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Abstract : Some interesting results on a guessing wiretappet’s perfermance on a Shannor cipher

system arc summarized. The performance metrics are exponents of guessing moments and

prohability of large deviations. Connections with compression and the game of Twenty quéestions

are discussed. Asymptotic optimality of guessing attacks based on Lempel-Ziv cading lengths is
Chighlighted.

1. Infroduction

Consider the classical Shannon cipher system [ ] shown in Fig. 1. Let X' = (XX bea
message where each letter takes values on a finite set X. This alphabet set could be binary, the
Latin characters, or letters from a standard gwerty key-board. The message is assumed to be put
out by a source, an entity that emits strings of specified length (here n) according to a specified
(or partiatly specified) probability law. The message should be communicated securely from a
transmitter to a receiver. Both of these have access to a common secure Key L% of k purely
random bits independent of X”. The transinitter computes the cryptogram P = f(X" Uy viaan
encryption function £, and sends it to the receiver over a public channel. The cryptogram may bfe

of variable length. The function f, is invertible given UF. The receiver. knowing ¥ and 7,
computes X" =Y, ). The functionsfandj,'{’ arc published.

L.A

X'—A f(X, ) LY U X

Eve (wiretapper)

An-attacker (wiretapper) has access to the cryptogram Y, knows f, and /"', and attempts to
identify X" without knowledge of . The attacker can use knowledge of the statistics of X", We
assume that the attacker has a test mechanism that tells him whether a guess X" is correct or not.
For example, the attacker may wish to attack an encrypted password or personal information to
gain access to, say, a computer account, or a bank account via internet, or a classified database
[2]. In these situations, successful entry Into the system or a failure provides the natural test
mechanism. We assume that the attacker is
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allowed an unlimited number of guesses. The key rate for the system is R .= k/n which
represents the number of bits of key used to communicate one message letter.

The attacker stops as soon as he makes a correct guess. If a particular submitted guess is
incorrect, he does not gather any further information on the realisation other than the fact that his
prior guesses were incorrect. Thus, the set of strategies at the attacker’s disposal is all the
possible orderings of X", each being an order in which he will submit his guesses. Depending on
the cryptogram, the attacker may choose an ordering. A particular ordering, denoted G(. 1), is
thus a mapping from X" to {1, 2, ..., {XI"}, one for each observed cryptogram.

The goal of the guessing attacker is to identify the realisation in as few guesses as possible.
Typical quantities of interest are the expected number of guesses E[G(X" | )], moments of
guessing E[G(Y" | Y)Y for p > 0, or the probability of exceeding a certain number of guesses
PIGX" | 1) = C). The guessing attacker would choose G{. | ) to make these as small as
possible. On the other hand. the goal of the system designer is to make the aforementioned
quantities as large as possible. The following questions arise :

1} The probiem described above is reminiscent of the game of “twenty questions”. What 1s the
connection?

2)  Given information on the secret message source, what is the best strategy for the attacker?

3)  What is the attacker’s performance using the optimal guessing strategy? In particuiar, how
does it grow with n, and what is the relationship with the key rate R?

4)  How sensitive is the attacker’s performance to knowledge of source statistics?

The purpose of this review article is to give a summary of answers to the above questions.
We will focus on only the expected number of guesses and guessing moments in this review.

There are two scenarios of interest. The first is the case of perfect secrecy where encryption
is so strong that the cryptogram is practically useless to the attacker. This is the case when the
key rate is large (for example, R > [). The second is one where the key rate is sufficiently small
that the attacker may exploit the constraint to reduce his guessing effort. We will look at both.

2. Relationship to “Twenty Questions”

The game of “twenty questions” has two players — a questioner and an answerer. The
answerer has a subject in mind which is not known to the guestioner. The questioner asks
questions one afier another and has to identify the subject, based only on the answerer’s
“responses. The answerer is only allowed to say “yes” or “no”. The questioner’s goal is 10
minimise the number of questions asked. (More precisely, expected number of questions,
moments of the number of questions, or probability that the number of questions exceeds a
certainnumber, just as above).:

The chosen subject is modeled as the realisation of a source. The questioner may ask any
set-membership question: “Does X' 2e E77 fori=1,2, ..., where £; X". He picks this series
of questions to minimize the number of questions asked, and exploits the statistical structure
inherent in the choice of the subject. For example, if the questioner were to guess a famous
personality. given the choice’s geographical and temporai bias. the questioner ought to pick a
subset of personalities based on recent news clippings. For exampie, “[s the person a politician or
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a cricketeer?” 1s & good first question keeping in mind the recent elections in Gujarat, and the
recently concluded cricket test series (This article was written in early December 2007).

