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Abstract—Two decision versions of a combinatorial power
minimization problem for scheduling in a time-slotted Gaussian
multiple-access channel (GMAC) are studied in this paper. If the
number of slots per second is a variable, the problem is shown
to be NP-complete. If the number of time-slots per second is
fixed, an algorithm that terminates in O

“
Length (I)N+1

”
steps

is provided.

I. INTRODUCTION AND PRIOR WORK

Consider a Gaussian multiple-access channel (GMAC) with
K users. User k demands reliable communication at rate rk

2
bits per second. There are N slots every second1 and each
user transmits in at most one slot per second. We consider an
overloaded system where K ≥ N . Let Sn denote the set of
users that transmit in slot n. The received signal in slot n is
given by

Yn =
∑

k∈Sn

Xk + Wn

where Xk is the information symbol transmitted by user k.
The additive noise random variables Wn are independent and
identically distributed asN (0, 1). The goal is to schedule users
in each of these n slots so that users’ rate requirements are
met and sum power over all users is minimized.
The above problem, where only a subset of users are

scheduled in a slot, can be motivated as follows. It is well-
known that if the goal is only to minimize sum power, then all
users should use all slots [1, Lemma 3.4]. Such a consideration
leads to the classical multiple-access channel with K users
accessing the channel in a slot. Optimal decoding however
requires the receiver to do a joint decoding across all K

users; the decoding complexity is exponential in K . Moreover,
such an access scheme is prone to jamming as a jammer
can affect all users’ coded signals. On the other hand, one
could schedule at most one user per slot. This significantly
simplifies the multiple-access decoding problem, but is likely
to be power inefficient. Moreover, each user has to wait K

slots before getting an opportunity to transmit; this may not
meet a user’s delay constraint. A trade-off is to schedule theK

users in N slots, N < K , where each user transmits in at most
one of these N slots. N is small enough to meet the delay

1Second as unit of time has been chosen for simplicity.

constraint, yet large enough to provide jamming resilience.
We assume throughout that N is obtained as per system and
delay requirements. It may either be fixed up front or may be
supplied as part of the optimization problem. Since N < K ,
there is at least one slot with two or more users. We are
therefore studying an uplink analog of multipacket downlink
transmission of low data rate packets used in 1xEV-DO Rev A
[2], where several voice packets are grouped together in a time-
code slot to meet voice application’s tight delay constraints.
Clearly, this problem can be posed in other settings as well.

For example in a frequency-flat channel, subcarriers pertaining
to an OFDM system and codes pertaining to CDMA system
play the role of time slots in this paper. Our attention to
scheduling in time slots is only to ease exposition.
Let us first focus on one slot, say n. Recall that Sn is the

subset of users that transmit in slot n. In order to meet the
rate requirements, the sum power of users in this slot should
satisfy [3, Chapter 14]

1

2
r(Sn):=

1

2

∑
k∈Sn

rk ≤
1

2
log

(
1 +

∑
k∈Sn

pk

)

so that2 ∑
k∈Sn

pk ≥ 2r(Sn) − 1. (1)

Furthermore, it is known that the above lower bound on sum
power is achieved via a successive cancellation decoder. (See
for e.g. [1, Lemma 3.4]). Thus we may assume equality in (1)
for a fixed Sn.
Now given a partition Sn : n ∈ [N ], where [N ] denotes the

set {1, 2, · · · , N}, the minimum sum power for the partition
is given by

N∑
n=1

∑
k∈Sn

pk =

N∑
n=1

2r(Sn) −N (2)

The minimum is over all encoding and decoding schemes for
the given partition. We pose the following question: What is
the minimum power (2) over all partitions?

2Note the disappearance of the factor 2 in the exponent; this is the reason
for the rather strange appearance of 1

2
in the rate requirement.
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This is a combinatorial optimization problem. We address
the complexity of the decision versions of this problem in this
paper. In Section II, we introduce some notation and relevant
concepts from complexity theory. In Section III-A, we show
that when N is input as part of the problem instance, the
problem is NP-complete, i.e., if this problem can be solved in
polynomial time by a deterministic Turing machine, we will
have obtained a polynomial time algorithm to several problems
that have thus far resisted such solutions. In Section III-B
we show that a version of the problem where N is known
and fixed can be solved in polynomial time by a deterministic
Turing machine.
Algorithms for power allocation to nodes in a network have

been studied in different contexts. In a wireless communication
setting a node’s transmission range being proportional to its
transmit power, the topology of the network is a function of
the assigned powers. Chen and Huang [4] show the problem
of minimizing sum power for full connectivity is NP-hard.
Kirousis and others [5] study a simpler problem when n nodes
lie along a line separated by unit distance and provide an
O(n4) algorithm for power assignment. The above problems
deal with power allocation for connectivity, whereas we focus
on power allocation to meet certain rate requirements. Arikan
[6] considers the problem of assigning powers to nodes in a
packet radio network such that specific origin-destination pairs
communicate at specified rates. He proves that the problem
is NP-hard. Assuming that the only cause for packets to be
received in error is simultaneous transmissions he schedules at
most one radio at any time. In contrast we allow for multiple
users per slot and compensate for simultaneous transmissions
via larger powers and the use of a successive cancellation
decoder.

