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Abstract—The Shannon cipher system is studied in the context
of general sources using a notion of computational secrecy
introduced by Merhav & Arikan. Bounds are derived on limiting
exponents of guessing moments for general sources. The bounds
are shown to be tight for iid, Markov, and unifilar sources,
thus recovering some known results. A close relationship between
error exponents and correct decoding exponents for fixed rate
source compression on the one hand and exponents for guessing
moments on the other hand is established.

I. INTRODUCTION

We consider the classical cipher system of Shannon [1].
Let X" = (Xy,---,X,,) be a message where each letter takes
values on a finite set X. This message should be communicated
securely from a transmitter to a receiver, both of which have
access to a common secure key U* of k purely random bits
independent of X™. The transmitter computes the cryptogram
Y = f,(X™ U") and sends it to the receiver over a public
channel. The cryptogram may be of variable length. The
encryption function f,, is invertible for any fixed U*. The
receiver, knowing Y and U*, computes X" = f, }(Y,U*).
The functions f,, and f, ! are published. The key rate for
the system is k/n = R. A wiretapping attacker has access
to the cryptogram Y, knows f,, and f, !, and attempts to
identify X™ without knowledge of U*. The attacker can use
knowledge of the statistics of X™. We assume that the attacker
has a test mechanism that tells him whether a guess X" is
correct or not. For example, the attacker may wish to attack
an encrypted password or personal information to gain access
to, say, a computer account, or a bank account via internet, or a
classified database [2]. In these situations, successful entry into
the system provides the natural test mechanism. We assume
that the attacker is allowed an unlimited number of guesses.

Merhav & Arikan [2] studied discrete memoryless sources
(DMS) in the above setting and characterized the best at-
tainable moments of the number of guesses required by an
attacker. In particular, they showed that for a DMS with the
governing single letter PMF P on X, the value of the optimal
exponent for the pth moment (p > 0) is given by

E(R.p) = max {pmin{H(@), B} - DQ | P)}. (D

The maximization is over all PMFs @ on X, H(Q) is the
Shannon entropy of @, and D(Q | P) is the Kullback-
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Leibler divergence between () and P. They also showed that
E(R, p) increases linearly in R for R < H(P), continues to
increase in a concave fashion for R € [H(P), H ], where
H is a threshold, and is constant for R > H ', Unlike
the classical equivocation rate analysis, atypical sequences do
affect the behavior of E(R, p) for R € [H(P), H'] and perfect
secrecy is obtained, i.e., cryptogram is uncorrelated with the
message, only for R > H > H(P). Merhav & Arikan
also determined the best achievable performance based on
the probability of a large deviation in the number of guesses,
and showed that it equals the Legendre-Fenchel transform of
E(R, p) as a function of p. Sundaresan [3] extended the above
results to unifilar sources. Hayashi & Yamamoto [4] proved
coding theorems for the Shannon cipher system with correlated
outputs (X", Z™) where the wiretapper is interested in X"
while the receiver in Z".

In this paper, we extend Merhav & Arikan’s notion of
computational secrecy to general sources. One motivation is
that secret messages typically come from the natural languages
which can be well-modelled as sources with memory, for e.g.,
a Markov source of appropriate order. Another motivation
is that the study of general sources clearly brings out the
connection between guessing and compression, as discussed
next.

As with other studies of general sources, information spec-
trum plays crucial role in this paper. We show that E(R, p)
is closely related to (a) the error exponent of a rate-R source
code, and (b) the correct decoding exponent of a rate- R source
code, when exponentiated probabilities are considered (see
Sec. III-A2). In particular, the exponents in (a) and (b) appear
in the first and second terms when we rewrite F(R, p) for a
DMS as

min
Q:H(Q)>R
min

Lmn_ (pH(Q) -~ D(@| P)}}-

This brings out the fundamental connection between source
coding exponents and key-rate constrained guessing expo-
nents. Further, unlike the case for the probability of a large
deviation in the number of guesses [2, Sec. V], both the
error exponent and the correct decoding exponent determine

B(R.p) = max { it - DQ | P).
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E(R,p). We extend the above result to general sources by
getting upper and lower bounds on E(R, p). We then show
that these are tight for DMS, Markov and unifilar sources. The
bounds may be of interest even if they are not tight because
the upper bound specifies the amount of effort need by an
attacker and the lower bound specifies the secrecy strength of
the cryptosystem to a designer.