The game of twenty questions has relevance to the classical problem of source
compression. Huffman encoding can be thought of as yes-no answers to a certain series of set-
membership questions. The sets E; are picked so that an answer at each stage reduces the
uncertainty to a set whose probability is half of that of the prior uncertainty set. For the specific
case when all realisations are equi-probable, a binary search has exactly this property.

It is well-known that the minimum expected number of questions is H(Px,), the Shannon 7
entropy of the source restricted to strings of length n. For a stationarv source, this grows
asymptotically linearly in # with a slope equal to the entropy rate of the system:

He=tlim,_ 1 H(P,.).

§

Moreover, we know that there exists a compression strategy that work for a rather large class of
- sources. For example, the Lempel-Ziv encoding [3] is asymptotically optimal for every
stationary and ergodic source. Such strategies are termed “universal”, where the universality.
refers to asymptotic optimality for sources that belong to a specified class of sources (here,
stationary and ergodic sources).

In the language of the game of twenty questions, the Lempel-Ziv coding strategy yields a
series of questions “that enable the questioner to discover the realisation in #H + o{n) questions
where o(n) is a sequence that satisfies lim, > o» o(n)/n = 0. Asymptotically, the penalty for not
knowing the exact parameters of the source within the class is the sub-linear quantity o(n).

The game of guessing (in the perfect secrecy scenario) is the game of twenty questions with
the added restriction that sets, membership to which is tested, are singletons, i.e., “Does X" e

X377, or equivalently, “Is X" = x"?”, and so on. Naturally, we anticipate that the expected
number of guesses grows at a rate faster than nH. Stretching the connection a little further, we
anticipate the existence of robust guessing attacks that do not depend on exact parameters of
source statistics.

3. Attacker’s Best Strategy and Performance

Given the probability mass function of X", the function £, and the cryptogram Y, the
attacker can determine the posterior probabilities of the messages Pxy (. | y) using Bayes rule.
His best guessing strategy having observed Y = y is then to guess in the decreasing order of these
posterior probabilities Px"y (.1 y). As one might expect, this is the strategy that minimizes all the
measures of performance given above. ‘

Without loss of generality, we assume that the message alphabet is binary. Let us first
consider the case R > 1 or k£ > n. One may set fn to be such that the output is the XOR of the n
message bits and the first n key bits. Since the key bits are purely random, a simple application
of Bayes rule shows that

Pxory (X7 | y) = Pxr (x™)

ie, the cryptogram is useless to the attacker. The lest attack strategy is to guess in the
decreasing order of source probabilities. Let us denote this guessing strategy as G*,

Fact I: Consider a discrete memoryless source (DMS): a source where each letter is independent
and identically distributed with a generic distribution Py.

(8]




o (Arikan [4]) For any DMS, the expected number of guesses for he optimal guessing
strategy grows exponentially in n. The rate of growth is given by “he R’enyl entropy of
order 1/2. More precisely,

lim, .. 7" log E[G" (X" =H (Py) (1)

where the R enyi entropy of order o is

ch(‘P.\') =
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¢ (Arikan [4]) More generally, :
fim, . n log E[G" (X" |=pH , (P,)
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+p

It is the form of (1) that is important. It tells us that in contrast to twenty questions, the
expected number of guesses grows not inearly, but exponentially in ». This shouid not be
surprising given the restriction on the type of questions asked (singleton-set membership
questions).

Suppose now that the key rate is smaller than 1. i.c.. we have fewer key bits than message
bits. Consider the extreme case when & = 1, i.e., there are only two possible keys, 0 or 1. Clearly,
given the cryptogram, the attacker can attempt decryption using keys 0 and 1 to get two possible
messages. He will then submit the more probable of the two as the first guess and the other one
next. He needs at most two guesses. If k = 2, there are four possible keys, and the attacker needs
at most 22 guesses. More generally, when k£ = #R, this exhaustive key-search attack yields the
correct guess 1n at most 2" guesses (which is less than 27). The system designer should choose £,
to make the expected number of guesses as close to this upper bound as possible. For an £, let

G*;, be the best attack strategy.
The following result characterises the expected number of guesses as a function of R.

