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Abstract— Two decision versions of a combinatorial power
minimization problem for scheduling in a time-slotted Gaussian
multiple-access channel (GMAC) are studied in this paper. If the
number of slots per second is a variable, the problem is shown
to be NP-complete. If the number of time-slots per second is

fixed, an algorithm that terminates in O (Length (nHy +1) steps
is provided.

I. INTRODUCTION AND PRIOR WORK

Consider a Gaussian multiple-access channel (GMAC) with
K users. User k demands reliable communication at rate =
bits per second. There are N slots every second' and each
user transmits in at most one slot per second. We consider an
overloaded system where K > N. Let S,, denote the set of
users that transmit in slot n. The received signal in slot n is
given by

Y, = §:<Xk4-W%
kESn

where X, is the information symbol transmitted by user k.
The additive noise random variables W,, are independent and
identically distributed as NV (0, 1). The goal is to schedule users
in each of these n slots so that users’ rate requirements are
met and sum power over all users is minimized.

The above problem, where only a subset of users are
scheduled in a slot, can be motivated as follows. It is well-
known that if the goal is only to minimize sum power, then all
users should use all slots [1, Lemma 3.4]. Such a consideration
leads to the classical multiple-access channel with K users
accessing the channel in a slot. Optimal decoding however
requires the receiver to do a joint decoding across all K
users; the decoding complexity is exponential in K. Moreover,
such an access scheme is prone to jamming as a jammer
can affect all users’ coded signals. On the other hand, one
could schedule at most one user per slot. This significantly
simplifies the multiple-access decoding problem, but is likely
to be power inefficient. Moreover, each user has to wait K
slots before getting an opportunity to transmit; this may not
meet a user’s delay constraint. A trade-off is to schedule the K
users in N slots, N < K, where each user transmits in at most
one of these N slots. N is small enough to meet the delay

I'Second as unit of time has been chosen for simplicity.
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constraint, yet large enough to provide jamming resilience.
We assume throughout that NV is obtained as per system and
delay requirements. It may either be fixed up front or may be
supplied as part of the optimization problem. Since N < K,
there is at least one slot with two or more users. We are
therefore studying an uplink analog of multipacket downlink
transmission of low data rate packets used in 1XEV-DO Rev A
[2], where several voice packets are grouped together in a time-
code slot to meet voice application’s tight delay constraints.

Clearly, this problem can be posed in other settings as well.
For example in a frequency-flat channel, subcarriers pertaining
to an OFDM system and codes pertaining to CDMA system
play the role of time slots in this paper. Our attention to
scheduling in time slots is only to ease exposition.

Let us first focus on one slot, say n. Recall that S,, is the
subset of users that transmit in slot n. In order to meet the
rate requirements, the sum power of users in this slot should
satisfy [3, Chapter 14]

1 1 1
57"(5'”)::5 Z r < Elog (1 + Z pk>

kESn kESH

so that?
> =27 -1 M

kESn

Furthermore, it is known that the above lower bound on sum
power is achieved via a successive cancellation decoder. (See
for e.g. [1, Lemma 3.4]). Thus we may assume equality in (1)
for a fixed S,,.

Now given a partition S, : n € [N], where [N] denotes the
set {1,2,---, N}, the minimum sum power for the partition
is given by

(@)

N N
IPIES Bl
n=1

n=1keSs,

The minimum is over all encoding and decoding schemes for
the given partition. We pose the following question: What is
the minimum power (2) over all partitions?

2Note the disappearance of the factor 2 in the exponent; this is the reason
for the rather strange appearance of % in the rate requirement.
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This is a combinatorial optimization problem. We address
the complexity of the decision versions of this problem in this
paper. In Section II, we introduce some notation and relevant
concepts from complexity theory. In Section III-A, we show
that when N is input as part of the problem instance, the
problem is NP-complete, i.e., if this problem can be solved in
polynomial time by a deterministic Turing machine, we will
have obtained a polynomial time algorithm to several problems
that have thus far resisted such solutions. In Section III-B
we show that a version of the problem where N is known
and fixed can be solved in polynomial time by a deterministic
Turing machine.