The limiting case as p | 0 in (b) yields classical framework
for probability of correct decoding. This special case is related
to the work of Han [5] and Iriyama [6] who studied the dual
problem of rates required to meet a specified error exponent
or a specified correct decoding exponent.

The paper is organized as follows. Section II relates our
problem to a modification of Campbell’s compression problem
[7]. Section III gives bounds on the limits of exponential
rate of guessing moments, in terms of information spectrum
quantities. Section IV evaluates the bounds for some specific
examples. All proofs can be found in the technical report [8].

II. GUESSING WITH KEY-RATE CONSTRAINTS AND
SOURCE COMPRESSION

In this section, we state the problem precisely, and estab-
lish a connection between guessing and source compression
subject to a new cost criterion.

Let X™ denote the set of messages and M (X™) the set of
PMFs on X™. By a source, we mean a sequence of PMFs (P, :
n € N), where P, € M(X") !. Let X™ denote a message put
out by the source and U* the secure key of k purely random
bits independent of X™. Recall that the transmitter computes
the cryptogram Y = f,,(X™, U¥) and sends it to the receiver
over a public channel. The key rate for the system is k/n = R.

For a given cryptogram Y = y, define a guessing strategy

as a bijection that denotes the order in which elements of X"
are guessed. G, (z™ | y) = ¢ indicates that z™ is the gth
guess, when the cryptogram is y. With knowledge of P,, the
encryption function f,,, and the cryptogram Y, the attacker can
completely calculate all the posterior probabilities of plaintexts
Pxny(- | y) given the cryptogram. The attacker’s optimal
guessing strategy is then to guess in the decreasing order of
these posterior probabilities Pxn|y (- | y). Let us denote this
optimal attack strategy as Gy, . Let (f, : n € N) denote the
sequence of encryption functions known to the attacker, where
N denotes the set of natural numbers. We assume that attacker
employs the optimal guessing strategy.

For a given p > 0, key rate R > 0, define the normalized
guessing exponent

1
EJ(R, p) :=sup - logE [Gy, (X" | Y)?].
f’n

ISometimes we use Pxn in place of P, when we refer to the distribution
of random vector X ™.
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The supremum is taken over all encryption functions. Further
define performance limits of guessing moments as in [2]:

E(R, p) := limsup EJ (R, p) 2)
n—oo

EJ(R,p) = liminf EJ(R, p). 3)
n—oo

We next define the related compression quantities. A length
function L,, : X" — N is a mapping that satisfies Kraft’s
inequality:

> exp{-Ln(z)} < 1.
Znexn

For a given p > 0, code rate R > 0, define
1
E}(R,p) := nLlin - logE [exp {pmin {L,,(X"),nR}}]. (4)

The minimum is taken over all length functions. We
may interpret the cost of using length L, (z") as
min {exp{L, (z"),nR}}, i.e., the cost is exponential in L,
but saturates at exp{nR} and so all lengths larger than
exp{nR} enjoy a saturated cost. Then EZ(R,p) is the min-
imum normalized exponent of the pth moment of this new
compression cost. In analogy with (2) and (3) we define

Ey(R, p) = limsup B (R, p)

E} (R, p) = lim inf EZ(R, p)
The following equivalence between compression and guessing
is immediate from proof of [3, Cor. 9].

Theorem 1 (Guessing-Compression Equivalence): For any
p > 0and R > 0, we have EZ(R,p) = FEI(R,p) and
E{(R,p) = E{(R, p).

Thus, the problem of finding the optimal guessing exponent
is the same as that of finding the optimal exponent for the
coding problem in (4). When R > log |X|, the coding problem
in (4) reduces to the one considered by Campbell in [7].

In the rest of the paper we focus on the equivalent com-
pression problem and find bounds on E; and Ej.

