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Abstract

Some interesting results on a guessing wiretapper’s performance on a Shannon cipher system are summarized.
The performance metrics are exponents of guessing moments and probability of large deviations. Connections with
compression and the game of twenty questions are discussed. Asymptotic optimality of guessing attacks based on
Lempel-Ziv coding lengths is highlighted.

I. INTRODUCTION
Consider the classical Shannon cipher system [1] shown in Fig. 1. Let Xn = (X1, · · · , Xn) be a message

where each letter takes values on a finite set X. This alphabet set could be binary, the Latin characters,
or letters from a standard qwerty key-board. The message is assumed to be put out by a source, an entity
that emits strings of specified length (here n) according to a specified (or partially specified) probability
law. The message should be communicated securely from a transmitter to a receiver. Both of these have
access to a common secure key Uk of k purely random bits independent of Xn. The transmitter computes
the cryptogram Y = fn(X

n, Uk) via an encryption function fn and sends it to the receiver over a public
channel. The cryptogram may be of variable length. The function fn is invertible given Uk. The receiver,
knowing Y and Uk, computes Xn = f−1

n (Y, Uk). The functions fn and f−1
n are published.

fn(X
n,Uk) fn

-1(Y,Uk)Xn XnY

Uk

Eve (wiretapper)

Fig. 1. The Shannon Cipher System

An attacker (wiretapper) has access to the cryptogram Y , knows fn and f−1
n , and attempts to identify

Xn without knowledge of Uk. The attacker can use knowledge of the statistics of Xn. We assume that
the attacker has a test mechanism that tells him whether a guess X̂n is correct or not. For example,
the attacker may wish to attack an encrypted password or personal information to gain access to, say, a
computer account, or a bank account via internet, or a classified database [2]. In these situations, successful
entry into the system or a failure provides the natural test mechanism. We assume that the attacker is
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allowed an unlimited number of guesses. The key rate for the system is R := k/n which represents the
number of bits of key used to communicate one message letter.

The attacker stops as soon as he makes a correct guess. If a particular submitted guess is incorrect, he
does not gather any further information on the realisation other than the fact that his prior guesses were
incorrect. Thus, the set of strategies at the attacker’s disposal is all the possible orderings of Xn, each
being an order in which he will submit his guesses. Depending on the cryptogram, the attacker may choose
an ordering. A particular ordering, denoted G(· | y), is thus a mapping from Xn to {1, 2, · · · , |X|n}, one
for each observed cryptogram.

The goal of the guessing attacker is to identify the realisation in as few guesses as possible. Typical
quantities of interest are the expected number of guesses E[G(Xn | Y )], moments of guessing E[G(Xn |
Y )ρ for ρ > 0, or the probability of exceeding a certain number of guesses P{G(Xn | Y ) ≥ C}. The
guessing attacker would choose G(· | y) to make these as small as possible. On the other hand, the goal
of the system designer is to make the aforementioned quantities as large as possible.

The following questions arise.
1) The problem described above is reminiscent of the game of “twenty questions”. What is the

connection?
2) Given information on the secret message source, what is the best strategy for the attacker?
3) What is the attacker’s performance using the optimal guessing strategy? In particular, how does it

grow with n, and what is the relationship with the key rate R?
4) How sensitive is the attacker’s performance to knowledge of source statistics?
The purpose of this review article is to give a summary of answers to the above questions. We will

focus on only the expected number of guesses and guessing moments in this review.
There are two scenarios of interest. The first is the case of perfect secrecy where encryption is so strong

that the cryptogram is practically useless to the attacker. This is the case when the key rate is large (for
example, R ≥ 1). The second is one where the key rate is sufficiently small that the attacker may exploit
the constraint to reduce his guessing effort. We will look at both.

II. RELATIONSHIP TO “TWENTY QUESTIONS”

The game of “twenty questions” has two players – a questioner and an answerer. The answerer has a
subject in mind which is not known to the questioner. The questioner asks questions one after another
and has to identify the subject, based only on the answerer’s responses. The answerer is only allowed to
say “yes” or “no”. The questioner’s goal is to minimise the number of questions asked. (More precisely,
expected number of questions, moments of the number of questions, or probability that the number of
questions exceeds a certain number, just as above).

The chosen subject is modeled as the realisation of a source. The questioner may ask any set-membership
question: “Does Xn ∈ Ei?” for i = 1, 2, · · · , where Ei ⊂ Xn. He picks this series of questions to minimise
the number of questions asked, and exploits the statistical structure inherent in the choice of the subject.
For example, if the questioner were to guess a famous personality, given the choice’s geographical and
temporal bias, the questioner ought to pick a subset of personalities based on recent news clippings.
For example, “Is the person a politician or a cricketeer?” is a good first question keeping in mind the
recent elections in Gujarat, and the recently concluded cricket test series (This article was written in early
December 2007).

