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Decentralized Sequential Change Detection using
Physical Layer Fusion

Leena Zacharias and Rajesh Sundaresan, Senior Member, IEEE

Abstract—The problem of decentralized sequential detection
with conditionally independent observations is studied. The
sensors form a star topology with a central node called fusion
center as the hub. The sensors make noisy observations of a
parameter that changes from an initial state to a final state at
a random time where the random change time has a geometric
distribution. The sensors amplify and forward the observations
over a wireless Gaussian multiple access channel and operate
under either a power constraint or an energy constraint. The
optimal transmission strategy at each stage is shown to be the
one that maximizes a certain Ali-Silvey distance between the
distributions for the hypotheses before and after the change.
Simulations demonstrate that the proposed analog technique has
lower detection delays when compared with existing schemes.
Simulations further demonstrate that the energy-constrained
formulation enables better use of the total available energy
than the power-constrained formulation in the change detection
problem.

Index Terms—Ali-Silvey distance, change detection, correla-
tion, Markov decision process, multiple access channel, sequential
detection, sensor network.

I. INTRODUCTION

CONSIDER the use of a wireless sensor network for
detection of a disruption or a change in environment. The

change is required to be detected with minimum delay subject
to a false alarm constraint. The standard medium access con-
trol and physical layer design for such a network (e.g., IEEE
802.15.4 standard) is one where sensors quantize their obser-
vations and send them to a fusion center via random access
over a wireless Gaussian multiple-access channel (GMAC).
The transmitted data are typically quantized individual log-
likelihood ratios (LLR) of the hypotheses representing the
environment before and after the change. The fusion center
collects each sensor’s LLR and adds them to get a fused
statistic, if observations at sensors are independent conditioned
on the state of the environment; this would be the case when
the observation noises are additive and independent from
sensor to sensor1. Such a design has a few drawbacks.

Manuscript received August 18, 2007; revised March 22, 2008, June
30, 2008, and July 2, 2008; accepted July 6, 2008. The associate editor
coordinating the review of this paper and approving it for publication was
Y. Fang.

This work was supported by the Defence Research & Development Organ-
isation (DRDO), Ministry of Defence, Government of India under a research
grant on wireless sensor networks (DRDO 571, IISc).

L. Zacharias is with Beceem Communications Pvt. Ltd., Bangalore, India.
R. Sundaresan is with the Department of Electrical Communication

Engineering, Indian Institute of Science, Bangalore, India (e-mail: ra-
jeshs@ece.iisc.ernet.in).

Digital Object Identifier 10.1109/T-WC.2008.070808
1As we will see later, conditional independence notwithstanding, sensor

observations are correlated.

1) It does not exploit the spatial correlation in observations
across sensors.

2) It does not exploit the superposition available on the
GMAC.

3) It employs an ad hoc separation between quantization or
compression on one hand, and transmission across the
channel on the other; the latter requires adequate coding
for noiseless reception and correct further processing at
the fusion center.

4) It requires sufficient time slots for sensors to resolve all
channel contentions2.

Our goal in this paper is to detect change in environment
in a manner that addresses the aforementioned drawbacks.
Specifically, we consider a “star” topology of sensors. Sensors
make an affine transformation of the observed data and trans-
mit the output in an analog fashion over the GMAC. Given that
observations at sensors at any instant are spatially correlated,
only the sum of the LLRs is relevant to the decision maker,
i.e., it is a sufficient statistic to decide on the change. By
making the sensors simultaneously transmit an affine function
of their LLRs in an analog fashion, and via distributed transmit
beamforming, we exploit the spatial correlation in sensor data
and the superposition available on the GMAC – the channel
computes the required sum. Moreover, the analog data is in
loose terms matched to the channel and does not require
explicit channel coding. Finally, the sum is available at the
fusion center in a single transmit duration unlike the situation
in the random access case.

The biggest challenge in our proposed technique is the prac-
ticality of distributed transmit beamforming. The transmitters’
clocks should be synchronized to some extent, so that carrier,
phase, and symbol ticks align. A technique similar to the
master-slave architecture proposed by Mudumbai, Barriac &
Madhow [1] can be used to achieve this synchronization. The
scheme exploits channel reciprocity in a time-division duplex
(TDD) system.

1) Organization and preview of main results: In Section
II, we formulate and solve a change detection problem under
a power-constrained setting3. We arrive at a Markov decision
problem framework and show that parameters of the affine
transformation should minimize the variance of the combined
observation and GMAC noises, which turns out to be a non-

2Alternatively, a time-division multiplexing protocol needs as many slots
as there are sensors, and does not scale with the number of sensors.

3Sensors are usually powered by batteries with a fixed energy. The power-
constrained model arises when this energy is evenly split over the desired life
time of the sensor (in samples). An energy-constrained model arises when
there is flexibility in how this energy is expended from sample to sample
(subject to, of course, constraints imposed by the power amplifier).
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convex optimization problem. We then provide an explicit al-
gorithm to compute the optimal control parameters. Section III
considers an energy-constrained setting. Section IV compares
the simulation performance of our scheme with a previously
known scheme. It also compares the energy-constrained for-
mulation of Section III with the power-constrained formulation
of Section II. Appendix A contains a new characterization of
optimal control: maximize a certain Ali-Silvey distance [2]
between the distributions of the fusion center’s observation
before and after the change. This is used to arrive at the
minimum variance criterion of Section II.