Algorithms for power allocation to nodes in a network have
been studied in different contexts. In a wireless communication
setting a node’s transmission range being proportional to its
transmit power, the topology of the network is a function of
the assigned powers. Chen and Huang [4] show the problem
of minimizing sum power for full connectivity is NP-hard.
Kirousis and others [5] study a simpler problem when n nodes
lie along a line separated by unit distance and provide an
O(n*) algorithm for power assignment. The above problems
deal with power allocation for connectivity, whereas we focus
on power allocation to meet certain rate requirements. Arikan
[6] considers the problem of assigning powers to nodes in a
packet radio network such that specific origin-destination pairs
communicate at specified rates. He proves that the problem
is NP-hard. Assuming that the only cause for packets to be
received in error is simultaneous transmissions he schedules at
most one radio at any time. In contrast we allow for multiple
users per slot and compensate for simultaneous transmissions
via larger powers and the use of a successive cancellation
decoder.

II. PRELIMINARIES

We begin with some remarks on notation. Recall that for
an integer K > 1, [K] denotes the set {1,2---,K}. For
z,y € Zy, let s(z) = |logyx] + 1 represent span of x
when represented in binary. Let ps(x), pa(s(x), s(y)) be
the number of steps required to compute 2* and compute
xy respectively, where ps(+), par(+, -), are fixed univariate and
bivariate polynomials.

For a problem II, let domain D(II) denote the set of all
valid instances of II, and Y (IT) the set of all yes-instances of
II. Let maxy : D(II) — Z4 map a valid instance I to the
magnitude of the largest integer in I, or 0 if no integer occurs
in I. Let Lengthy; : D(II) — Z4 map a valid instance I to
the length of its encoding?.

A problem II' is a subproblem of II if D(II") C D(II)
and Y(I") = D(II") N Y (II). Note that a problem IT and a
restricted domain D(IT") C D(II) define the subproblem II’
uniquely.

3 Any encoding scheme referred to in this paper is a reasonable encoding
scheme. For a discussion on reasonable encoding schemes refer to [7, Section
2.1]

Let p(-) be a polynomial. IT,, is a subproblem of II defined
through its domain

D(I1,) = {I € D(II) : maxy () < p(Lengthy(1))}.

We quickly recall some basic complexity concepts. See [7,
Chapter 2] for a detailed discussion. II is said to be in class
P if it can be solved by a deterministic Turing machine in
polynomial time. II is said to be in class NP if it can be
solved by a non-deterministic Turing machine in polynomial
time. We say problem A can be reduced to II in polynomial
time if there exists an f : D(A) — D(II) that satisfies the
following :

1) forall I € D(A), I € Y(A) < f(I) € Y(II), and

2) given I, f(I) can be computed in time polynomial in

Length, (I).
IT is NP-complete if II € NP and every problem A € NP can
be reduced to II in polynomial time.

Definition 1: [7, p.95] A problem II is strongly NP-
complete if there exists a polynomial p(-) such that IT, is
NP-complete. M

Example 2: Consider the following three dimensional
matching (3DM) problem.

3DM : Givendisjointsets X,Y, ZandasetV C X xY xZ,
is there V/ C V that forms a matching for X,Y, Z ? In other
words, does every element of X, Y, Z belongs to exactly one

triplet in the matching V’? O
3DM is NP-complete. It is also strongly NP-complete because
no integer occurs in its description. O

III. SLOTTED ALLOCATION FOR POWER MINIMIZATION

Recall from Section I that the problem of minimizing
total received sum power (2) needed to satisfy a set of
rate requirements %-, 2, - .-, "X bits/second reduces to the
following combinatorial optimization problem:

Given scaled rates r1,79, -+ ,7k, and N < K, identify a
partition S, : n € [N] of [K] that minimizes

N

> oS,

n=1
We investigate the computational complexity of this problem.
Two cases are of interest. In the variable bandwidth case the
number of slots N per second is a variable that is input as
part of the problem instance. In the fixed bandwidth case, N
is assumed known and fixed. We study the complexity of both
these variations by looking at their decision versions.

