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Abstract—The Shannon cipher system is studied in the context
of general sources using a notion of computational secrecy
introduced by Merhav & Arikan. Bounds are derived on limiting
exponents of guessing moments for general sources. The bounds
are shown to be tight for iid, Markov, and unifilar sources,
thus recovering some known results. A close relationship between
error exponents and correct decoding exponents for fixed rate
source compression on the one hand and exponents for guessing
moments on the other hand is established.

I. INTRODUCTION

We consider the classical cipher system of Shannon [1].
Let Xn = (X1, · · · , Xn) be a message where each letter takes
values on a finite set X. This message should be communicated
securely from a transmitter to a receiver, both of which have
access to a common secure key Uk of k purely random bits
independent of Xn. The transmitter computes the cryptogram
Y = fn(Xn, Uk) and sends it to the receiver over a public
channel. The cryptogram may be of variable length. The
encryption function fn is invertible for any fixed Uk. The
receiver, knowing Y and Uk, computes Xn = f−1

n (Y, Uk).
The functions fn and f−1

n are published. The key rate for
the system is k/n = R. A wiretapping attacker has access
to the cryptogram Y , knows fn and f−1

n , and attempts to
identify Xn without knowledge of Uk. The attacker can use
knowledge of the statistics of Xn. We assume that the attacker
has a test mechanism that tells him whether a guess X̂n is
correct or not. For example, the attacker may wish to attack
an encrypted password or personal information to gain access
to, say, a computer account, or a bank account via internet, or a
classified database [2]. In these situations, successful entry into
the system provides the natural test mechanism. We assume
that the attacker is allowed an unlimited number of guesses.

Merhav & Arikan [2] studied discrete memoryless sources
(DMS) in the above setting and characterized the best at-
tainable moments of the number of guesses required by an
attacker. In particular, they showed that for a DMS with the
governing single letter PMF P on X, the value of the optimal
exponent for the ρth moment (ρ > 0) is given by

E(R, ρ) = max
Q
{ρmin{H(Q), R} −D(Q ‖ P )} . (1)

The maximization is over all PMFs Q on X, H(Q) is the
Shannon entropy of Q, and D(Q ‖ P ) is the Kullback-

Leibler divergence between Q and P . They also showed that
E(R, ρ) increases linearly in R for R ≤ H(P ), continues to
increase in a concave fashion for R ∈ [H(P ), H

′
], where

H
′

is a threshold, and is constant for R > H
′
. Unlike

the classical equivocation rate analysis, atypical sequences do
affect the behavior of E(R, ρ) for R ∈ [H(P ), H

′
] and perfect

secrecy is obtained, i.e., cryptogram is uncorrelated with the
message, only for R > H

′
> H(P ). Merhav & Arikan

also determined the best achievable performance based on
the probability of a large deviation in the number of guesses,
and showed that it equals the Legendre-Fenchel transform of
E(R, ρ) as a function of ρ. Sundaresan [3] extended the above
results to unifilar sources. Hayashi & Yamamoto [4] proved
coding theorems for the Shannon cipher system with correlated
outputs (Xn, Zn) where the wiretapper is interested in Xn

while the receiver in Zn.
In this paper, we extend Merhav & Arikan’s notion of

computational secrecy to general sources. One motivation is
that secret messages typically come from the natural languages
which can be well-modelled as sources with memory, for e.g.,
a Markov source of appropriate order. Another motivation
is that the study of general sources clearly brings out the
connection between guessing and compression, as discussed
next.

As with other studies of general sources, information spec-
trum plays crucial role in this paper. We show that E(R, ρ)
is closely related to (a) the error exponent of a rate-R source
code, and (b) the correct decoding exponent of a rate-R source
code, when exponentiated probabilities are considered (see
Sec. III-A2). In particular, the exponents in (a) and (b) appear
in the first and second terms when we rewrite E(R, ρ) for a
DMS as

E(R, ρ) = max
{
ρR− min

Q:H(Q)>R
D(Q ‖ P ),

min
Q:H(Q)≤R

{ρH(Q)−D(Q ‖ P )}
}
.