2) Prior work: Change detection problems were solved in
a centralized setting by Page [3], Lorden [4], and Shiryayev
[5]. Shiryayev considered a Bayesian setting which is of
relevance to our work. Veeravalli [6] solved the decentralized
version of this problem with parallel error-free bit pipes of
limited capacity from the sensors to the fusion center and
identified the optimal stopping policy and quantizer structure.
These results are analogous to those for hypothesis testing
and sequential hypothesis testing (Tsitsiklis [7], Veeravalli et
al. [8]). Prasanthi [9] considered access and decision delays
in sequential detection over a random access channel, as it
would be practically implemented using, for example, the
IEEE 802.15.4 wireless personal area network standard. (See
also [10]). Our work differs from those of Prasanthi and
Veeravalli because we propose an analog transmission strategy.

Analog transmissions are optimal for transmission of a
single Gaussian source over a Gaussian channel (Berger [11,
p.100]) and a bivariate Gaussian source over a GMAC for a
certain range of signal-to-noise ratios (SNR) (Lapidoth and
Tinguely [12]), when a running estimate is required. Analog
transmission via waveform design was considered by Mergen
and Tong [13]. They used “type-based” multiple access to
estimate a parameter over a GMAC. Their scheme, as does
ours, exploits the superposition available in the GMAC. (See
also [14], [15], [16], [17], [18], and [19] for analog trans-
mission in other settings). Ertin and Potter [20] considered
generalized cost functions which is mathematically analogous
to our energy-constrained formulation.

II. PHYSICAL LAYER FUSION FRAMEWORK

A. Mathematical Formulation

X ∼ N (θ, σ2) indicates that X is a Gaussian random
variable with mean θ and variance σ2.

(1) The state of nature is described by {θk : k ∈ Z+}, a two-
state discrete-time Markov chain taking values in {m0,m1},
with transition probabilities as described in Fig. 1(a)-(b). The
quantities m0 and m1 denote, for example, the mean level of
the observations before and after the disruption. The initial
distribution for this Markov chain is obtained from Pr{θ0 =
m1} = ν. The change time Γ is Z+-valued, and given the
event {Γ > 0}, Γ has the geometric distribution.

(2) The network has L sensors. At time k, sensor Sl makes
an observation Xl,k ∼ N (θk, σ

2
obs,l), i.e., Xl,k = θk + Zl,k,

where Zl,k ∼ N (0, σ2
obs,l), l = 1, . . . , L.

(3) The observations at each sensor are independent, con-
ditioned on θk. Furthermore, the observations are independent

Fig. 1. Problem set-up.

from sensor to sensor, conditioned on θk. Despite these con-
ditional independence assumptions, we remark that Xl,k, l =
1, . . . L, are correlated.

(4) Each sensor transmits Yl,k = φl,k(Xl,k); this being a
function only of the observation at sensor l, our setting is a
decentralized one. See Fig. 1(c). The function φl,k is affine:

φl,k(x) = αl,k(x− cl,k). (1)

Quantities αk = (α1,k, . . . , αL,k) and ck = (c1,k, . . . , cL,k)
are parameters for optimal control. Transmission is done by
setting the amplitude of an underlying unit-energy waveform
to Yl,k. All sensors use the same underlying waveform. The
motivations for the analog amplify-and-forward transmissions
in (1) are given in Section I: conditional independence of the
observations given the state, and the Gaussian observation
noise. If the latter does not hold, affine functions of LLRs
instead of the direct observations could be sent ([21, Ch. 5]).

(5) The GMAC output at the fusion center when projected
onto the common waveform yields

Ỹk =
L∑

l=1

hlYl,k + ZMAC,k,

where ZMAC,k ∼ N (0, σ2
MAC) is independent and identically

distributed (iid) across k, and is independent of all other
quantities. The gain hl ∈ R+ is the channel gain for the lth
sensor and is deterministic. See Fig. 1(c). We assume perfect
knowledge of the channel gains is available at the sensors and
the fusion center. While this is not the case in practice, channel
knowledge can be gleaned in time-division duplex (TDD)
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systems that possess channel reciprocity (IEEE 802.15.4). See
Mudumbai, Barriac & Madhow [1] for a suggested master-
slave architecture. In a subsequent section, we study the effect
of imperfect knowledge of these gains.

(6) At the fusion center, form Ŷk as follows:

Ŷk =
1∑L

l=1 hlαl,k

(
Ỹk +

L∑
l=1

hlαl,kcl,k

)
= θk + ẐMAC,k, (2)

where ẐMAC,k ∼ N (0, σ2
k) and

σ2
k =

∑L
l=1(σobs,lhlαl,k)2 + σ2

MAC(∑L
l=1 hlαl,k

)2 . (3)

The quantity Ŷk in (2) is obtained from Ỹk using a bijective
mapping; so no information is lost. From (2), we also see
that the distributed multi-sensor setting is equivalent to a
centralized setting where the fusion center makes a direct
(noisy) observation on θk with equivalent additive observation
noise of variance σ2

k as given in (3). This is enabled by the
affine nature of φl,k. The centralized problem with constant σ2

k

was studied by Shiryayev [5] with the aim of characterizing
the stopping rule. The new aspect here is the dependence of
σ2

k on the control parameters.
(7) The fusion center chooses an action ak−1 ∈ A at time

k − 1 from set A of actions (controls)

A = {stop} ∪ {(continue, α, c) : α ∈ R
L
+, c ∈ R

L}.
If ak−1 = stop, the fusion center stops. If ak−1 =
(continue, αk, ck), the fusion center takes another sample
(the kth), and all sensors transmit φl,k(Xl,k) with parameters
(αk, ck).