The game of twenty questions has relevance to the classical problem of source compression. Huffman
encoding can be thought of as yes-no answers to a certain series of set-membership questions. The sets
Ei are picked so that an answer at each stage reduces the uncertainty to a set whose probability is half
of that of the prior uncertainty set. For the specific case when all realisations are equi-probable, a binary
search has exactly this property.

It is well-known that the minimum expected number of questions is H(PXn), the Shannon entropy of
the source restricted to strings of length n. For a stationary source, this grows asymptotically linearly in
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n with a slope equal to the entropy rate of the system:

H := lim
n→∞

n−1H(PXn).

Moreover, we know that there exists a compression strategy that work for a rather large class of sources.
For example, the Lempel-Ziv encoding [3] is asymptotically optimal for every stationary and ergodic
source. Such strategies are termed “universal”, where the universality refers to asymptotic optimality for
sources that belong to a specified class of sources (here, stationary and ergodic sources).

In the language of the game of twenty questions, the Lempel-Ziv coding strategy yields a series of
questions that enable the questioner to discover the realisation in nH + o(n) questions where o(n) is
a sequence that satisfies limn→∞ o(n)/n = 0. Asymptotically, the penalty for not knowing the exact
parameters of the source within the class is the sub-linear quantity o(n).

The game of guessing (in the perfect secrecy scenario) is the game of twenty questions with the
added restriction that sets, membership to which is tested, are singletons, i.e., “Does Xn ∈ {xn}?”, or
equivalently, “Is Xn = xn?”, and so on. Naturally, we anticipate that the expected number of guesses
grows at a rate faster than nH . Stretching the connection a little further, we anticipate the existence of
robust guessing attacks that do not depend on exact parameters of source statistics.

III. ATTACKER’S BEST STRATEGY AND PERFORMANCE

Given the probability mass function of Xn, the function fn, and the cryptogram Y , the attacker can
determine the posterior probabilities of the messages PXn|Y (· | y) using Bayes rule. His best guessing
strategy having observed Y = y is then to guess in the decreasing order of these posterior probabilities
PXn|Y (· | y). As one might expect, this is the strategy that minimizes all the measures of performance
given above.

Without loss of generality, we assume that the message alphabet is binary. Let us first consider the case
R ≥ 1 or k ≥ n. One may set fn to be such that the output is the XOR of the n message bits and the
first n key bits. Since the key bits are purely random, a simple application of Bayes rule shows that

PXn|Y (xn | y) = PXn(xn),

i.e., the cryptogram is useless to the attacker. The best attack strategy is to guess in the decreasing order
of source probabilities. Let us denote this guessing strategy as G∗.

Fact 1: Consider a discrete memoryless source (DMS): a source where each letter is independent and
identically distributed with a generic distribution PX .
• (Arikan [4]) For any DMS, the expected number of guesses for the optimal guessing strategy grows

exponentially in n. The rate of growth is given by the Rényi entropy of order 1/2. More precisely,

lim
n→∞

n−1 log E [G∗(Xn)] = H 1
2
(PX), (1)

where the Rényi entropy of order α is

Hα(PX) :=
1

1− α
log

(∑
a∈X

PX(a)α

)
. (2)

• (Arikan [4]) More generally,

lim
n→∞

n−1 log E [G∗(Xn)ρ] = ρH 1
1+ρ

(PX).

It is the form of (1) that is important. It tells us that in contrast to twenty questions, the expected
number of guesses grows not linearly, but exponentially in n. This should not be surprising given the
restriction on the type of questions asked (singleton-set membership questions).

Suppose now that the key rate is smaller than 1, i.e., we have fewer key bits than message bits. Consider
the extreme case when k = 1, i.e., there are only two possible keys, 0 or 1. Clearly, given the cryptogram,
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the attacker can attempt decryption using keys 0 and 1 to get two possible messages. He will then submit
the more probable of the two as the first guess and the other one next. He needs at most two guesses.
If k = 2, there are four possible keys, and the attacker needs at most 22 guesses. More generally, when
k = nR, this exhaustive key-search attack yields the correct guess in at most 2nR guesses (which is less
than 2n). The system designer should choose fn to make the expected number of guesses as close to this
upper bound as possible. For an fn, let G∗fn be the best attack strategy.

The following result characterises the expected number of guesses as a function of R.