This brings out the fundamental connection between source
coding exponents and key-rate constrained guessing expo-
nents. Further, unlike the case for the probability of a large
deviation in the number of guesses [2, Sec. V], both the
error exponent and the correct decoding exponent determine
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E(R, ρ). We extend the above result to general sources by
getting upper and lower bounds on E(R, ρ). We then show
that these are tight for DMS, Markov and unifilar sources. The
bounds may be of interest even if they are not tight because
the upper bound specifies the amount of effort need by an
attacker and the lower bound specifies the secrecy strength of
the cryptosystem to a designer.

The limiting case as ρ ↓ 0 in (b) yields classical framework
for probability of correct decoding. This special case is related
to the work of Han [5] and Iriyama [6] who studied the dual
problem of rates required to meet a specified error exponent
or a specified correct decoding exponent.

The paper is organized as follows. Section II relates our
problem to a modification of Campbell’s compression problem
[7]. Section III gives bounds on the limits of exponential
rate of guessing moments, in terms of information spectrum
quantities. Section IV evaluates the bounds for some specific
examples. All proofs can be found in the technical report [8].

II. GUESSING WITH KEY-RATE CONSTRAINTS AND
SOURCE COMPRESSION

In this section, we state the problem precisely, and estab-
lish a connection between guessing and source compression
subject to a new cost criterion.

Let Xn denote the set of messages and M(Xn) the set of
PMFs on Xn. By a source, we mean a sequence of PMFs (Pn :
n ∈ N), where Pn ∈M(Xn) 1. Let Xn denote a message put
out by the source and Uk the secure key of k purely random
bits independent of Xn. Recall that the transmitter computes
the cryptogram Y = fn(Xn, Uk) and sends it to the receiver
over a public channel. The key rate for the system is k/n = R.

For a given cryptogram Y = y, define a guessing strategy

Gn(· | y) : Xn → {1, 2, · · · |X|n}

as a bijection that denotes the order in which elements of Xn
are guessed. Gn(xn | y) = g indicates that xn is the gth
guess, when the cryptogram is y. With knowledge of Pn, the
encryption function fn, and the cryptogram Y , the attacker can
completely calculate all the posterior probabilities of plaintexts
PXn|Y (· | y) given the cryptogram. The attacker’s optimal
guessing strategy is then to guess in the decreasing order of
these posterior probabilities PXn|Y (· | y). Let us denote this
optimal attack strategy as Gfn . Let (fn : n ∈ N) denote the
sequence of encryption functions known to the attacker, where
N denotes the set of natural numbers. We assume that attacker
employs the optimal guessing strategy.

For a given ρ > 0, key rate R > 0, define the normalized
guessing exponent

Egn(R, ρ) := sup
fn

1
n

log E [Gfn(Xn | Y )ρ] .

1Sometimes we use PXn in place of Pn when we refer to the distribution
of random vector Xn.

The supremum is taken over all encryption functions. Further
define performance limits of guessing moments as in [2]:

Egu(R, ρ) := lim sup
n→∞

Egn(R, ρ) (2)

Egl (R, ρ) := lim inf
n→∞

Egn(R, ρ). (3)

We next define the related compression quantities. A length
function Ln : Xn → N is a mapping that satisfies Kraft’s
inequality: ∑

xn∈Xn
exp{−Ln(x)} ≤ 1.

For a given ρ > 0, code rate R > 0, define

Esn(R, ρ) := min
Ln

1
n

log E [exp {ρmin {Ln(Xn), nR}}] . (4)

The minimum is taken over all length functions. We
may interpret the cost of using length Ln(xn) as
min {exp{Ln(xn), nR}}, i.e., the cost is exponential in Ln,
but saturates at exp{nR} and so all lengths larger than
exp{nR} enjoy a saturated cost. Then Esn(R, ρ) is the min-
imum normalized exponent of the ρth moment of this new
compression cost. In analogy with (2) and (3) we define

Esu(R, ρ) = lim sup
n→∞

Esn(R, ρ)

Esl (R, ρ) = lim inf
n→∞

Esn(R, ρ)

The following equivalence between compression and guessing
is immediate from proof of [3, Cor. 9].