(8) As done by Veeravalli in [8], we assume a quasi-classical
information structure, i.e., action ak−1 depends on

ik−1 = {a0, ŷ1, a1, ŷ2, . . . , ak−2, ŷk−1} . (4)

Even though the sensors may have local memory of past
observations, our framework does not make use of this
additional information.4 The fusion center feeds back the
action parameters ak−1 to the sensors. (We use the following
notation: the quantity ik−1 in (4) is a realization of the random
variable Ik−1 and takes values in the set Ik−1. We set I0 = ∅).

(9) Average power constraint at sensor l is

E

[
α2

l,k (Xl,k − cl,k)2 |Ik−1

]
≤ Pl,

i.e.,

α2
l,k

[
σ2

obs,l + E

[
(θk − cl,k)2 |Ik−1

]]
≤ Pl, l = 1, . . . , L.

(5)
The set of feasible controls, given Ik−1 = ik−1, is denoted by

A(ik−1) =
{stop} ∪ {(continue, α, c) : (α, c, ik−1) satisfies (5)}. (6)

In Section III, we relax the constraint in (5) and impose an
expected total energy constraint.

4Veeravalli [8, p.434] discusses other information structures and why they
may be difficult to analyze.

(10) The fusion center policy π is a sequence of proposed
(deterministic) actions π = (πk−1, k ≥ 1), where πk−1 is
a function πk−1 : Ik−1 → A. In particular, πk−1(ik−1) =
ak−1 ∈ A(ik−1). Each policy π induces a probability mea-
sure. All expectations are with respect to this measure. The
dependence of the expectation operation on π is understood
and suppressed.

(11) τ is the first instant when the fusion center decides to
stop.

The problem we wish to solve is the following:

Problem 1: (Change detection with delay penalty) Min-
imize over all admissible policies the expected detection delay,
EDD = E

[
(τ − Γ)+

]
, subject to an upper bound on the

probability of false alarm PFA ≤ δ, where x+ = max(0, x),
and PFA = Pr{τ < Γ}.

The solution to Problem 1 is obtained via a solution to
Problem 2 (below) for a particular λ > 0 (Shiryayev [5]). The
quantity λ may be interpreted as the cost of unit delay.

Problem 2: (Change detection with a Bayes cost) Minimize
over all admissible policies

R(λ) = PFA + λEDD = Pr{Γ > τ} + λE

[
(τ − Γ)+

]
= E

[
1{θτ = m0} +

τ−1∑
k=0

λ1{θk = m1}
]

(7)

where λ > 0 and E is under the probability measure induced
by the chosen policy.

The cost function is additive over time. The first term within
the expectation in (7) is the terminal cost; the terms in the
summation a running cost. At each stage the state θk evolves
in a Markov fashion. The controller sees only a noisy version
Ŷk of the state, but can control the observation noise variance
σ2

k via α and c. It can also stop at any stage and pay a terminal
cost. Any decision affects the future evolution of the cost
process. Such problems are Markov decision problems (MDP)
with partial observations. They can be analyzed by studying an
equivalent complete observation MDP5 with a reduced (pos-
terior) state μk

Δ= E [1{θk = m1} | Ik] = Pr{Γ ≤ k | Ik}.
The probability law for {μk : k ≥ 0} is given as follows:
μ0 = Pr{Γ ≤ 0 | I0} = ν, and the law for μk, under
ak = (continue, αk+1, ck+1), is (see Veeravalli [6, eqn. (9)])

μk+1 =
βkfm1,αk+1

(
Ŷk+1

)
βkfm1,αk+1

(
Ŷk+1

)
+ (1 − βk)fm0,αk+1

(
Ŷk+1

)
�
=

g
(
Ŷk+1, αk+1, μk

)
h
(
Ŷk+1, αk+1, μk

) �
= ψ

(
Ŷk+1, μk, αk+1

)
, (8)

where βk
�
= Pr{Γ ≤ k + 1|Ik} = μk + (1 − μk)p, and

fmi,αk+1 is the density of an N (mi, σ
2
k+1) random variable.

The quantities h and g are as in (8); h is the density of Ŷk+1

5See Shiryayev [5], Veeravalli [6] for results with stopping, Bertsekas &
Shreve [22, Ch. 10] for discounted costs, and Bertsekas [23, Ch. V].
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given (Ik, ak), and g is a scaled density. The power constraint
(5) when written for time k + 1 simplifies to

α2
l,k+1

[
σ2

obs,l + (m0 − cl,k+1)2(1 − βk)

+(m1 − cl,k+1)2βk

] ≤ Pl. (9)

The set of feasible controls in (6) depends on ik only through
μk and can be simplified to

A(μ) = {stop} ∪ {(continue, α, c) :
(α, c, μ) satisfies (9)},

where A(·) is re-used to denote the set of feasible controls
for the equivalent complete observation MDP. Let A′(μ) =
{(α, c) : (continue, α, c) ∈ A(μ)} denote the set of control
parameters when the action is to continue. Now consider
the objective function. Taking conditional expectations with
respect to the information process, (see Shiryayev [5, pp.195–
196]), (7) reduces to

R(λ) = E

[
(1 − μτ ) +

τ−1∑
k=0

λμk

]
. (10)

Minimization of (10) is done via dynamic programming. Some
additional remarks are in order.

Remarks: 1. The variance σ2
k+1 depends on αk+1 as shown

in (3), and hence the dependence on αk+1 in (8). μk+1

depends on ck+1 only through αk+1 because of the processing
done in (2).

2. If the running cost is λ instead of λ1{θk = m1} in (7),
every sample costs λ units, not just those beyond the change
point that contribute to the delay. This is a minor variation to
Problem 2 and has a similar solution.

3. Another variation is sequential hypothesis testing: set
the transition probability p = 0, enhance the action stop to
(stop, θ̂), where θ̂ is the decision (either m0 or m1), and set
the terminal cost to 1{θτ 	= θ̂}. The running cost is a constant
λ for every sample.