Fact 2 (Merhav & Arikan [2]): For a DMS, the optimal exponent of guessing moment is
given by
lim, ,sup, n”' log F[G', (X" | ¥)*1=E(R, p)=max,[p min{H(Q), R}~ D(Q| )] (3)

f1—yee

Yet again, it is the qualitative conclusion that one can draw from (3) that is important, and
not the actual expression itself. Firstly, F(R, p) never exceeds p R, the performance of an

exhaustive key-search attack. Secondly, when R > 1, we have R > H((Q), and therefore the-
minimum in the expression for E(R, p ) is H(Q). We therefore anticipate that

E(p)=max, [pH(Q)- D@ || Pl = pH , (X)),

I+p

a well-known identity in the information theory. Thirdly, (3) implies that £(R, p) is a non-
decreasing and concave function of R. The nondecreasing property is expected given the
operational significance of E(R, p) as the guessing moment’s exponent. As the key rate
increases, the number of key bits increases, and it should become more difficult to guess the




realisation. The interesting aspect is the concavity - the returns from adding an estra ker i
diminish with the fength of the key. v

A precise characterisation of E(R. p) is the following.
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Fig. 2. Exponent of guessing moment as a function of R.

Fuct 3 (Merhav & Arikan [2]): E(R. p) is given by the following expression. See Fig. 2.

[ PR, R < H(P,),
E(R.p) =4{p—0,)R+ E(®). H(P) < R<E{p).
E(p), R>E'(p}

where @4 depends on R and belongs to [0, p] in the second case.

Merhav and Arikan [2] further provide the following interpretation on the shape of this
function. For low key rates, i.e., 8 < H{Py). an exhaustive key-search attack is the most effective
attack (from the point of view of asymptotic guessing moments). On the other hand. when
R> E'( p), the key rate is sufficiently high to render the cryptogram useless. The attacker might
as well discard the cryptogram and use only the source’s staiistical structure in submitting its
cuesses. [n this regime, the key rate 1s high enough to attain perfect secrecy. For intermediate
values of Re [H(Py),E( p)]. the attacker should use a combination of the exhaustive key-search
attack and an attack based on the source’s statistical structure. In particular, the attacker should
guess alternately from each list, skipping those sequences that have already been guessed. (Each
sequence will occur twice in the interlaced list). This leads to a penalty of at most a factor of 2 in
the expected number of guesses, vielding a loss of 5 log 2 = o(1) in the exponent of the
expected number of guesses. The quantity £'( p ) turns out to be the entropy of a “tilted” source.
See [2} or [3] for more detaiis. These results have been generalised to a class of sources with
memory in [5].

4. Concluding Remarks
We highlighted some key results in guessing the realisation of a source. We presented

tesults for-both the perfect secrecy and the key-rate constrained scenarios. An interesting point is
that in the traditional Shannon-theoretic sense. perfect secrecy is attained it K > H/PX). However
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a slightly higher key rate R > E'(p) > Hi(Py s needed for perfect secrecy under guessing. The
differer.ce is because guessing performince is significantly affected by large deviations
behaviour leading to a more stringent demand on the key rate. Just as there are so-cailed
“universal” compression strategies that are asymptotically optimal for a wide class of sources,
are there guessing strategies that are asymptotically optimal for a similarly wide class of sources?
It turns out that the answer is yes. In fact, the association between compression and guessing is
rather tight — every good compression strategy leads to a good guessing strategy and every
ouessing strategy leads to a good compression strategy.

In:particular, itis known that guessing in the increasing order of Lempel-Ziv lengths {or
any othzr asymptotically optimal compression scheme) is a robust guessing strategy for a wide
range of sources called unifilar’ sources. In the key-rate constrained case, this strategy interlaced
with the exhaustive key search attack does the trick. We refer the reader to [3] for details.

We end the paper with this short list of interesting open questions.

@  While there are asymptotically optimal robust guessing attacks for unifilar sources,
are there asympiotically optimal encryption strategies that do not depend on
knowledge of source statistics?

e Are Lempel-Ziv based attacks asymptotically optimal for stationary and ergedic
sources?

e What is the degradation on the attacker’s performance when only a noisy version of
the cryptogram is available to the attacker? '
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