Theorem 1 (Guessing-Compression Equivalence): For any
ρ > 0 and R > 0, we have Esu(R, ρ) = Egu(R, ρ) and
Esl (R, ρ) = Egl (R, ρ).

Thus, the problem of finding the optimal guessing exponent
is the same as that of finding the optimal exponent for the
coding problem in (4). When R ≥ log |X|, the coding problem
in (4) reduces to the one considered by Campbell in [7].

In the rest of the paper we focus on the equivalent com-
pression problem and find bounds on Esu and Esl .

III. GROWTH EXPONENT FOR THE MODIFIED
COMPRESSION PROBLEM

We begin with some words on notation. Recall thatM(Xn)
denotes the set of PMFs on Xn. The Shannon entropy for a
Pn ∈M(Xn) is

H(Pn) = −
∑
xn∈Xn

Pn(xn) logPn(xn)

and the Rényi entropy of order α 6= 1 is

Hα(Pn) =
1

1− α
log

( ∑
xn∈Xn

Pn(xn)α
)
. (5)

The Kullback-Leibler divergence or relative entropy between
two PMFs Qn and Pn is

D(Qn ‖ Pn) =


∑
xn∈Xn

Qn(xn) log
Qn(xn)
Pn(xn)

, if Qn � Pn,

∞, otherwise,
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where Qn � Pn means Qn is absolutely continuous with
respect to Pn. (Xn : n ∈ N) denotes a sequence of random
variables on Xn with corresponding sequence of probability
measures denoted by X := (PXn : n ∈ N). Thus X is a source
and Xn its n-letter message output. Abusing notation, we let
M(XN) denote the set of all sequences Y = (PY n : n ∈ N) of
probability measures, and for each B := (Bn ⊆ Xn : n ∈ N),
we define

M(B) :=
{
Y ∈M(XN) : lim

n→∞
PY n(Bn) = 1

}
.

In the rest of this section X is a fixed source. For any Y ∈
M(B) and ρ > 0, define

Eu(Y,X, ρ) := lim sup
n→∞

1
n
{ρH(PY n)−D(PY n ‖ PXn)}

El(Y,X, ρ) := lim inf
n→∞

1
n
{ρH(PY n)−D(PY n ‖ PXn)}.

We first state an upper bound on Esu.
Proposition 2 (Upper Bound): Let R > 0 and ρ > 0. Then

Esu(R, ρ) ≤ min
0≤θ≤ρ

[
(ρ− θ)R+ max

Y∈M(XN)
Eu(Y,X, θ)

]
A. Lower Bound on Esl

We now state a lower bound on Esl . For a given distribution
PY n , let TR(Y n) denote the first M := b|X|nRc elements,
when they are arranged in the decreasing order of probabilities.
We denote the probability of this set by FY n , i.e.,

FY n =
∑

xn∈TR(Y n)

PY n(xn),

and the probability of complement of this set T cR(Y n) by F cY n .
Proposition 3 (Lower Bound): For a given ρ > 0 and rate

R > 0, we have

Esl (R, ρ) ≥ max
{
ρR+ lim inf

n→∞

1
n

logF cXn ,

(1 + ρ) lim inf
n→∞

1
n

log
∑

xn∈TR(Xn)

P
1

1+ρ
Xn (xn)

}
. (6)

Remark 1: The first term contains limit infimum of the error
exponent for a rate-R source code. The second exponent is the
correct decoding exponent for a rate-R code when ρ ↓ 0.