B. Optimal Policy

As is usual with such problems, we first restrict the stopping
time τ to a finite horizon T . Using Bertsekas’s result [23, Ch.1,
Prop.3.1], the cost-to-go function recursions are written as

JT
T (μT ) = 1 − μT ,

JT
k (μk) = min

{
1 − μk, λμk +AT

k (μk)
}
, 0 ≤ k < T,

AT
k (μ) = min

(α,c)∈A′(μ)
E

[
JT

k+1

(
ψ
(
Ŷ , μ, α

))]
= min

(α,c)∈A′(μ)

∫
R

JT
k+1

(
g (ŷ, α, μ)
h (ŷ, α, μ)

)
h (ŷ, α, μ) dŷ.

To solve Problem 2, let T → ∞. From results in [8] and
[6], the limit in (11) below exists, does not depend on k (i.e.,
the policy is stationary), and defines the infinite horizon cost-
to-go function:

J(μ) = lim
T→∞

JT
k (μ) = min {1 − μ, λμ+AJ (μ)} , (11)

where

AJ (μ) = min
(α,c)∈A′(μ)

E

[
J
(
ψ
(
Ŷ , μ, α

))]
. (12)

The following lemma enables a characterization of the optimal
stopping policy.

Lemma 1: The functions JT
k (μ) and AT

k (μ) are non-neg-
ative and concave functions of μ, for μ ∈ [0, 1]. Moreover,
AT

k (1) = JT
k (1) = 0. Similarly, the functions J(μ) and AJ(μ)

are non-negative and concave functions of μ, for μ ∈ [0, 1],
and AJ (1) = J(1) = 0.

The proof is the same as that in Bertsekas [23, p. 268]
for sequential hypothesis testing. The concavity of AJ(μ) and
(11) imply the following theorem (Shiryayev [5], Veeravalli
[6]).

Theorem 2: An optimal fusion center policy has stopping
time τ given by τ = inf{k : μk ≥ μ∗}, where μ∗ is the
unique solution to λμ+AJ(μ) = 1 − μ.

To summarize, the optimal detection strategy at time k is
as follows. Convert the received signal Ỹk into the posterior
probability of change μk using (2) and (8). If μk exceeds
a threshold, declare that a change has occurred. Otherwise,
make the sensors transmit another sample using parameters
α, c chosen optimally as described in the next subsection.

C. Parameters for Optimal Control

We begin this section with an algorithm that calculates the
optimal α.

Algorithm 1: Let

σ2
obs,1h1αmax,1 ≤ · · · ≤ σ2

obs,LhLαmax,L,

where the quantity

αmax,l =
(
Pl/

(
σ2

obs,l + (m1 −m0)2β(1 − β)
))1/2

with β = μ+ (1 − μ)p.
• Step 1: Find the unique k ∈ {1, . . . , L− 1} that satisfies

σ2
obs,khkαmax,k ≤

∑k
l=1(σobs,lhlαmax,l)2 + σ2

MAC∑k
l=1 hlαmax,l

≤ σ2
obs,k+1hk+1αmax,k+1 (13)

if it exists. Otherwise, set k = L.
• Step 2: Set the optimal α as follows.

a∗ =
k∑

l=1

hlαmax,l +

∑L
l=k+1 σ

−2
obs,l∑k

l=1 hlαmax,l

·
(

k∑
l=1

(σobs,lhlαmax,l)2 + σ2
MAC

)
, (14)

αm = αmax,m, 1 ≤ m ≤ k,

αm =
1

σ2
obs,mhm

· a
∗ −∑k

l=1 hlαmax,l∑L
l=k+1 σ

−2
obs,l

, k < m.

(15)

The optimal choice sets amplitudes of the k sensors with the
k least scaled observation noise variance (σ2

obs,lhlαmax,l) to
αmax,l. The remaining sensors’ amplitudes are appropriately
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chosen smaller values. Intuitively, sensors l = k + 1, . . . , L
have so good a channel that scaling by αmax,l for these sensors
will amplify the observation noise leading to a larger overall
noise variance. Note that when all channel gains, observation
variances, and power constraints are equal, αl = αmax for all
sensors. This special case was earlier proved in [24].

Theorem 3: The choice of cl = m1β + m0(1 − β), l =
1, . . . , L, and α according to Algorithm 1 constitute the
optimal controls that minimize (12).

Proof: Step 1: We prove that the optimal control min-
imizes the variance (3). Consider α and α′ with resulting
variances σ2 < σ′2. From the second equality in (2) we have

Ŷ (α) = θ + σZ, (16)

Ŷ (α′) = θ + σ′Z ′ ∼ θ + σZ1 + (σ′2 − σ2)1/2Z2, (17)

where Z, Z1, Z2 are iid N (0, 1) with Z ′ = Z1 + Z2. The
time index k is understood.

From (16) and (17), Ŷ (α′) is a stochastically degraded
version of Ŷ (α) and is equivalent to an additional random
processing on Ŷ (α). Theorem 5 in Appendix A shows that

1 − Eh

⎡⎣J
⎛⎝ g

(
Ŷ (α), α, μ

)
h
(
Ŷ (α), α, μ

)
⎞⎠⎤⎦

is an Ali-Silvey distance between two probability measures. In
Eh the dependence of h on α is understood and suppressed.
Ali-Silvey distances have a well-known monotonicity prop-
erty: data processing, whether deterministic or random, cannot
increase the dissimilarity measure between two distributions
([2], [25]). This property implies that

Eh

⎡⎣J
⎛⎝g

(
Ŷ (α), α, μ

)
h
(
Ŷ (α), α, μ

)
⎞⎠⎤⎦≤Eh

⎡⎣J
⎛⎝g

(
Ŷ (α′), α′, μ

)
h
(
Ŷ (α′), α′, μ

)
⎞⎠⎤⎦ .

