policies
in Theorem 4, the suboptimal policy in Section II-C, and
that of Veeravalli [3] in terms of mean detection delay and
probability of false alarm.

Veeravalli [3] addresses the structure of optimal D;-level
quantizer at sensor S;, 1 = 1,2,..., L. His model is applicable
to a system that allows log, D; bits to be sent error free from
sensor S; to the fusion center. For simplicity let D; = D, =
1,2,..., L. If this scheme is employed on a GMAC with a
unit delay per sample, each sensor transfers log, D bits per
sample to the fusion center. Thus the SNR = P/, required
to support transmission at this rate on the GMAC satisfies the
sum rate constraint

LlogD < %log(l—l-L-SNR)7 (31)
and thus D
SNR > T_ (32)

The constraint (31) assumes that the data from the sensors are
independent and that the multi-access strategy does not make
use of the correlatedness in the sensor observations.

Observe that Veeravalli’s optimal algorithm requires feed-
back of p, € [0,1] with the D-level quantizer thresholds
computed at the sensors.? Alternatively, the fusion center may
perform this calculation and inform each sensor the set of
D —1 thresholds (€ R”~!) and a decision to stop or continue.
Our proposed scheme requires the binary decision and two
real-valued variables (a,c) to be fed back. The strategy in
Section I1-C requires only the binary decision to be fed back.

Consider two sensors with one-bit quantizers (L =2, D =
2). Equation (32) implies SNR > 7.5 for Veeravalli’s algo-
rithm to be feasible on the GMAC. All algorithms operate on
the GMAC with SNR = 7.5. We use the following parameters:

Smulation Setup 1: Consider 2 sensors with A(0,1) and
N(0.75,1) observations before and after the change, respec-
tively. The geometric parameter p = 0.05 and the initial
probability of change v = 0. O

Figure 1 shows that both our algorithms give lesser delays
than Veeravalli’s algorithm on the GMAC. Furthermore, the
suboptimal policy of Section 11-C degrades from that in
Theorem 4 only for the low Pra scenario. The network delay is
independent of the number of sensors in both our algorithms;
the performance improves with increasing number of sensors.
Veeravalli’s scheme on the other hand requires an exponential
growth in SNR (with L, as in (32)) to maintain the same delay

2Each sensor knows its index I.

Centralized
Veeravall
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= = -Suboptimal
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Fig. 1. Comparison of our algorithms with Veeravalli’s scheme.

- Pra performance. However, our algorithms need fine-grained
synchronization, power balance at the fusion center, and phase
alignment for proper beamforming at the fusion center. These
can be achieved via downlink beacons and downlink-uplink
reciprocity as is possible in the slotted version of the IEEE
802.15.4 MAC/PHY standard.

IV. ENERGY-CONSTRAINED FORMULATION

In this section, we develop the solution for an energy-
constrained formulation of the problem solved in Section II.

Problem 3: Minimize the expected detection delay, Fpp,
subject to an upper bound on the probability of false alarm,
Pra, and an upper bound on the expected energy spent,

E Z E [‘le,k(Xl,k)Uk,l]

<E, 1=1,2,....,L. (33)
k=1
|
Let A = (A1,..., AL, AL+1). As before, to solve Problem

3, we set up the Bayes cost R(\) and minimize it over all
admissible choices of stopping policy and the parameters of
the affine transformation, ¢; i, i.e., oy, and c;. The Bayes cost
can be written as

T7—1
Pr{l > 7} + ]E[/\LH 3 Pr{l < k[I;}

k=0

T L
+ Z Z )\lE [Ozi(Xl,k — Ck)2|fk_1} } (34)
k=11=1
As in Section 11-B, we can show that the optimal stopping
policy is the same as in Theorem 4, and that the optimal
control at time k + 1, given Iy, is

k1 = mafr+mo(l— Br), (35)

Chp1 = argm{in {az (02hs + (M1 — mo)?Br(1 — Br)) Ao

R(\) =
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where A = 3/, A, and J () is the infinite horizon cost-to-
go function

J(p) =min{l — p, Apyip+ As(p)}, @37

with

As(u) = min[? (o + (my = mo)B(1 = B)) Ao

s [ (422 o] @)

A. Comparison with Power-Constrained Formulation

Here, we compare the performances of the constant power
solution and the energy-constrained one. We use the parame-
ters in Simulation Setup 1.

For Pea < e4, we first identify the minimum time to detect
change as a function of the energy constraint. This indicates
a power constraint under the constant power formulation. We
then compare the delays incurred by the optimal algorithm
under the two formulations in Figure 2. For the same Pra,
the energy-constrained solution declares a change with lesser
delay than the constant power solution.

As an illustration, we plot in Figure 3 the variation of o2,
c and p with time in both the algorithms for a representative
sample path. We use the same parameters as in Simulation
Setup 1. The change point is at 21 samples, shown using
a dotted vertical grid line. The energy-constrained solution
is more energy efficient because it uses lower energy (o?)
before and higher energy after the change point. Indeed, based
on the prior information, the first few samples use negligible
energy. This algorithm also stops earlier than the constant
power algorithm (on this typical sample path).

V. CONCLUSION

We formulated and solved the decentralized change detec-
tion problem over a GMAC for an affine transmission strategy.
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Fig. 3. a2, ¢, and p of constant power method and energy-constrained
method for a sample path.

We exploited superposition in the physical layer to achieve
superior delay performances. We further saw that the energy-
constrained solution decides on the change with lesser delay
than the constant power solution for the same false alarm rate.
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