In the subsequent subsections we further lower bound each
of the two terms under max on the right side of (6). For an
arbitrary source we first recall the source coding error expo-
nent. We also identify the growth rate of sum of exponentiated
probabilities of the correct decoding set. We then relate them
to the terms in the lower bound obtained in (6). We largely
follow the approach and notation of Iriyama [6], which we
now describe.

For the given X and a Y = (PY n : n ∈ N), we define the
upper divergence Du(· ‖ ·) and lower divergence Dl(· ‖ ·) by

Du(Y ‖ X) := lim sup
n→∞

1
n
D(PY n ‖ PXn)

Dl(Y ‖ X) := lim inf
n→∞

1
n
D(PY n ‖ PXn).

For a Y = (PY n : n ∈ N), denote spectral sup-entropy-rate
[5, Sec. II], [9] as

H(Y) := inf
{
θ : lim

n→∞
Pr
{

1
n

log
1

PY n(Y n)
> θ

}
= 0
}
.

Also define, as in [6, Sec. II], the following quantity which
determines the performance under mismatched compression:

R(Y,X) := sup
{
θ: lim
n→∞

Pr
{

1
n

log
1

PXn(Y n)
< θ

}
= 0
}
.

1) Decoding Error Exponent: In this subsection we recall
the decoding error exponent for fixed-rate encoding of an
arbitrary source. We identify the first term in (6) as composed
of the exponent of minimum probability of decoding error,
and lower bound it, or alternatively upper bound the error
exponent. This is made precise in the following definitions.
The key rate R plays the role of source coding rate.

By an (n,Mn, εn)-code we mean an encoding mapping

φn : Xn → {1, 2, · · · ,Mn}
and a decoding mapping

ψn : {1, 2, · · ·Mn} → Xn

with probability of error εn := Pr{ψn(φn(Xn)) 6= Xn}. R
is r-achievable if for all η > 0 there exists a sequence of
(n,Mn, εn)-codes such that

lim sup
n→∞

1
n

log
1
εn
≥ r and lim sup

n→∞

1
n

logMn ≤ R+ η. (7)

The infimum fixed-length coding rate for exponent r is

R̂(r|X) = inf{R : R is r-achievable}.
On the other hand, the supremum fixed-length coding exponent
for rate R is

Ê(R|X) = sup{r : R is r-achievable}.
Han [9, Sec. 1.9] and Iriyama [6] use a pessimistic definition
for fixed rate source coding, i.e., the limit infimum in (7), and
obtain expressions for the infimum coding rate. For our bounds
we need optimistic definitions. Iriyama [6, Eqn. (13)] obtained
a lower bound on the infimum coding rate R̂(r|X) under
the optimistic definitions. We however work with the error
exponent, and obtain an upper bound on supremum coding
exponent. This suffices to lower bound the first term in (6).

Obviously, the best exponent is obtained by encoding only
the highest M realizations and hence

Ê(R|X) = lim sup
n→∞

1
n

log
1

F cXn

so that
−Ê(R|X) = lim inf

n→∞

1
n

logF cXn .

The following Proposition upper bounds the supremum coding
exponent.

Proposition 4: For any rate R > 0,

Ê(R|X) ≤ inf
Y:R(Y,X)−Du(Y‖X)>R

Du(Y ‖ X).

Remark 2: Notice that when R ≥ log |X|, we have an
infimum over an empty set and hence Ê(R|X) =∞.

Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on October 24, 2009 at 02:06 from IEEE Xplore.  Restrictions apply. 



2) Correct Decoding Exponent: We now study a gener-
alization of the exponential rate for probability of correct
decoding.

For a given (n,Mn, εn)-code, let

An := {xn ∈ Xn : ψn(φn(xn)) = xn}

denote the set of correctly decoded sequences. For a given
ρ > 0, R is (r, ρ)-admissible if for every η > 0 there exists a
sequence of (n,Mn, εn)-codes such that

(1 + ρ) lim inf
n→∞

1
n

log
∑

xn∈An

P
1

1+ρ
Xn (xn) ≥ r (8)

lim sup
n→∞

1
n

logMn ≤ R+ η. (9)

Define infimum fixed-length admissible rate for a given r and
ρ > 0 as

R∗(r, ρ|X) = inf{R : R is (r, ρ)-admissible}.