It follows that minimization of the variance in (3) is the
criterion for getting the optimal α.

Step 2: We now identify the optimal c. The minimization
mentioned in the previous step should be done subject to the
power constraint given in (5), which can be rewritten as

α2
l,k ≤ Pl ·

[
σ2

obs,l + E

[
(θk − cl,k)2 |Ik−1

]]−1

. (18)

The constraint set is enlarged if the upper bound in (18) is
higher. We should therefore choose the cl,k that minimizes

E

[
(θk − cl,k)2 |Ik−1

]
, i.e., cl,k is the minimum mean squared

error (MMSE) estimate of θk given Ik−1. Clearly this is given
by cl,k = E [θk|Ik−1] = m1βk−1 + m0(1 − βk−1), and is
independent of l. Moreover,

E

[
(θk − cl,k)2 |Ik−1

]
= Var {θk|Ik−1}
= (m1 −m0)2βk−1(1 − βk−1),

and (18) can be written as αl,k ≤ αmax,l,k, where

αmax,l,k =
(
Pl/

(
σ2

obs,l + (m1 −m0)2βk−1(1 − βk−1)
))1/2

.

0 1 2 3 4 5 6 7 8
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

Mean Delay

ln
 (

P
F

A
)
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Fig. 2. Performance curves: 1) Clipped transmission via a sigmoidal function
2) Affine transformation 3) Centralized, where all sensor data is available
without noise at the fusion center.

Step 3: Ignoring the time index k, the optimization problem
to obtain the best α is:

Problem 3: Minimize(
L∑

l=1

hlαl

)−2 [ L∑
l=1

(σobs,lhlαl)2 + σ2
MAC

]
,

where αl ∈ [0, αmax,l] for l = 1, · · · , L.

This is not a convex optimization problem. However, we
can split it into two simpler convex optimization problems to
get an explicit solution to Problem 3.

Lemma 4: Algorithm 1 solves Problem 3.

See Appendix B for a proof. This concludes the proof of
Theorem 3.

Under the restriction of affine controls, Theorem 3 describes
the optimal choice. However, affine controls are not optimal
in general. This is demonstrated in Fig. 2 where a piece-wise
linear sigmoidal control outperforms the optimal affine control
(see [21, Sec. 2.7]). It would be interesting to see if there are
ranges of σ2

obs,l and σ2
MAC where the affine control is indeed

optimal. We do not pursue this question in this work.
We now make some remarks on the complexity of overall

detection. Theorem 3 says that the parameters for optimal con-
trol are obtained via a finite step procedure. Indeed, Algorithm
1 gives the output in time linear in the number of sensors, and
is therefore easy to execute. The threshold calculation for a
fixed set of parameters is a one time calculation and is obtained
via the so-called value iteration procedure which yields an
approximation. We now explore further simplifications with
reduced feedback information.

D. A Simpler Suboptimal Policy

Let us now restrict the controls to be of the following form:
the decision to stop or continue, say bk, depends on Ik , but
the parameters of the affine transformation at time k + 1 can
only depend on I0 and bk ∈ {stop, continue}. I0 denotes the
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prior information before any observations are made and bk is
the decision of the fusion center at k. Note that this reduces
the amount of feedback to simply the binary random variable
bk.

The structure of the controls is similar to that of the optimal
policy of the previous section, but with

βk = Pr {Γ ≤ k + 1|I0} = 1 − (1 − ν)(1 − p)k+1

so that (α, c) depends on only I0 and not on Ik . The stopping
policy is chosen as in Theorem 2. As we see in simulation
results presented in Section IV, the performance of this
algorithm is close to optimal for the chosen parameters, yet
requires feedback of only one bit at each stage.

III. ENERGY-CONSTRAINED FORMULATION

The energy-constrained problem is stated as follows.

Problem 4: Minimize the expected detection delay, EDD,
subject to an upper bound on the probability of false alarm,
PFA ≤ δ, and an upper bound on the expected energy spent,

E

[
τ∑

k=1

E
[
φ2

l,k(Xl,k)|Ik−1

]] ≤ El, l = 1, 2, . . . , L. (19)

Let λ = (λ1, . . . , λL, λL+1). As before, to solve Problem
4, we set up the Bayes cost R(λ) and minimize it over all
admissible choices of stopping policy and the parameters αl,k

and cl,k of the affine transformation φl,k . The Bayes cost can
be written as

R(λ) = E

[
(1 − μτ ) + λL+1

τ−1∑
k=0

μk

+
τ∑

k=1

L∑
l=1

λlE
[
α2

l,k(Xl,k − cl,k)2|Ik−1

] ]
.

A result analogous to Theorem 2 in Section II-B holds, and
the optimal control at time k + 1, given Ik, is such that ck+1

is independent of l, the sensor index. More precisely,

ck+1 = m1βk +m0(1 − βk), l = 1, . . . , L,

αk+1 = arg min
α∈RL

+

[
L∑

l=1

λlα
2
l

(
σ2

obs,l+(m1−m0)2βk(1−βk)
)

+
∫

R

J

(
g (ŷ, α, μk)
h (ŷ, α, μk)

)
h(ŷ, α, μk) dŷ

]
,

where J(μ) = min {1 − μ, λL+1μ+AJ(μ)} , is the infinite
horizon cost-to-go function with

AJ (μ) = min
α∈RL

+

[ L∑
l=1

λlα
2
l

(
σ2

obs,l + (m1 −m0)2β(1 − β)
)

+
∫

R

J

(
g (ŷ, α, μ)
h (ŷ, α, μ)

)
h (ŷ, α, μ) dŷ

]
.