II. PRELIMINARIES

We begin with some remarks on notation. Recall that for
an integer K ≥ 1, [K] denotes the set {1, 2 · · · , K}. For
x, y ∈ Z+, let s (x) = �log2 x� + 1 represent span of x

when represented in binary. Let pS(x), pM (s(x), s(y)) be
the number of steps required to compute 2x and compute
xy respectively, where ps(·), pM (·, ·), are fixed univariate and
bivariate polynomials.
For a problem Π, let domain D(Π) denote the set of all

valid instances of Π, and Y (Π) the set of all yes-instances of
Π. Let maxΠ : D(Π) → Z+ map a valid instance I to the
magnitude of the largest integer in I , or 0 if no integer occurs
in I . Let LengthΠ : D(Π) → Z+ map a valid instance I to
the length of its encoding3.
A problem Π′ is a subproblem of Π if D(Π′) ⊆ D(Π)

and Y (Π′) = D(Π′) ∩ Y (Π). Note that a problem Π and a
restricted domain D(Π′) ⊆ D(Π) define the subproblem Π′

uniquely.

3Any encoding scheme referred to in this paper is a reasonable encoding
scheme. For a discussion on reasonable encoding schemes refer to [7, Section
2.1]

Let p(·) be a polynomial. Πp is a subproblem of Π defined
through its domain

D(Πp) = {I ∈ D(Π) : maxΠ(I) ≤ p(LengthΠ(I))} .

We quickly recall some basic complexity concepts. See [7,
Chapter 2] for a detailed discussion. Π is said to be in class
P if it can be solved by a deterministic Turing machine in
polynomial time. Π is said to be in class NP if it can be
solved by a non-deterministic Turing machine in polynomial
time. We say problem Λ can be reduced to Π in polynomial
time if there exists an f : D(Λ) → D(Π) that satisfies the
following :
1) for all I ∈ D(Λ), I ∈ Y (Λ) ⇔ f(I) ∈ Y (Π), and
2) given I , f(I) can be computed in time polynomial in
LengthΛ(I).

Π is NP-complete if Π ∈ NP and every problem Λ ∈ NP can
be reduced to Π in polynomial time.
Definition 1: [7, p.95] A problem Π is strongly NP-

complete if there exists a polynomial p(·) such that Πp is
NP-complete.
Example 2: Consider the following three dimensional

matching (3DM) problem.
3DM : Given disjoint setsX, Y, Z and a set V ⊆ X×Y×Z ,

is there V ′ ⊆ V that forms a matching for X, Y, Z ? In other
words, does every element of X, Y, Z belongs to exactly one
triplet in the matching V ′? �

3DM is NP-complete. It is also strongly NP-complete because
no integer occurs in its description.

III. SLOTTED ALLOCATION FOR POWER MINIMIZATION
Recall from Section I that the problem of minimizing

total received sum power (2) needed to satisfy a set of
rate requirements r1

2 , r2

2 , · · · , rK

2 bits/second reduces to the
following combinatorial optimization problem:
Given scaled rates r1, r2, · · · , rK , and N ≤ K , identify a

partition Sn : n ∈ [N ] of [K] that minimizes
N∑

n=1

2r(Sn).

We investigate the computational complexity of this problem.
Two cases are of interest. In the variable bandwidth case the
number of slots N per second is a variable that is input as
part of the problem instance. In the fixed bandwidth case, N

is assumed known and fixed. We study the complexity of both
these variations by looking at their decision versions.

A. Variable Bandwidth Case
SLOTTED PMIN : Given positive integer rates

r1, r2, · · · , rK , number of slots N per second, N ≤ K , a
positive integer power P , is there a partition Sn : n ∈ [N ] of
[K] such that

N∑
n=1

2r(Sn) ≤ P ? (3)

�

Our first result is the following.
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Theorem 3: SLOTTED PMIN is NP-complete.
Proof:

1) We first show that SLOTTED PMIN ∈ NP by pro-
viding a polynomial time algorithm to check validity of a
certificate partition. We assume without loss of generality that
r1, r2, · · · , rK are in increasing order.
Clearly P > 2rK and therefore s(P ) > rK is a necessary

condition for the existence of a partition Sn : n ∈ [N ] that
satisfies (3). We can compare s(P ) and rK in time polynomial
in the input size and reject the instance when s(P ) ≤ rK .
Hence we may focus on the instances that satisfy s(P ) >

rK ; these are fortunately instances where the rate values are
bounded by the size of the input. We thus have the following
algorithm. Let (1� x) denote the left shift operation on 1 to
obtain a representation of 2x.