Clearly, the set {R : R is (r, ρ)-admissible} is closed and
so R∗(r, ρ|X) is (r, ρ)-admissible.
Define supremum fixed-length coding exponent for a given R
and ρ as

E∗(R, ρ|X) = sup{r : R is (r, ρ)-admissible}.

Remark 3: The choice of limit infimum in (8) makes the
definition of admissibility pessimistic. For ρ ↓ 0 the above
definitions reduce to the special case of exponential rate for
probability of correct decoding (see [9, Sec. 1.10]).

Clearly, An should be TR(Xn) to maximise the left side of
(8) and hence

E∗(R, ρ|X) = (1 + ρ) lim inf
n→∞

1
n

log
∑

xn∈TR(Xn)

P
1

1+ρ
Xn (xn).

The following Proposition gives an expression for E∗(R, ρ|X)
and generalizes [6, Thm. 4] to any arbitrary ρ > 0. En route
to its derivation we find the expression for R∗(r, ρ|X).

Proposition 5: For any ρ > 0 and r > 0,

R∗(r, ρ|X) = inf
Y:El(Y,X,ρ)≥r

H(Y) (10)

E∗(R, ρ|X) = sup
H(Y)≤R

El(Y,X, ρ). (11)

B. Summary of Bounds on Esu and Esl
We now combine the Propositions 2-5 of the previous

subsections to obtain the main result of the paper.
Theorem 6: For a given ρ > 0 and R > 0,

max
{
ρR− inf

Y:R(Y,X)−Du(Y‖X)>R
Du(Y ‖ X),

sup
H(Y)≤R

El(Y,X, ρ)
}

≤ Esl (R, ρ) ≤ Esu(R, ρ)
≤ min

0≤θ≤ρ

{
(ρ− θ)R+ max

Y
Eu(Y,X, θ)

}
. (12)

IV. EXAMPLES

In this section we evaluate the bounds for some examples
where they are tight, and recover some known results.

Example 1 (Perfect Secrecy): First consider the perfect se-
crecy case, for example R ≥ log |X|. Because of Remark 2
and because we may take θ = ρ in the upper bound in (12),
the limiting exponential rate of guessing moments simplifies
to

sup
Y
El(Y,X, ρ) ≤ Esl (R, ρ)

≤ Esu(R, ρ) ≤ max
Y

Eu(Y,X, ρ).

In a related work we proved in [10, Prop. 7] that whenever the
information spectrum of the source satisfies the large deviation
property with rate function I , the lower and upper bounds
coincide, and limiting guessing exponent equals the Legendre-
Fenchel dual of the scaled rate function I1(t) := (1 + ρ)I(t),
i.e.,

Esu(ρ) = Esl (ρ) = sup
t∈R
{ρt− I1(t)}.

In the next examples, we consider the case R < log |X|.
Example 2 (An iid source): This example was first studied

by Merhav & Arikan [2]. Recall that an iid source is one for
which Pn(xn) =

∏n
i=1 P1(xi), where P1 denotes the marginal

of X1. We will now evaluate each term in (12).
We first argue that

inf
Y:R(Y,X)−Du(Y‖X)>R

Du(Y ‖ X)

= inf
PY :H(PY )>R

D(PY ‖ P1). (13)

To prove “≥” in (13) we use the following result:

inf
Y:R(Y,X)−Du(Y‖X)>R

Du(Y ‖ X) ≥ inf
Y:Hl(Y)>R

Du(Y ‖ X),

(14)
where Hl(Y) = lim infn→∞ 1

nH(PY n). Proof of above
inequality follows from a straightforward manipulation of [6,
Cor. 1], and is therefore omitted. From (14) it is sufficient to
prove

inf
Y:Hl(Y)>R

Du(Y ‖ X ≥ inf
PY :H(PY )>R

D(PY ‖ P1). (15)

Let Y be such that Hl(Y) > R. Construct a source Ŷ such
that, PŶi = PYi for 1 ≤ i ≤ n and Ŷ1, Ŷ2, · · · , Ŷn are inde-
pendent. Let Z be another source such that, Z1, Z2, · · · , Zn
is an iid sequence with distribution

PZj =
1
n

n∑
i=1

PYi , j = 1, 2, · · · , n.