A minimizing control α does exist as is shown in [21, Sec.
3.1].
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Fig. 3. Comparison of our algorithms with Veeravalli’s scheme. The
“centralized” performance curve is for the case when all sensor data is
available without noise at the fusion center.

IV. COMPARISONS AND PRACTICAL CONSIDERATIONS

A. Benefits from Exploiting Sensor Correlation

Veeravalli [6] addresses the structure of optimal Dl-level
quantizer at sensor Sl, l = 1, 2, . . . , L. His model is appli-
cable to a system that allows log2Dl bits to be sent error-
free from sensor Sl to the fusion center. For simplicity let
Dl = D, l = 1, 2, . . . , L. In order to show the benefit
of exploiting correlation of observations when transmitting
across the GMAC, we do the following. The quantized bits
from the sensors in Veeravalli’s scheme are transmitted using
an optimal scheme designed for independent data streams
over a coherent GMAC. If all sensors operate at the same
transmission power, the SNR required to support such a
transmission on the GMAC satisfies the sum rate constraint
L log2D ≤ (1/2) log2 (1 + L · SNR), and thus

SNR ≥ D2L − 1
L

. (20)

For the simulations, we assume two sensors (L = 2) with
equal gains, i.e., hl = 1 for l = 1, 2. We also assume one-bit
quantizers (D = 2). From (20) we get SNR ≥ 7.5. Algorithms
operate at SNR = 7.5 with Pl = 7.5 for l = 1, 2 and σ2

MAC =
1. We now summarize the other simulation assumptions which
will be used unless stated otherwise.

Simulation Setup 1: Consider L = 2 sensors with N (0, 1)
and N (0.75, 1) observations before and after the change,
respectively. The geometric parameter p = 0.05 and the initial
probability of change ν = 0. We obtain J(μ) via value
iteration procedure until the difference between successive
iterates falls below 0.0001 with 1000 points on the μ axis.
All simulations assume Pl = P and σ2

obs,l = 1 for l = 1, 2.

Fig. 3 shows that both our algorithms give lesser delays than
Veeravalli’s algorithm that is naively overlaid on the GMAC.
Furthermore, the suboptimal policy of Section II-D degrades
from that in Section II-B only for low false alarm probabilities.

In Veeravalli’s algorithm, D−1 thresholds (∈ R
D−1) and a

decision to stop or continue are fed back to each sensor. Our
scheme requires feedback of αl ∈ R+, cl ∈ R, and the binary
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Fig. 4. Performance curves for channel SNR = ∞, 3, 0,−3 dB.

decision. Even simpler is the strategy in Section II-D; only a
binary decision is fed back.

The network delay is independent of the number of sen-
sors in both our algorithms; the performance improves with
increasing number of sensors. Veeravalli’s scheme on the other
hand requires an exponential growth in SNR (with L, as in
(20)) to maintain the same delay versus PFA performance.
Our algorithms need a higher level of time and frequency
synchronization of the transmitters for beamforming. Section
IV-D studies the effect of lack of perfect channel knowledge.
Transmit beamforming can be achieved via uplink-downlink
reciprocity in a static time-division duplex (TDD) system (see
[1] for an example mechanism).

B. Performance Comparisons Under Different Channel and
Observation SNRs

We now portray performance under three different settings.
• Fig. 4 shows performance for various channel SNRs
P/σ2

MAC; the other parameters remain as in Simulation
Setup 1.

• Fig. 5 shows performance for various observation SNRs
(m1−m0)2/σ2

obs when the channel SNR P/σ2
MAC is fixed

at 3 dB.
• Fig. 6 compares the symmetric and asymmetric channel

gain cases. The symmetric curve is obtained with hl = 1
for l = 1, 2, and the asymmetric one with h1 = 1 and
h2 = 0.75. The weaker sensor is 2.5 dB lower than the
stronger one.

The plots show graceful degradation with decreasing SNR
with results along expected lines.

C. Comparison of Power- and Energy-Constrained Formula-
tions

For PFA ≤ e−4, we first identify the minimum time to detect
change as a function of the energy constraint. This yields
a power constraint for the constant power formulation. We
then compare the delays incurred by the optimal algorithm
under the two formulations in Fig. 7. We use the parameters
in Simulation Setup 1 and hl = 1 for all sensors. For the same
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Fig. 5. Performance curves for observation SNR = −1,−2.5,−4 dB.
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Fig. 6. Performance curves when 1) centralized (no channel noise) 2)
symmetric channel gains 3) asymmetric channel gains with the weaker sensor
2.5 dB lower.

PFA, the energy-constrained solution declares a change with
lesser delay than the constant power solution.

As an illustration, we plot in Fig. 8 the variation of α2, c,
and μ with time in both the algorithms for a representative
sample path. The change point is at 21 samples, shown using
a dotted vertical grid line. The energy-constrained solution is
more energy efficient because it uses lower energy (α2) before
and higher energy after the change point. Indeed, based on the
prior information, the first few samples use negligible energy.

D. Channel Estimation Errors

Thus far we assumed a static channel with perfect knowl-
edge available at both transmitter and receiver. Wireless chan-
nels, however, change with time. Only an estimate of the
channel, based on signal processing on the pilots, beacons,
or preambles, may be available. In this section, we study the
effect of imperfect channel knowledge on the physical layer
fusion algorithm.