CheckCertificate(rk : k ∈ [K] , N, Sn : n ∈ [N ] , P ):
if (s (P ) ≤ rK)

RETURN Certificate is invalid
else {

for (n = 1, 2, · · · , N) {

r(Sn) =
∑

k∈Sn

rk

Pn = (1 � r(Sn))
}

Ptot =
∑N

n=1 Pn

if (Ptot ≤ P )
RETURN Certificate is Valid

else
RETURN Certificate is Invalid

}

Since r(Sn) ≤ KrK ≤ Ks (P ), number of operations
needed to compute Pn (via left shifts) is pS (Ks (P )), and
the span of Pn is at most Ks (P ). The span of Ptot is thus at
most Ks (P ) log N . This is multiplied by N because of the
for loop. Since N ≤ K ≤ |I|, the time needed to compute
Ptot and compare it with P is thus O(|I|4). CheckCertificate
runs in polynomial time.
2) We next show that a subproblem of a strongly NP-

complete problem 4-PARTITION can be reduced in polyno-
mial time to SLOTTED PMIN.
4-PARTITION : Given positive integers a1, a2, · · · , a4N

such that
4N∑
k=1

ak = NB where B is a positive integer, and

B
5 < ak < B

3 for every k ∈ [K], is there a partition
Sn : n ∈ [N ] of [4N ] such that a (Sn) = B for all n ∈ [N ] ?
�

This is termed 4-PARTITION because if a partition exists,
every set in the partition will have exactly 4 elements on
account of B

5 < ak < B
3 . Observe that B and N need

not be directly input as part of the problem instance. As 4-
PARTITION is strongly NP-complete [7, Theorem 4.3], there
exists p(·), a polynomial, such that 4-PARTITIONp is NP-
complete.
2a) Consider the transformation f : D(4-PARTITIONp) →

D(SLOTTED PMIN) defined as follows

SLOTTED PMIN ← 4-PARTITIONp

rk := ak for k = 1, 2, · · · , 4N

N := N

P := N2B

This is a polynomial time reduction because of the following.
For any instance I ∈ D(4-PARTITIONp), B < 5ak <

5p(LengthΠ (I)). Since N < LengthΠ(I), P can be computed
in at most O(pM (s(N), 5p(LengthΠ (I)))) proving the poly-
nomial complexity of the reduction.
2b) We now prove I ∈ Y (4-PARTITIONp) if and only

if f(I) ∈ Y (SLOTTED PMIN). It is easy to see that is I

is a yes-instance for 4-PARTITION with partition Sn : n ∈
[N ], then f(I) is a yes-instance of SLOTTED PMIN with
the same partition. In fact equality holds in (3). Conversely, if
Sn : n ∈ [N ] is a desired partition for SLOTTED PMIN for
a yes-instance f(I), we then have

P = N2B ≥
N∑

n=1

2r(Sn)

≥ N

(
N∏

n=1

2r(Sn)

) 1

N

(4)

= N2B

where (4) follows from the arithmetic mean - geometric mean
inequality. Consequently, all inequalities are equalities leading
to r (Sn) = B for all n ∈ [N ]. Thus Sn : n ∈ [N ] is a
desired partition for 4-PARTITION and I is a yes-instance of
4-PARTITION. This proves SLOTTED PMIN is NP-complete.

B. Fixed Bandwidth
We now look at the case when the number of slots N is

fixed.
N-SLOTTED PMIN : Given positive integer rates

r1, r2, · · · , rK , where N ≤ K , a positive integer power P ,
is there a partition Sn : n ∈ [N ] of [K] such that

N∑
n=1

2r(Sn) ≤ P ? (5)

�

Our second result is the following.
Theorem 4: N-SLOTTED PMIN ∈ P. In particular, there is

an algorithm that solves N-SLOTTED PMIN with a running
time O

(
Length (I)

N+1
)
.

Proof: We first show that number of partitions of [K]
that need to be checked is polynomial in the size of the input.

