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Abstract— An analog minimum-variance unbiased estimator
(MVUE) over an asymmetric wireless sensor network is studied.
Minimisation of variance is cast into a constrained non-convex
optimisation problem. An explicit algorithm that solves the
problem is provided. The solution is obtained by decomposing
the original problem into a finite number of convex optimisation
problems with explicit solutions. These solutions are then juxta-
posed together by exploiting further structure in the objective
function.

I. INTRODUCTION AND PROBLEM STATEMENT

In this paper, we study a distributed analog minimum
variance unbiased estimator (MVUE) over an asymmetric
wireless sensor network. In a typical sensor network, sensors
communicate their observations with a central node via a
scheduled transmission or via a random access method with a
collision resolution mechanism. It is usually also the case that
these exact observations themselves are not as important as a
function of these observations. Furthermore, when the obser-
vations at sensors are corrupted by Gaussian noise, the desired
function at the central node is a sum of the observations.
Observing that the wireless multiple-access channel enables
superposition of simultaneous transmissions, we propose a
physical layer fusion mechanism in this paper.

The setting is as follows.

o The network has L sensors that make observations of an
underlying parameter § € R. The observations X; at the
[th sensor are noisy and are modeled as random variables
with the Gaussian distribution of mean 6 and observation
noise variance crgbs, ie, X; ~N(6, crgbs).

e The sensors transmit their observations over a Gaussian
multiple-access channel (GMAC) in an analog fashion.

Specifically, the [th sensor transmits
Y, =X = ol + a1z,
where Z; ~ N(0,02,.).

o The scaling factor gz?sis constrained by 0 < oy < amax,
as would be the case when there is a power constraint.

o The deterministic channel gain from the /th sensor to the
fusion centre is h; € R and is assumed to be known.

« The channel output is

L

Y = Z hY, + Zuac
=1
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where Zyac ~ N (0, oiac)-

« Given 6, the random variables X; are independent of each
other. Furthermore, the GMAC noise Zyac is indepen-
dent of all other random variables.

Observe that in this distributed setting with analog trans-
mission, we can get an unbiased estimate 6 from Y using the
bijective transformation
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is the resulting noise variance of the analog estimator. This

variance is a combination of both the observation and GMAC
channel noise variances. Our goal is to find the analog scaling

factors ay,l = 1,---, L that minimise the variance of this
unbiased estimator. More precisely,
Problem 1:
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Ogbs 21—1 127 + Tigac

(Zle hlal)2

I=1,...,L.

Minimise

subject to 0 < a; < apmax,

Remarks:

o We consider only a single-shot estimation. If 6 varies
over time, single-shot estimation is optimal when {6y} is
an independent process.

« The observation noise variance o2 is taken to be the
noise variance in one observation sample, even though
it may be the result of a local smoothing via multiple
samples at the same sensor at a higher rate of sensing.

o The same optimisation also arises in a stochastic optimal
control problem for the detection of a change in a
sensor network with minimum detection delay. See [1]
for details.

o The symmetric case when h; = 1,/ = 1,--- | L is easy
to solve. By Cauchy-Schwarz inequality,
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so that
Ugbs Zl h%a% > Uc2>bs
(S o)~ L

with equality when h;oy (12065 not vary with [. The second

term in the variance ——¥AC _ is minimized when o; =

(Zzhlal)

amax for every [. Both these requirements are met when
h; = 1 and therefore a; = ayax for I =1,--- | L solves
the problem in the symmetric case. This special case was
considered in [2] in a sequential change detection setting.

o In the asymmetric case, the two requirements cannot be
simultaneously met making the optimisation problem an
interesting one.

II. SOLUTION

We first give an explicit algorithm that identifies the optimal
a. We then give a proof of its optimality.

Algorithm 1: Let hy <--- < hp.

o Step 1: Find the least k € {1, ...

hazm<2y

If this is not satisfied for any such k, put k = L.
o Step 2: Set

, L — 1} that satisfies
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o Step 3: The optimal « is given by

(@)

amax, 1 <m <k,

k
A" —amax ) h
am - b

(L—k)hpm,

Qyy, =

k<m<L ()
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Thus the optimal choice sets amplitudes of the k sensors
with the k& worst channels to amax. The remaining sensors’
amplitudes are appropriately chosen smaller values. Intuitively,
sensors [ = k4 1,..., L have so good a channel that scaling
by amax for these sensors will amplify the observation noise
leading to a larger overall noise variance. Note that when all
channel gains are equal, we recover oy = amax for all sensors,
as remarked in Section I.

We take h; < --- < hy. To solve Problem 1, we add the
constraint Zle hjo; = a, where without loss of generality
a € [0,amax], With amax = Qmax ZzL=1 h;, and solve the
convex optimization problem:

Problem 2:

Minimise g hia}
=1

subject to oy € [0, amax],1 <1< L,

L
and Z hia; = a € [0, amax] -
=1
O

We guess a solution and verify via Karush-Kuhn-Tucker
(KKT) conditions that the solution is optimal. (See also [3]).

