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Abstract— An analog minimum-variance unbiased estimator
(MVUE) over an asymmetric wireless sensor network is studied.
Minimisation of variance is cast into a constrained non-convex
optimisation problem. An explicit algorithm that solves the
problem is provided. The solution is obtained by decomposing
the original problem into a finite number of convex optimisation
problems with explicit solutions. These solutions are then juxta-
posed together by exploiting further structure in the objective
function.

I. INTRODUCTION AND PROBLEM STATEMENT

In this paper, we study a distributed analog minimum

variance unbiased estimator (MVUE) over an asymmetric

wireless sensor network. In a typical sensor network, sensors

communicate their observations with a central node via a

scheduled transmission or via a random access method with a

collision resolution mechanism. It is usually also the case that

these exact observations themselves are not as important as a

function of these observations. Furthermore, when the obser-

vations at sensors are corrupted by Gaussian noise, the desired

function at the central node is a sum of the observations.

Observing that the wireless multiple-access channel enables

superposition of simultaneous transmissions, we propose a

physical layer fusion mechanism in this paper.

The setting is as follows.

• The network has L sensors that make observations of an

underlying parameter θ ∈ R. The observations Xl at the

lth sensor are noisy and are modeled as random variables

with the Gaussian distribution of mean θ and observation

noise variance σ2
obs

, i.e., Xl ∼ N (θ, σ2
obs

).
• The sensors transmit their observations over a Gaussian

multiple-access channel (GMAC) in an analog fashion.

Specifically, the lth sensor transmits

Yl = αlXl = αlθ + αlZl,

where Zl ∼ N (0, σ2
obs

).
• The scaling factor αl is constrained by 0 ≤ αl ≤ αmax,

as would be the case when there is a power constraint.

• The deterministic channel gain from the lth sensor to the

fusion centre is hl ∈ R+ and is assumed to be known.

• The channel output is

Ỹ =
L

∑

l=1

hlYl + ZMAC

where ZMAC ∼ N (0, σ2
MAC

).
• Given θ, the random variables Xl are independent of each

other. Furthermore, the GMAC noise ZMAC is indepen-

dent of all other random variables.

Observe that in this distributed setting with analog trans-

mission, we can get an unbiased estimate θ̂ from Ỹ using the

bijective transformation

θ̂ :=
Ỹ

∑

L

l=1
hlαl

∼ N (θ, σ2)

where

σ2 :=
σ2

obs

∑

L

l=1
h2

l
α2

l
+ σ2

MAC
(

∑

L

l=1
hlαl

)2

is the resulting noise variance of the analog estimator. This

variance is a combination of both the observation and GMAC

channel noise variances. Our goal is to find the analog scaling

factors αl, l = 1, · · · , L that minimise the variance of this

unbiased estimator. More precisely,

Problem 1:

Minimise
σ2

obs

∑

L

l=1
h2

l
α2

l
+ σ2

MAC
(

∑

L

l=1
hlαl

)2

subject to 0 ≤ αl ≤ αmax, l = 1, . . . , L.

Remarks:

• We consider only a single-shot estimation. If θk varies

over time, single-shot estimation is optimal when {θk} is

an independent process.

• The observation noise variance σ2
obs

is taken to be the

noise variance in one observation sample, even though

it may be the result of a local smoothing via multiple

samples at the same sensor at a higher rate of sensing.

• The same optimisation also arises in a stochastic optimal

control problem for the detection of a change in a

sensor network with minimum detection delay. See [1]

for details.

• The symmetric case when hl = 1, l = 1, · · · , L is easy

to solve. By Cauchy-Schwarz inequality,
(

∑

l

hlαl

)2

≤ L
∑

l

h2
l
α2

l



so that
σ2

obs

∑

l
h2

l
α2

l

(
∑

l
hlαl)

2
≥

σ2
obs

L

with equality when hlαl does not vary with l. The second

term in the variance
σ

2

MAC

(
∑

l
hlαl)

2 is minimized when αl =

αmax for every l. Both these requirements are met when

hl = 1 and therefore αl = αmax for l = 1, · · · , L solves

the problem in the symmetric case. This special case was

considered in [2] in a sequential change detection setting.

• In the asymmetric case, the two requirements cannot be

simultaneously met making the optimisation problem an

interesting one.