A. Variable Bandwidth Case

SLOTTED PMIN Given positive integer rates
r1,T2,- - ,Tr, number of slots N per second, N < K, a
positive integer power P, is there a partition S, : n € [N] of
[K] such that

N
ZQT(Sn) <P ? (3)

n=1

O
Our first result is the following.
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Theorem 3: SLOTTED PMIN is NP-complete. _
Proof:

1) We first show that SLOTTED PMIN € NP by pro-
viding a polynomial time algorithm to check validity of a
certificate partition. We assume without loss of generality that
r1,T9, -+ ,TK are in increasing order.

Clearly P > 2"% and therefore s(P) > rg is a necessary
condition for the existence of a partition S,, : n € [N] that
satisfies (3). We can compare s(P) and rx in time polynomial
in the input size and reject the instance when s(P) < rk.
Hence we may focus on the instances that satisfy s(P) >
rk; these are fortunately instances where the rate values are
bounded by the size of the input. We thus have the following
algorithm. Let (1 < z) denote the left shift operation on 1 to
obtain a representation of 2%.

CheckCertificate(ry, - k € [K],N,S, :n € [N],P):
if (s(P)<rk)
RETURN Certificate is invalid
else {
for (n=1,2,--- ,N){

r(Sy) = Z 7L

kESn

P, =(1<7(S,))
}
Pyt = Zivzl P,
if (Pt <P

RETURN Certificate is Valid
else

RETURN Certificate is Invalid

}

Since r(S,) < Krx < Ks(P), number of operations
needed to compute P, (via left shifts) is pg (K's(P)), and
the span of P, is at most K's (P). The span of Py, is thus at
most Ks(P)log N. This is multiplied by N because of the
for loop. Since N < K < |I|, the time needed to compute
Piot and compare it with P is thus O(|I|*). CheckCertificate
runs in polynomial time.

2) We next show that a subproblem of a strongly NP-
complete problem 4-PARTITION can be reduced in polyno-
mial time to SLOTTED PMIN.

4-PARTITION : Given positive integers a1, ag, - ,a4n

AN

such that Zak = NB where B is a positive integer, and

k=1
% < a < £ for every k € [K], is there a partition
Spn :m € [N] of [4N] such that a (S,,) = B for all n € [N] ?
(I

This is termed 4-PARTITION because if a partition exists,
every set in the partition will have exactly 4 elements on
account of ? < ap < %. Observe that B and N need
not be directly input as part of the problem instance. As 4-
PARTITION is strongly NP-complete [7, Theorem 4.3], there
exists p(-), a polynomial, such that 4-PARTITION,, is NP-
complete.

2a) Consider the transformation f : D(4-PARTITION,,) —
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D(SLOTTED PMIN) defined as follows

SLOTTED PMIN <« 4-PARTITION,

Ty = ag fork:1,2,---,4N
N = N
P = N2B

This is a polynomial time reduction because of the following.
For any instance I € D(4-PARTITION,), B < bap <
5p(Lengthy; (1)). Since N < Lengthy;(7), P can be computed
in at most O(pps(s(INV), 5p(Lengthy; (I)))) proving the poly-
nomial complexity of the reduction.

2b) We now prove I € Y (4-PARTITION,) if and only
if f(I) € Y(SLOTTED PMIN). It is easy to see that is [
is a yes-instance for 4-PARTITION with partition S,, : n €
[N], then f(I) is a yes-instance of SLOTTED PMIN with
the same partition. In fact equality holds in (3). Conversely, if
Sp :n € [N] is a desired partition for SLOTTED PMIN for
a yes-instance f(/), we then have

N
P=N28 > Z 27 (Sn)
n=1
N %
> N (H 2T(Sn>) (4)
n=1
= N2B

where (4) follows from the arithmetic mean - geometric mean
inequality. Consequently, all inequalities are equalities leading
to r(S,) = B for all n € [N]. Thus S,, : n € [N] is a
desired partition for 4-PARTITION and I is a yes-instance of
4-PARTITION. This proves SLOTTED PMIN is NP-complete.

|

B. Fixed Bandwidth

We now look at the case when the number of slots IV is
fixed.