The interval [0,amax] can be broken into L closed in-
tervals [am,Gmy1],m = 0,1,...,L — 1, where a,, =
amax (X jeq i + (L —m)hy,) and ag = 0. The ordering of
h;’s implies that a,,,+1 > a,, so that each interval is nonempty.

Suppose that a in Problem 2 belongs to [a, ak+1]. We guess
that the optimal solution is

(7] = Qmax; l: 17"'7k7 (4)
k
a_amaxz :1hm
= m l=k+1,...,L. (5
o (L_k)hl 5 + 1, ’ ()

From the fact a € [a, ar+41], it is easily verified that o meets
all the constraints of Problem 2.

To see that this solves Problem 2, observe that the La-
grangian function for Problem 2 is

L
L= Z hia?
=1
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where the Lagrange multipliers \; > 0, & > 0, and the KKT
conditions are

S — A\ — phy
= =1,...,L
Oél 2hl2 I l I I )
Moy —omax) = 0, I=1,...,L,
o = 0, 1=1,....L,

L
E hlal = a.
=1

For the assignment of « above, consider the Lagrange
multiplier assignments

2h ~
A= L_k<a_@max7nz_:1hm>_2h12amaX7
I=1,...,k (6)
N o= 0, I=k+1,...,L,
& = 0, 1=1,...,L,
k
a_amaxz :1hm
= -2 n .

These assignments will satisfy all KKT conditions if A; in (6)
are non-negative. This holds because a € [a, ai+1] implies
that

2h,
L lk amax(L k)h/k; - 2hl amax
= 2hl(hk - hl)amax
0,
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where the last inequality follows because of the ordering of
h;’s. The optimal solution to Problem 2 is thus given by (4)
and (5), and the optimal value is

(a — (max Zle hl>2
L—k '

k
)= ar2nax Z hl2 +
=1

Observe that V' (a) is a continuous function of a for a €
[0, amax]- Furthermore, it is piecewise parabolic. This obser-
vation will be used in the sequel.

Our solution to Problem 2 shows that Problem 1 can be
solved by solving:

Problem 3:
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Minimise f(a) = Tabs (a)2—|- TMAC

a

L
subject to 0 < a < amax Z h;.
=1

O

Let us look at the objective function' when a € [a,,, @ y1].
By equating the derivative of this objective function to 0, we
get that the minimum value? is attained at a}, given by

i L—m)x m o h2
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€ [@m, @m+1] is equivalent to

B Zhl<Zh2

where the lower bound is 0 if m = 0. If a), < a,, the
optimum value is at a,,, and if @, > @, +1, the optimum value
is at a,,4+1. Otherwise, a;, lies in the interval and is the point
of minimum for the objective function. Thus for each interval
we have one candidate minimum. The overall minimum is the
minimum of these finite number of candidates. We next make
the following observations that identify further structure in the
problem and provide an explicit solution.

+

Now, the condition a;,
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1) For interval [ag, a1], the optimal point is always a;. This
is because when a € [ag, a1], we have

Q) = L,VL

T and

0'2 0'2
f(a) = %obs 4 Tic,

INote that f may not be convex.

2That the stationary point is a minimum is deduced by recognising that V'
is a convex parabola over the interval and therefore g(b) := f(1/b) is another
convex parabola over a new interval whose end points are the inverses of the
original interval’s end points.

Clearly f is minimized at the upper limit a;. As this
is the lower limit of the next interval [a, as], we may
discard the case a € [ag, a1].

2) For interval [ay, as], a} > ay, i.e., optimal point for the
objective function corresponding to the interval is either
in the interval or to the right of the interval. This is
because we trivially have

2 2 JI%/IAC
M <hi+—="5—,
O ops ¥max
and therefore (7) implies that a] can never fall to the
left of the interval.

3) If ay, > amy1, then ay, 1 > amy1, ie., if the optimal
point for interval [a.,,am,+1] lies to the right of the
interval, then the optimal point for interval [@y, 41, Gm4-2]
either lies in or to the right of the interval. Indeed, if

m m
2 MAC
Z hi > hint1 ),
obs max =1
we then have
m—+1 O' m
2 MAC 2
Z h; > hmi1» bl
obsamax =1

m—+1

= hms1 Y .
=1

4) If a;, < amy1, then a), < ap,n > m, ie., if the
optimal point for interval [,y , a,,+1] lies within or to the
left of the interval, then the optimal points for intervals
[@n, @nt1],n > m, lie to their left. To see this, observe

that if
m
2
Zh MAC < herthla
—1 obs max =1
then
m—+1 O’ m
2 MAC 2
Z hj < Z hi + by
o
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Since a,, < a,41, the statement follows by induction.

The third observation above indicates that we may search
sequentially, i.e., in the increasing order of m, for the index k
that satisfies a} € [ak, ak+1], or equivalently, for the smallest
index k that satisfies (1). V(a) being continuous, the third
observation above shows that f decreases until we reach
this point. The fourth observation and the fact that V(a) is
continuous shows that f increases beyond aj. If there is no
such k, the third observation indicates that we should pick the
largest value of a, i.e., amax, and thus k& = L.
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