II. SOLUTION

We first give an explicit algorithm that identifies the optimal

α. We then give a proof of its optimality.

Algorithm 1: Let h1 ≤ · · · ≤ hL.

• Step 1: Find the least k ∈ {1, . . . , L − 1} that satisfies

hk

k
∑

l=1

hl ≤
k

∑

l=1

h2
l

+
σ2

MAC

σ2
obs

α2
max

≤ hk+1

k
∑

l=1

hl. (1)

If this is not satisfied for any such k, put k = L.

• Step 2: Set

a∗ = αmax

k
∑

l=1

hl +
(L − k)αmax

∑

k

l=1
h2

l
∑

k

l=1
hl

+
σ2

MAC
(L − k)

σ2
obs

αmax

∑

k

l=1
hl

. (2)

• Step 3: The optimal α is given by

αm = αmax, 1 ≤ m ≤ k,

αm =
a∗ − αmax

∑

k

l=1
hl

(L − k)hm

, k < m ≤ L. (3)

Thus the optimal choice sets amplitudes of the k sensors

with the k worst channels to αmax. The remaining sensors’

amplitudes are appropriately chosen smaller values. Intuitively,

sensors l = k + 1, . . . , L have so good a channel that scaling

by αmax for these sensors will amplify the observation noise

leading to a larger overall noise variance. Note that when all

channel gains are equal, we recover αl = αmax for all sensors,

as remarked in Section I.

We take h1 ≤ · · · ≤ hL. To solve Problem 1, we add the

constraint
∑

L

l=1
hlαl = a, where without loss of generality

a ∈ [0, amax] , with amax = αmax

∑

L

l=1
hl, and solve the

convex optimization problem:

Problem 2:

Minimise

L
∑

l=1

h2
l
α2

l

subject to αl ∈ [0, αmax] , 1 ≤ l ≤ L,

and

L
∑

l=1

hlαl = a ∈ [0, amax] .

We guess a solution and verify via Karush-Kuhn-Tucker

(KKT) conditions that the solution is optimal. (See also [3]).

The interval [0, amax] can be broken into L closed in-

tervals [am, am+1],m = 0, 1, . . . , L − 1, where am =
αmax (

∑

m

l=1
hl + (L − m)hm) and a0 = 0. The ordering of

hl’s implies that am+1 ≥ am so that each interval is nonempty.

Suppose that a in Problem 2 belongs to [ak, ak+1]. We guess

that the optimal solution is

αl = αmax, l = 1, . . . , k, (4)

αl =
a − αmax

∑

k

m=1
hm

(L − k)hl

, l = k + 1, . . . , L. (5)

From the fact a ∈ [ak, ak+1], it is easily verified that α meets

all the constraints of Problem 2.

To see that this solves Problem 2, observe that the La-

grangian function for Problem 2 is

L =

L
∑

l=1

h2
l
α2

l
+

L
∑

l=1

λl(αl − αmax) −
L

∑

l=1

ξlαl

+µ

(

L
∑

l=1

hlαl − a

)

,

where the Lagrange multipliers λl ≥ 0, ξl ≥ 0, and the KKT

conditions are

αl =
ξl − λl − µhl

2h2
l

, l = 1, . . . , L,

λl(αl − αmax) = 0, l = 1, . . . , L,

ξlαl = 0, l = 1, . . . , L,
L

∑

l=1

hlαl = a.

For the assignment of α above, consider the Lagrange

multiplier assignments

λl =
2hl

L − k

(

a − αmax

k
∑

m=1

hm

)

− 2h2
l
αmax,

l = 1, . . . , k, (6)

λl = 0, l = k + 1, . . . , L,

ξl = 0, l = 1, . . . , L,

µ = −2

(

a − αmax

∑

k

m=1
hm

L − k

)

.

These assignments will satisfy all KKT conditions if λl in (6)

are non-negative. This holds because a ∈ [ak, ak+1] implies

that

λl ≥
2hl

L − k
αmax(L − k)hk − 2h2

l
αmax

= 2hl(hk − hl)αmax

≥ 0,



where the last inequality follows because of the ordering of

hl’s. The optimal solution to Problem 2 is thus given by (4)

and (5), and the optimal value is

V (a) = α2
max

k
∑

l=1

h2
l

+

(

a − αmax

∑

k

l=1
hl

)2

L − k
.