N-SLOTTED PMIN Given positive integer rates
r,r9, - ,Tx, where N < K, a positive integer power P,
is there a partition S,, : n € [N] of [K] such that

N
ZQT(Sn) <P ? (5)
n=1

O
Our second result is the following.

Theorem 4: N-SLOTTED PMIN € P. In particular, there is
an algorithm that solves N-SLOTTED PMIN with a running
time O (Length (I)N+1). O

Proof: We first show that number of partitions of [K]
that need to be checked is polynogial in the size of the input.

We then argue that computing Z 27(5n) for each of these

=1
partitions S,, : n € [N] of [K]ncan be done in polynomial
time. Subsequently, we provide a polynomial time algorithm
that solves N-SLOTTED PMIN.
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1) Associate the N-length vector (r (S,) : n € [N]) with
the partition S,, : n € [N] of [K]. In order to solve N-
SLOTTED PMIN we may focus on partitions whose associ-
ated vectors have components with values at most s (P). This
is because s (P) > r(S,) for every n € [N] is a necessary
condition for partition S,, : n € [N] to satisfy (5). Let T(%)
be set of vectors associated with all such partitions. Thus we
have [T < (1 + s(P))V.

2) Assume without loss of generality 71,73, -+ ,rx is in
increasing order. Observe that s(P) > rg is a necessary
condition for T¥) to be nonempty. As before we declare No
if s(P) < rk in polynomial time and therefore focus on those
instances with s(P) > rk. As in algorithm CheckCertificate,
7(Sp), Pn,n € [N], and Py can be computed in polynomial
time. (See discussion on algorithm CheckCertificate).

3) We now provide a dynamic programming algorithm
NSlottedPMIN to solve N-SLOTTED PMIN. Let e, denote
the unit vector with 1 in the n** component and 0 elsewhere.
NSlottedPMIN computes T*), the set of vectors associated
with partitions of [k], recursively from T7*~1). The set of
vectors obtained by adding 7, to the n'® component of vectors
in TC=1 je.,

T*=1 Ds(p) Then'=

{t +rpen it e TE D ¢ 4y < s(P)} (6)

are the vectors associated with partitions of [k] with k € S,,.
Performing a union over n, of sets in (6) we obtain 7).

NSlottedPMIN(ry, : k € [K], P)
if (s(P)<rg)
RETURN No
else {
T7O) {(0,0,---,0)} C 7N
for (k=1,2,--- ,K)
T® — UL, (T(k_l) Bs(p) Tken)
for (te TW)){
for (n=1,2,---,N)
P’n - (1 < tn)
-Ptot = Zi:;l Pn
if (Ptot S P)
RETURN Yes

}

RETURN No

We now analyze complexity of NSlotted PMIN. We observe
|IT*=D| < (1 + s(P))N for every k € [K]. Therefore,
computing 7 from T®*~1) requires at most (1 + s(P))¥
additions and as many comparisons. The values involved in
these operations are at most s(P). Therefore T(*) can be
computed in O (Ns(P)") steps. Since the components of
vectors in 7) are bounded in value by s(P), computation of
P, : n € [N], computation of P;,:, and its comparison with P,
can all be done in O (s(P) - Nlog N) steps. Doing this for
every vector in 7% requires at most O (s(P)N*!. Nlog N)
steps. Thus the “else” part of NSlottedPMIN runs to com-
pletion in O (N-logN- (logP)NH) time. This leads to

steps, a

an overall time complexity of O (Length (I )NH)
polynomial in Length (I), since N is a fixed constant. ]
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