Fact 2 (Merhav & Arikan [2]): For a DMS, the optimal exponent of guessing moment is given by

lim
n→∞

sup
fn

n−1 log E
[
G∗fn(X

n|Y )ρ
]

= E(R, ρ) = max
Q

[ρmin{H(Q), R} −D(Q ‖ P )] (3)

Yet again, it is the qualitative conclusion that one can draw from (3) that is important, and not the
actual expression itself. Firstly, E(R, ρ) never exceeds ρR, the performance of an exhaustive key-search
attack. Secondly, when R ≥ 1, we have R ≥ H(Q), and therefore the minimum in the expression for
E(R, ρ) is H(Q). We therefore anticipate that

E(ρ) := max
Q

[ρH(Q)−D(Q ‖ P )] = ρH 1
1+ρ

(X),

a well-known identity in the information theory. Thirdly, (3) implies that E(R, ρ) is a non-decreasing
and concave function of R. The nondecreasing property is expected given the operational significance of
E(R, ρ) as the guessing moment’s exponent. As the key rate increases, the number of key bits increases,
and it should become more difficult to guess the realisation. The interesting aspect is the concavity - the
returns from adding an extra key bit diminish with the length of the key.

A precise characterisation of E(R, ρ) is the following.

R

E(R,ρ)

H(PX) E’(ρ)

E(ρ)

ρH(PX)

Fig. 2. Exponent of guessing moment as a function of R.

Fact 3 (Merhav & Arikan [2]): E(R, ρ) is given by the following expression. See Fig. 2.

E(R, ρ) =

 ρR, R < H(PX),
(ρ− θ0)R + E(θ0), H(PX) ≤ R ≤ E ′(ρ),
E(ρ), R > E ′(ρ)

where θ0 depends on R and belongs to [0, ρ] in the second case.
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Merhav and Arikan [2] further provide the following interpretation on the shape of this function. For
low key rates, i.e., R < H(PX), an exhaustive key-search attack is the most effective attack (from the
point of view of asymptotic guessing moments). On the other hand, when R > E ′(ρ), the key rate is
sufficiently high to render the cryptogram useless. The attacker might as well discard the cryptogram and
use only the source’s statistical structure in submitting its guesses. In this regime, the key rate is high
enough to attain perfect secrecy. For intermediate values of R ∈ [H(PX), E ′(ρ)], the attacker should use a
combination of the exhaustive key-search attack and an attack based on the source’s statistical structure. In
particular, the attacker should guess alternately from each list, skipping those sequences that have already
been guessed. (Each sequence will occur twice in the interlaced list). This leads to a penalty of at most
a factor of 2 in the expected number of guesses, yielding a loss of n−1 log 2 = o(1) in the exponent of
the expected number of guesses. The quantity E ′(ρ) turns out to be the entropy of a “tilted” source. See
[2] or [5] for more details.

These results have been generalised to a class of sources with memory in [5].

IV. CONCLUDING REMARKS

We highlighted some key results in guessing the realisation of a source. We presented results for both
the perfect secrecy and the key-rate constrained scenarios. An interesting point is that in the traditional
Shannon-theoretic sense, perfect secrecy is attained if R > H(PX). However a slightly higher key rate
R > E ′(ρ) > H(PX) is needed for perfect secrecy under guessing. The difference is because guessing
performance is significantly affected by large deviations behaviour leading to a more stringent demand
on the key rate.

Just as there are so-called “universal” compression strategies that are asymptotically optimal for a wide
class of sources, are there guessing strategies that are asymptotically optimal for a similarly wide class
of sources? It turns out that the answer is yes. In fact, the association between compression and guessing
is rather tight – every good compression strategy leads to a good guessing strategy and every guessing
strategy leads to a good compression strategy.

In particular, it is known that guessing in the increasing order of Lempel-Ziv lengths (or any other
asymptotically optimal compression scheme) is a robust guessing strategy for a wide range of sources
called unifilar1 sources. In the key-rate constrained case, this strategy interlaced with the exhaustive key-
search attack does the trick. We refer the reader to [5] for details.

We end the paper with this short list of interesting open questions.
• While there are asymptotically optimal robust guessing attacks for unifilar sources, are there

asymptotically optimal encryption strategies that do not depend on knowledge of source statistics?
• Are Lempel-Ziv based attacks asymptotically optimal for stationary and ergodic sources?
• What is the degradation on the attacker’s performance when only a noisy version of the cryptogram

is available to the attacker?
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1Unifilar sources are finite state sources where the next state is a deterministic invertible function of the previous state and current output.
Markov sources whose state is a finite past form an important subclass of unifilar sources. See [5].