Observe that V (a) is a continuous function of a for a ∈
[0, amax]. Furthermore, it is piecewise parabolic. This obser-

vation will be used in the sequel.

Our solution to Problem 2 shows that Problem 1 can be

solved by solving:

Problem 3:

Minimise f(a) =
σ2

obs
V (a) + σ2

MAC

a2

subject to 0 ≤ a ≤ αmax

L
∑

l=1

hl.

Let us look at the objective function1 when a ∈ [am, am+1].
By equating the derivative of this objective function to 0, we

get that the minimum value2 is attained at a∗

m
given by

a∗

m
= αmax

m
∑

l=1

hl +
(L − m)αmax

∑

m

l=1
h2

l
∑

m

l=1
hl

+
σ2

MAC
(L − m)

σ2
obs

αmax

∑

m

l=1
hl

.

Now, the condition a∗

m
∈ [am, am+1] is equivalent to

hm

m
∑

l=1

hl ≤
m

∑

l=1

h2
l

+
σ2

MAC

σ2
obs

α2
max

≤ hm+1

m
∑

l=1

hl, (7)

where the lower bound is 0 if m = 0. If a∗

m
< am, the

optimum value is at am, and if a∗

m
> am+1, the optimum value

is at am+1. Otherwise, a∗

m
lies in the interval and is the point

of minimum for the objective function. Thus for each interval

we have one candidate minimum. The overall minimum is the

minimum of these finite number of candidates. We next make

the following observations that identify further structure in the

problem and provide an explicit solution.

1) For interval [a0, a1], the optimal point is always a1. This

is because when a ∈ [a0, a1], we have

αl =
a

Lhl

,∀l, and

f(a) =
σ2

obs

L
+

σ2
MAC

a2
.

1Note that f may not be convex.
2That the stationary point is a minimum is deduced by recognising that V

is a convex parabola over the interval and therefore g(b) := f(1/b) is another
convex parabola over a new interval whose end points are the inverses of the
original interval’s end points.

Clearly f is minimized at the upper limit a1. As this

is the lower limit of the next interval [a1, a2], we may

discard the case a ∈ [a0, a1].
2) For interval [a1, a2], a∗

1 > a1, i.e., optimal point for the

objective function corresponding to the interval is either

in the interval or to the right of the interval. This is

because we trivially have

h2
1 < h2

1 +
σ2

MAC

σ2
obs

α2
max

,

and therefore (7) implies that a∗

1 can never fall to the

left of the interval.

3) If a∗

m
> am+1, then a∗

m+1 > am+1, i.e., if the optimal

point for interval [am, am+1] lies to the right of the

interval, then the optimal point for interval [am+1, am+2]
either lies in or to the right of the interval. Indeed, if

m
∑

l=1

h2
l

+
σ2

MAC

σ2
obs

α2
max

> hm+1

m
∑

l=1

hl,

we then have

m+1
∑

l=1

h2
l

+
σ2

MAC

σ2
obs

α2
max

> hm+1

m
∑

l=1

hl + h2
m+1

= hm+1

m+1
∑

l=1

hl.

4) If a∗

m
≤ am+1, then a∗

n
≤ an, n > m, i.e., if the

optimal point for interval [am, am+1] lies within or to the

left of the interval, then the optimal points for intervals

[an, an+1], n > m, lie to their left. To see this, observe

that if

m
∑

l=1

h2
l

+
σ2

MAC

σ2
obs

α2
max

≤ hm+1

m
∑

l=1

hl,

then

m+1
∑

l=1

h2
l

+
σ2

MAC

σ2
obs

α2
max

≤ hm+1

m
∑

l=1

hl + h2
m+1

= hm+1

m+1
∑

l=1

hl.

Since an ≤ an+1, the statement follows by induction.

The third observation above indicates that we may search

sequentially, i.e., in the increasing order of m, for the index k

that satisfies a∗

k
∈ [ak, ak+1], or equivalently, for the smallest

index k that satisfies (1). V (a) being continuous, the third

observation above shows that f decreases until we reach

this point. The fourth observation and the fact that V (a) is

continuous shows that f increases beyond a∗

k
. If there is no

such k, the third observation indicates that we should pick the

largest value of a, i.e., amax, and thus k = L.
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