We then argue that computing
N∑

n=1

2r(Sn) for each of these

partitions Sn : n ∈ [N ] of [K] can be done in polynomial
time. Subsequently, we provide a polynomial time algorithm
that solves N-SLOTTED PMIN.
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1) Associate the N -length vector (r (Sn) : n ∈ [N ]) with
the partition Sn : n ∈ [N ] of [K]. In order to solve N-
SLOTTED PMIN we may focus on partitions whose associ-
ated vectors have components with values at most s (P ). This
is because s (P ) > r (Sn) for every n ∈ [N ] is a necessary
condition for partition Sn : n ∈ [N ] to satisfy (5). Let T (K)

be set of vectors associated with all such partitions. Thus we
have |T (K)| ≤ (1 + s(P ))N .
2) Assume without loss of generality r1, r2, · · · , rK is in

increasing order. Observe that s (P ) > rK is a necessary
condition for T (K) to be nonempty. As before we declare No
if s(P ) ≤ rK in polynomial time and therefore focus on those
instances with s(P ) > rK . As in algorithm CheckCertificate,
r(Sn), Pn, n ∈ [N ], and Ptot can be computed in polynomial
time. (See discussion on algorithm CheckCertificate).
3) We now provide a dynamic programming algorithm

NSlottedPMIN to solve N-SLOTTED PMIN. Let en denote
the unit vector with 1 in the nth component and 0 elsewhere.
NSlottedPMIN computes T (k), the set of vectors associated
with partitions of [k], recursively from T (k−1). The set of
vectors obtained by adding rk to the nth component of vectors
in T (k−1) i.e.,

T (k−1) ⊕s(P ) rken:={
t + rken : t ∈ T (k−1), tn + rk ≤ s(P )

}
(6)

are the vectors associated with partitions of [k] with k ∈ Sn.
Performing a union over n, of sets in (6) we obtain T (k).

NSlottedPMIN(rk : k ∈ [K] , P ) :
if (s (P ) ≤ rk)

RETURN No
else {

T (0) ← {(0, 0, · · · , 0)} ⊆ Z+
N

for (k= 1, 2, · · · , K)

T (k) ← ∪N
n=1

(
T (k−1) ⊕s(P ) rken

)
for (t ∈ T (K)

)
{

for (n = 1, 2, · · · , N)
Pn = (1� tn)

Ptot =
∑N

n=1 Pn

if (Ptot ≤ P )
RETURN Yes

}
RETURN No

}

We now analyze complexity of NSlottedPMIN. We observe
|T (k−1)| ≤ (1 + s(P ))N for every k ∈ [K]. Therefore,
computing T (k) from T (k−1) requires at most (1 + s(P ))N

additions and as many comparisons. The values involved in
these operations are at most s(P ). Therefore T (k) can be
computed in O

(
Ns(P )N

)
steps. Since the components of

vectors in T (K) are bounded in value by s(P ), computation of
Pn : n ∈ [N ], computation of Ptot, and its comparison with P ,
can all be done in O

(
s(P )N ·N log N

)
steps. Doing this for

every vector in T (K) requires at most O
(
s(P )N+1 ·N log N

)
steps. Thus the “else” part of NSlottedPMIN runs to com-
pletion in O

(
N · log N · (log P )

N+1
)
time. This leads to

an overall time complexity of O

(
Length (I)

N+1
)
steps, a

polynomial in Length (I), since N is a fixed constant.

ACKNOWLEDGMENT
This work was supported by the Department of Science and

Technology under Grant DST0748, by the Defence Research
& Development Organisation (DRDO), Ministry of Defence,
Government of India, under the DRDO-IISc Programme on
Advanced Research in Mathematical Engineering, and by the
University Grants Commission under Grant Part (2B) UGC-
CAS-( Ph.IV).
The authors thank Dr. Telikepalli Kavitha for useful discus-

sions.

REFERENCES
[1] D. N. C. Tse and S. Hanly, “Multiaccess fading channels - Part I: Poly-

matroid structure, optimal resource allocation and throughput capacities,”
IEEE Trans. Inform. Theory, vol. IT-44, pp. 2796–2815, Nov. 1998.

[2] TIA/EIA/IS-856-A, “cdma2000 High Rate Packet Data Air Interface
Specification,” Telecommunications Industry Association, March 2004
(http://www.3gpp2.org).

[3] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: John Wiley & Sons, 1991.

[4] W.-T. Chen and N.-F. Huang, “The strongly connecting problem on
multihop packet radio networks,” IEEE Transactions on Communications,
vol. 37, pp. 293–295, March 1989.

[5] L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc, “Power consump-
tion in packet radio networks,” in Lecture Notes In Computer Science; Vol.
1200 archive, Proceedings of the 14th Annual Symposium on Theoretical
Aspects of Computer Science, Nice, France, 1997.

[6] E. Arikan, “Some complexity results about packet radio networks,” IEEE
Transactions on Information Theory, vol. 30, pp. 681–685, July 1984.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability - A Guide
to the Theory of NP-Completeness, 1st ed. New York: W.H Freeman
and Company, 1979.

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2701