To arrive at a model for channel errors, we consider complex
channel gains over the GMAC with noise given by ZMAC,k ∼
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Fig. 8. α2, c, and μ of constant power method and energy-constrained
method for a sample path.

CN (0, σ2
MAC), a circular symmetric complex Gaussian random

variable. The observations are real-valued, but the complex
baseband equivalent signal has two real-valued degrees of
freedom per sample, leading to a bandwidth expansion factor
of two. Suppose that the sensors use transmit beamforming6,
i.e., αl = h∗

l

|hl|γl. Then it is sufficient to preserve only the
real part of the received signal at the fusion center, and the
problem reduces to that studied in the earlier parts of this paper
with σ2

MAC replaced by σ2
MAC/2 in Section II. The quantity γl

replaces αl and |hl| replaces hl in Algorithm 1. The output
of the algorithm is γl.

Let {hl} be a sequence of CN (0, 1) random variables that
obey a block-fading model, i.e., the channel remains constant
for T uses and then changes to an independent channel gain.
If K of these T samples are available for channel estimation,
then the MMSE estimate of the channel is ĥl = (hl+rZ)/(1+
r2), where r = σMAC/

√
KPl, Pl is the power of sensor l and

Z ∼ CN (0, 1). This is estimated at both ends (using TDD
system’s channel reciprocity).

6The optimality of cooperative transmit beamforming by sensors remains
an open question.
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Fig. 9. Performance curves comparing the cases when 1) channel is perfectly
known 2) MMSE estimates are used (Pilot SNR = Channel SNR).
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Fig. 10. Performance curves comparing the cases when 1) channel is
perfectly known 2) MMSE estimates are used (Pilot SNR is 8.75 dB lower
than Channel SNR).

Figures 9 and 10 show performance of the policy of Section
II-C with ĥ used in place of actual h, across different channel
SNRs. Simulation Setup 1 parameters are used. K = 1, i.e.,
only one sample pilot is used for channel estimation so that
transmit beamforming is only loosely enabled. The pilot SNR
equals the channel SNR in Fig. 9 and is 8.75 dB lower in
Fig. 10. The top-left subplot in Fig. 9 shows that the transmit
beamforming scheme with estimation errors is indeed superior
to Veeravalli’s scheme on a coherent GMAC. Fig. 10 shows no
benefit because the pilot SNR is not sufficient. Other subplots
show graceful degradation with decreasing SNR.

V. SUMMARY

We considered the use of an analog transmission strategy
via an affine transformation in order to exploit correlation in
the sensor observations. The goal was to detect a change with
minimum expected detection delay given an upper bound on
the false alarm rate. We modeled the problem as a Markov
decision problem with partial observations. We characterized
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the optimal control as one that maximizes an Ali-Silvey dis-
tance between the two hypotheses before and after the change
(Appendix A). In the GMAC setting, the optimal strategy
minimizes the error variance of an equivalent observation
at the fusion center. We then gave an explicit algorithm to
identify the optimal control parameters.

We also studied a suboptimal policy that traded performance
for quantity of information fed back. We then demonstrated
via simulation the performance gain achieved by our algorithm
over another scheme that makes only a naive use of the
GMAC. The latter is a multi-access strategy optimal for
independent data coupled with an optimal distributed quan-
tization scheme for change detection; it is suboptimal because
it does not exploit the correlation in sensor observations.
Our proposed algorithm exploits this correlation via transmit
beamforming on the GMAC. Given the control feedback in
our setting, optimal transmission strategies will change from
channel to channel. Techniques based on separation principles
are therefore likely to be suboptimal.

Distributed transmit beamforming is crucial to realize our
proposed scheme. The master-slave architecture of Mudumbai,
Barriac & Madhow [1] and associated channel sensing tech-
niques can be used for frequency and phase synchronization.
Simulations with channel estimation errors indicate that the
degradation due to lack of perfect channel knowledge is
tolerable, making this analog technique a viable option for
implementation.

We then considered a constraint on the average energy
expended instead of a power constraint. We demonstrated
via simulation that this made better use of the scarce energy
resource. Extensions to arbitrary but known distributions, in
particular to the exponential family, and to M -ary hypotheses
can be found in [21, Ch. 5].

APPENDIX A
A CHARACTERIZATION OF OPTIMAL CONTROL

The following characterization of AJ(μ) was used in iden-
tifying the optimal controls. The characterization refers to a
quantification of dissimilarity between probability measures
called Ali-Silvey distances ([2]). Relative entropy (Kullback-
Leibler divergence) is one example. Such dissimilarity mea-
sures have a well-known monotonicity property: data pro-
cessing, whether deterministic or random, cannot increase the
dissimilarity measure between two distributions ([2], [25]).
This characterization may be of interest in other sequential
detection settings.

Theorem 5: The minimization in (12) is obtained via a
maximization of an Ali-Silvey distance between the density
functions fm1,α and fm0,α.