III. GROWTH EXPONENT FOR THE MODIFIED
COMPRESSION PROBLEM

We begin with some words on notation. Recall that M (X™)
denotes the set of PMFs on X™. The Shannon entropy for a
P, € M(X") is

H(P,) =~ > Pu(z")log Py(a")

rreXxn

and the Rényi entropy of order o # 1 is

> Pn(x")"‘> : (5)

zneXn

1
Hy(P,) = - log (

The Kullback-Leibler divergence or relative entropy between
two PMFs @,, and P, is

n Qn('xn)
> Qulamlog BES,

rneXn

00, otherwise,
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where @, < P, means @, is absolutely continuous with
respect to P,. (X™ :n € N) denotes a sequence of random
variables on X" with corresponding sequence of probability
measures denoted by X := (Px» : n € N). Thus X is a source
and X" its n-letter message output. Abusing notation, we let
M (XN) denote the set of all sequences Y = (Py= : n € N) of
probability measures, and for each B := (B,, C X" : n € N),
we define

M(B) = {Y € M(XY): lim Pyn(B,) = 1}.
n—0oo

In the rest of this section X is a fixed source. For any Y €

M(B) and p > 0, define

) 1
E.(Y,X,p) :=limsup E{pH(PYTL) — D(Pyn || Pxn)}

|
E(Y,X,p) := hnrr_1>1£f E{pH(PYn) — D(Pyn || Pxn)}-

We first state an upper bound on E.
Proposition 2 (Upper Bound): Let R > 0 and p > 0. Then

S < :
Ey(R,p) < min

- 0R E,(Y,X,0
(p—OR+_ max ( )
A. Lower Bound on E

We now state a lower bound on Ej. For a given distribution
Pyn, let Tp(Y™) denote the first M := ||X|*f| elements,
when they are arranged in the decreasing order of probabilities.
We denote the probability of this set by Fy=, i.e.,

S P,

anE€TR(Y™)

Fyn =

and the probability of complement of this set T (Y ™) by Fy...
Proposition 3 (Lower Bound): For a given p > 0 and rate
R > 0, we have

1
E} (R, p) > max {pR + liminf — log F§n,
n—oo N

1
(1 + p) lim inf % log > P’ (x")}. (6)
" €TR(X™)

Remark 1: The first term contains limit infimum of the error
exponent for a rate-R source code. The second exponent is the
correct decoding exponent for a rate-R code when p | 0.

In the subsequent subsections we further lower bound each
of the two terms under max on the right side of (6). For an
arbitrary source we first recall the source coding error expo-
nent. We also identify the growth rate of sum of exponentiated
probabilities of the correct decoding set. We then relate them
to the terms in the lower bound obtained in (6). We largely
follow the approach and notation of Iriyama [6], which we
now describe.

For the given X and a Y = (Py~ : n € N), we define the
upper divergence D, (- || -) and lower divergence D;( || -) by

. 1
Du(Y || X) i= limsup - D(Py« || Pxe)

n—oo

1
Dy(Y || X) :=liminf —D(Pyn || Pxn).
n—oo N
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For a Y = (Py~ : n € N), denote spectral sup-entropy-rate
[5, Sec. I1J, [9] as
— 1 1

Also define, as in [6, Sec. II], the following quantity which

determines the performance under mismatched compression:

. 1 1

1) Decoding Error Exponent: In this subsection we recall
the decoding error exponent for fixed-rate encoding of an
arbitrary source. We identify the first term in (6) as composed
of the exponent of minimum probability of decoding error,
and lower bound it, or alternatively upper bound the error
exponent. This is made precise in the following definitions.
The key rate R plays the role of source coding rate.

By an (n, M,, €,)-code we mean an encoding mapping

¢n : Xn i {1727 7M’n}
and a decoding mapping
’l/)n : {1327Mn}*>xn

with probability of error €, := Pr{¢(6,(X")) # X"}. R
is r-achievable if for all n > 0 there exists a sequence of
(n, M, €,,)-codes such that

R(Y,X):= sup {9:

1 1 1
limsup —log — >r and limsup —log M, < R+n. (7)
n

n—oo N €n n—00

The infimum fixed-length coding rate for exponent 7 is
R(r|X) = inf{R : R is r-achievable}.

On the other hand, the supremum fixed-length coding exponent
for rate R is

E(R|X) = sup{r : R is r-achievable}.