Now, by convexity of divergence, we have

D(PY n ‖ PXn) ≥ D(PŶ n ‖ PXn) ≥ D(PZn ‖ PXn)
= nD(PZ1 ‖ P1) (16)

and by concavity of Shannon entropy

H(PY n) ≤
n∑
i=1

H(PYi) = H(PŶ n) ≤ H(PZn) = nH(PZ1).

(17)
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Normalize by n take limsup in (16) and liminf in (17) to
get Du(Y ‖ X) ≥ D(PZ1 ‖ P1) and H(PZ1) > R. From
these we conclude (15). Following a similar procedure as in
[6, Example 1], we can show the other direction. Also the
remaining terms in (12) can be shown to satisfy

sup
Y:H(Y)≤R

El(Y,X, ρ)

≥ sup
PY :H(PY )≤R

{ρH(PY )−D(PY ‖ P1)} (18)

sup
Y
Eu(Y,X, θ) = sup

PY

{θH(PY )−D(PY ‖ P1)}. (19)

Substitution of (13) and (18) in the lower bound of (12) yields

Esl (R, ρ) ≥ max
{
ρR− inf

PY :H(PY )>R
D(PY ‖ P1),

sup
PY :H(PY )≤R

{ρH(PY )−D(PY ‖ P1)
}

= sup
PY

{ρmin{H(PY ), R} −D(PY ‖ P1)} .(20)

Similarly substitution of (19) in the upper bound of (12) yields

Esu(R, ρ)

≤ min
0≤θ≤ρ

{
(ρ− θ)R+ sup

PY

{θH(PY )−D(PY ‖ P1)}
}

= sup
PY

{
ρ min

0≤θ≤ρ
{(ρ− θ)R+ θH(PY )}

−D(PY ‖ P1)
}

(21)

= sup
PY

{ρmin{H(PY , R)} −D(PY ‖ P1)} , (22)

where the interchange of sup and min in (21) holds because
the function within braces is linear in θ and concave in PY .
From (20) and (22), we recover Merhav & Arikan’s result (1)
for an iid source [2, Eqn. (3)].

Example 3 (Markov source): In this we focus on an irre-
ducible stationary Markov source, taking values on X, with
transition probability matrix π.

Let Ms(X2) denote the set of stationary PMFs defined by

Ms

(
X2
)

=
{
Q ∈M

(
X2
)

:∑
x1∈X

Q(x1, x) =
∑
x2∈X

Q(x, x2),∀x ∈ X
}
.

Denote the common marginal by q and let

η(· | x1) :=
{
Q(x1, ·)/q(x1), if q(x1) 6= 0,

1/|X|, otherwise.

We may then denote Q = q × η, where q is the distribution
of X1 and η the conditional distribution of X2 given X1.
Following steps similar to the iid case, we have

E(R, ρ) = sup
Q∈Ms(X2)

{
ρmin{H(η | q), R} −D(η ‖ π | q)

}
,

where
H(η | q) :=

∑
x∈X

q(x)H(η(· | x))

is the conditional one-step entropy, and

D(η ‖ π | q) =
∑
x1∈X

q(x1)D(η(· | x1) ‖ π(· | x1)).

For a unifilar source the underlying state space forms a Markov
chain and the entropy and divergence of the source equals
those of the underlying Markov state space source [11, Thm.
6.4.2]. The arguments for the Markov source are now directly
applicable to a unifilar source.
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