Proof: We first show that the minimization in (12) can
be expressed as the maximization of an Ali-Silvey distance
Ep1

[
C
(
φ(Ŷ )

)]
between probability density functions (pdf)

p1 and p2 where

φ(ŷ) =
p2(ŷ)
p1(ŷ)

=
fm1,α(ŷ)
h(ŷ, α, μ)

,

and C is a convex function. To see this, observe that both
p1(.) and p2(.) are densities. The density p1 is a mixture of

pdfs under the two hypotheses while p2 is the pdf under H1.
Thus g(ŷ, α, μ)/h(ŷ, α, μ) = βφ(ŷ), where β = μ+(1−μ)p.
From (12), we have

AJ (μ) = min
α,c

Ep1

[
J
(
βφ(Ŷ )

)]
= min

α,c
Ep1

[
G
(
φ(Ŷ )

)]
= 1 − max

α,c
Ep1

[
C
(
φ(Ŷ )

)]
, (21)

where G(x)
�
= J(βx) and C(x)

�
= 1 − G(x). J is concave;

so G is concave, C is convex, and (21) is obtained via a
maximization of an Ali-Silvey distance between p1 and p2.
Now,

Ep1

[
C
(
φ(Ŷ )

)]
= Ep1

[
C

(
p2(Ŷ )

p1(Ŷ )

)]

= Ep2

[
p1(Ŷ )

p2(Ŷ )
C

(
p2(Ŷ )

p1(Ŷ )

)]
= Ep2

[
C1

(
φ′(Ŷ )

)]
, (22)

where φ′(ŷ) = p1(ŷ)/p2(ŷ), and C1(x) = xC (1/x) . C1(x)
is a convex function because C(x) is convex and x is non-
negative. Now, let p3(ŷ) = fm0,α(ŷ). Since

p1(ŷ)/p2(ŷ) = β + (1 − β)p3(ŷ)/p2(ŷ),

it is clear that C2(x)
�
= C1 (β + (1 − β)x) is a convex

function. Setting φ′′(ŷ) = p3(ŷ)/p2(ŷ), the likelihood ratio
between the original two hypotheses, (22) can be written as
Ep2

[
C2

(
φ′′(Ŷ )

)]
, an Ali-Silvey distance between fm1,α and

fm0,α, and the theorem follows.

APPENDIX B
PROOF OF LEMMA 4

Here we solve Problem 3. Order the indices so that
σ2

obs,1h1αmax,1 ≤ · · · ≤ σ2
obs,LhLαmax,L. Let us first add a

constraint
∑L

l=1 hlαl = a, where without loss of generality
a ∈ [0, amax] , with amax =

∑L
l=1 hlαmax,l, and solve the

convex optimization problem:

Problem 5: Minimize
∑L

l=1 σ
2
obs,lh

2
l α

2
l subject to αl ∈

[0, αmax,l] ,
∑L

l=1 hlαl = a ∈ [0, amax] .

This problem is a special case of a separable convex opti-
mization problem studied in Padakandla and Sundaresan [26].
Execution of [26, Algorithm 1] yields the following solution.
Break [0, amax] into L intervals [ak, ak+1], k = 0, 1, . . . , L−1,
where a0 = 0 and

ak =

(
k∑

l=1

hlαmax,l + σ2
obs,khkαmax,k

L∑
l=k+1

σ−2
obs,l

)
.

The ordering of σ2
obs,lhlαmax,l implies am≤ am+1 so that

each interval is nonempty. With k such that a ∈ [ak, ak+1],
the optimal solution is:

αl = αmax,l, l = 1, . . . , k, (23)

αl =
1

σ2
obs,lhl

· a−
∑k

m=1 hmαmax,m∑L
m=k+1 σ

−2
obs,m

, l > k. (24)
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The corresponding minimum value of Problem 5 for a given
a, denoted by V (a), is given by

V (a) =
k∑

l=1

σ2
obs,lh

2
l α

2
max,l +

(
a−∑k

l=1 hlαmax,l

)2

∑L
l=k+1 σ

−2
obs,l

.

We next look for an optimal a by solving

Problem 6: Minimize f(a) = V (a)+σ2
MAC

a2 subject to a ∈
[0, amax].

While this is not yet a convex optimization, the transforma-
tion b = 1/a casts it into one. Define

g(b) = f

(
1
a

)

= b2

⎡⎢⎣ k∑
l=1

σ2
obs,lh

2
l α

2
max,l+σ

2
MAC+

(∑k
l=1 hlαmax,l

)2

∑L
l=k+1 σ

−2
obs,l

⎤⎥⎦
− 2b ·

∑k
l=1 hlαmax,l∑L
l=k+1 σ

−2
obs,l

+
1∑L

l=k+1 σ
−2
obs,l

,

for b ∈ [1/amax,∞), where k depends on b through the
index of the interval in which a = 1/b lies. The following
observations on g are easy to verify:

• g(b) is a convex parabola on each [1/ak+1, 1/ak], k =
L− 1, · · · , 1, and on [1/a1,∞);

• g(b) is continuous in [1/amax,∞). This needs checking
only at interval boundaries 1/ak;

• g(b) is continuously differentiable in (1/amax,∞) with
left continuous derivative at 1/amax;

• limb→∞ g′(b) = +∞, so that the derivative eventually
becomes positive for large b.

Since g is convex and continuously differentiable, if we can
find a b∗ such that g′(b∗) = 0 and b∗ ∈ [1/ak+1, 1/ak] (or
[1/a1,∞)) where k corresponds to a∗ = 1/b∗, then b∗ is a
point of global minimum. This holds if the minimum point for
a parabola defined in [1/ak+1, 1/ak] (or [1/a1,∞)), which is
easily verified to be

a∗ = 1/b∗ =
k∑

l=1

hlαmax,l

+

∑L
l=k+1 σ

−2
obs,l∑k

l=1 hlαmax,l

·
(

k∑
l=1

(σobs,lhlαmax,l)2 + σ2
MAC

)
,

also belongs to that interval. This leads to the condition (13). If
no such point occurs, g′(b) 	= 0 in [1/amax,∞), and since g′

is eventually positive, it must be positive in the entire interval.
In this latter case g is an increasing function on [1/amax,∞)
and the minimum is attained at b∗ = 1/amax or a∗ = amax

or k = L. Substitution of a∗ in (23) and (24) completes the
proof.
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