Han [9, Sec. 1.9] and Iriyama [6] use a pessimistic definition
for fixed rate source coding, i.e., the limit infimum in (7), and
obtain expressions for the infimum coding rate. For our bounds
we need optimistic definitions. Iriyama [6, Eqn. (13)] obtained
a lower bound on the infimum coding rate R(r|X) under
the optimistic definitions. We however work with the error
exponent, and obtain an upper bound on supremum coding
exponent. This suffices to lower bound the first term in (6).
Obviously, the best exponent is obtained by encoding only
the highest M realizations and hence
1

- 1
E(R|X) = limsup — log
F¢.

n—oo N

so that 1
—FE(R|X) = liminf = log F§...
n—oo n

The following Proposition upper bounds the supremum coding

exponent.
Proposition 4: For any rate R > 0,
E(RX) < inf D, (Y || X).
Y:R(Y,X)-D.(Y|X)>R

Remark 2: Notice that when R > log|X|, we have an
infimum over an empty set and hence F(R|X) = oc.
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2) Correct Decoding Exponent: We now study a gener-
alization of the exponential rate for probability of correct
decoding.

For a given (n, M,, €,)-code, let

Ap i={2" € X" Y (pn(a™)) = 2"}

denote the set of correctly decoded sequences. For a given
p >0, Ris (r, p)-admissible if for every n > 0 there exists a
sequence of (n, M, €,)-codes such that

1 1
(1+p)liminf —log Y Py (a") >r (8)
n—oo N xneA"
1
lim sup -~ log M,, < R+ n. 9)

Define infimum fixed-length admissible rate for a given r and
p >0 as

R*(r,p|X) = inf{R : R is (r, p)-admissible}.

Clearly, the set {R : R is (r, p)-admissible} is closed and
so R*(r, p|X) is (r, p)-admissible.
Define supremum fixed-length coding exponent for a given R
and p as

E*(R, p|X) =sup{r : R is (r, p)-admissible}.

Remark 3: The choice of limit infimum in (8) makes the
definition of admissibility pessimistic. For p | 0 the above
definitions reduce to the special case of exponential rate for
probability of correct decoding (see [9, Sec. 1.10]).

Clearly, A,, should be Tr(X™) to maximise the left side of
(8) and hence

1 1
E*(R,p|X) = (14 p)liminf —log > Py’ (z").
nTee .'L'"ETR(X")

The following Proposition gives an expression for E*(R, p|X)

and generalizes [6, Thm. 4] to any arbitrary p > 0. En route

to its derivation we find the expression for R*(r, p|X).
Proposition 5: For any p > 0 and r > 0,

* X) = inf H(Y 1
RrplX) = Anf - (Y) (10)
E*(R7p|X) = Ssup El(Y7X7P) (11)

H(Y)XR
B. Summary of Bounds on E;, and E}
We now combine the Propositions 2-5 of the previous
subsections to obtain the main result of the paper.
Theorem 6: For a given p > 0 and R > 0,

max {pR - Du(Y || X),

inf
Y:R(Y,X)—D,(Y|X)>R

sup  E(Y,X, P)}
H(Y)<R
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IV. EXAMPLES

In this section we evaluate the bounds for some examples
where they are tight, and recover some known results.

Example 1 (Perfect Secrecy): First consider the perfect se-
crecy case, for example R > log |X|. Because of Remark 2
and because we may take § = p in the upper bound in (12),
the limiting exponential rate of guessing moments simplifies
to

Sup E(Y,X,p) < Ej(R,p)

IN

E(R,p) < max E.(Y,X,p).

In a related work we proved in [10, Prop. 7] that whenever the
information spectrum of the source satisfies the large deviation
property with rate function I, the lower and upper bounds
coincide, and limiting guessing exponent equals the Legendre-
Fenchel dual of the scaled rate function I (t) := (14 p)I(¢t),
ie.,
E3(p) = Ef(p) = sup{pt — I1(t)}.
teR

In the next examples, we consider the case R < log|X].

Example 2 (An iid source): This example was first studied
by Merhav & Arikan [2]. Recall that an iid source is one for
which P, (z™) = [];_, Pi(z;), where P; denotes the marginal
of X;. We will now evaluate each term in (12).

We first argue that

inf D,(Y || X)
Y:R(Y,X)— D, (Y| X)>R
= inf  D(Py| P). (13)
Py:H(Py)>R
To prove “>” in (13) we use the following result:

inf D,(Y || X)> inf D,(Y|X
Y:E(Y,X)i%u(YHX)>R (Y] )_Y:H}?Y)>R (Y1 X),
(14

where H;(Y) = liminf, o = H(Py=). Proof of above

inequality follows from a straightforward manipulation of [6,
Cor. 1], and is therefore omitted. From (14) it is sufficient to
prove
inf  Dy(Y||X> inf

Y:H, (Y)>R Py:H(Py)>R
Let Y be such that H;(Y) > R. Construct a source Y such
that, P{,i =Py, for1 <i¢<nandYy,Ys,- - Y, are inde-
pendent. Let Z be another source such that, Z1, Zs,--- , Z,
is an iid sequence with distribution

D(Py || P1). (15)

1 n
Py =— Py, j=1,2,--,n.
Zj n; Yis J ) Sy y TV

Now, by convexity of divergence, we have
D(Pyn | Pxn) > D(Py, || Pxn)> D(Pzn || Pxn)
= TLD(]DZ1 || Pl) (16)

and by concavity of Shannon entropy

< E}(R,p) < Ey(R,p) H(Pyn) < ZH(PYJ — H(Py,) < H(Pzn) = nH(Pyz,).
< min {(p—@)R—&—maxEu(Y,Xﬁ)} . (12) i=1
0<6<p Y )
1952
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Normalize by n take limsup in (16) and liminf in (17) to
get D, (Y || X) > D(Pz, || Pr) and H(Pz,) > R. From
these we conclude (15). Following a similar procedure as in
[6, Example 1], we can show the other direction. Also the
remaining terms in (12) can be shown to satisfy

sup  E(Y,X,p)
Y H(Y)<R
> sup
Py:H(Py)<R

{pH(Py) — D(Py || P1)} (18)

sup B, (Y, X,0) =sup{0H(Py) — D(Py || P1)}. (19)
Y Py
Substitution of (13) and (18) in the lower bound of (12) yields

E}(R,p) > max {pR - inf D(Py || Pr),

Py:H(Py)>R
sup  {pH(Py)— D(Py | P1>}
Py:H(Py)<R

= S;lp {pmin{H(Py),R} — D(Py || P1)} (20)
Y
Similarly substitution of (19) in the upper bound of (12) yields
EL(R, p)

< min
0<0<p

= sup {pogggp{(p —0)R+60H(Py)}

{<p— OR-+sp{0H(Py) ~ D(Py | a)}}

_D(Py | Pl)} e
= sup {pmin{H(Py, R}~ Dy | P}, @2)

where the interchange of sup and min in (21) holds because
the function within braces is linear in 6 and concave in Py .
From (20) and (22), we recover Merhav & Arikan’s result (1)
for an iid source [2, Eqn. (3)].

Example 3 (Markov source): In this we focus on an irre-
ducible stationary Markov source, taking values on X, with
transition probability matrix 7.

Let M(X?) denote the set of stationary PMFs defined by

M, (x2) = {Q e M(x?) ;
Z Q(r1,7) = Z Q(z,12),Va € X}
z1€X zo€X
Denote the common marginal by ¢ and let

_ J Qxr,)/q(ar), if g(z1) #0,
n(- | en) = { 1/|X(|], otl(llerwise.

We may then denote () = ¢ x 7, where ¢ is the distribution
of X; and 7 the conditional distribution of X, given Xj.
Following steps similar to the iid case, we have

E(R,p)= sup

{pmin{H(y | @), R} = Dn || 7 | 0)},
QEM,(X2)
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where

H(n|q) =Y qx)H((|z))

zeX

is the conditional one-step entropy, and

Dl wla)= ) alx)D(-| 1) | w(- | 21)).

r1€X

For a unifilar source the underlying state space forms a Markov
chain and the entropy and divergence of the source equals
those of the underlying Markov state space source [11, Thm.
6.4.2]. The arguments for the Markov source are now directly
applicable to a unifilar source.
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