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Abstract. Separable convex optimization problems with linear ascending inequality and equality
constraints are addressed in this paper. An algorithm that explicitly characterizes the optimum point
in a finite number of steps is described. The optimum value is shown to be monotone with respect
to a partial order on the constraint parameters. Moreover, the optimum value is convex with respect
to these parameters. This work generalizes the existing algorithms of Morton, von Randow, and
Ringwald [Math. Programming, 32 (1985), pp. 238–241] and Viswanath and Anantharam [IEEE
Trans. Inform. Theory, 48 (2002), pp. 1295–1318] to a wider class of separable convex objective
functions. Computational experiments that compare the proposed algorithm with a standard convex
optimization tool are also provided.
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1. Problem description. In this paper, we minimize the separable objective
function G : R

L → R given by

(1.1) G(y) :=
L∑

m=1

gm(ym),

where y = (y1, . . . , yL), subject to the following linear inequality and equality con-
straints:

ym ∈ [0, βm], m = 1, 2, . . . , L,(1.2)
l∑

m=1

ym ≥
l∑

m=1

αm, l = 1, 2, . . . , L− 1,(1.3)

L∑
m=1

ym =
K∑

m=1

αm.(1.4)

Throughout the paper, we assume that the functions gm, m = 1, 2, . . . , L, satisfy
the following conditions:

• gm : (am, bm) → R, where am ∈ [−∞, 0) and bm ∈ (0, +∞] and therefore
am < 0 < bm;
• gm is strictly convex in its domain (am, bm);
• gm is continuously differentiable in its domain (am, bm);
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1186 ARUN PADAKANDLA AND RAJESH SUNDARESAN

• for each m, there is a point in the domain (am, bm) where the derivative
hm := g′m equals h (0) := min1≤l≤L hl (0), the least slope at 0 among all
functions gm.

We now give a brief description of the constraints. We assume βm ∈ (0, bm] for
m = 1, 2, . . . , L, αm ≥ 0 for m = 1, 2, . . . , K, where K ≥ L, and naturally

(1.5)
K∑

m=1

αm ≤
L∑

m=1

βm.

We also assume

(1.6)
K∑

m=L

αm > 0.

The inequalities in (1.2) impose positivity and upper bound constraints. Note that
if βm = bm, the upper bound constraint is irrelevant because the domain of gm is
(am, bm). The inequalities in (1.3) impose a sequence of ascending constraints with
increasing heights

∑l
m=1 αm indexed by l. Assumption (1.5) is necessary for the

constraint set to be nonempty. Without (1.6), it is easy to see that yL = 0, and
the problem reduces to a similar one with fewer variables. As a final remark on the
constraints, observe that we may set K = L without loss of generality. But allowing
K ≥ L simplifies the exposition of our solution to this optimization problem.

Our main result is a finite-step algorithm that explicitly identifies the optimal
vector that minimizes the separable convex objective function in (1.1).

Such a separable convex optimization problem with linear inequality and equal-
ity constraints arises in several settings. Morton, von Randow, and Ringwald [15]
study the special case gm(y) = vmyp, where vm > 0 and p > 1 are constants. The
constraints are as in (1.2)–(1.4). They cite two examples. The first is a problem of
smoothing of Bellman and Dreyfus [1, p. 105]. The second arises as a special case
of some network flow problems that have been transformed to implement the “string
solution” of Dantzig [7] and its extension by Veinott [27]. Our interest in this prob-
lem stems from its application in the optimization of multiterminal communication
systems. In such applications, either power utilized, measured in joules per second, is
minimized subject to throughput constraints (see Padakandla and Sundaresan [17]),
or throughput achieved, measured in bits per second, is maximized subject to power
constraints (see Viswanath and Anantharam [28]). A brief description on how the
aforementioned problem arises is given in Example 1 in section 3.

A special case obtained by setting α1 = · · · = αL−1 = 0 in (1.3) renders the
ascending constraints irrelevant and results in the minimization of (1.1) subject to
(1.2) and (1.4). This is a well-studied problem; see Patriksson’s annotated bibliogra-
phy [18] for several example applications, the history, and the classification of solution
approaches. This special case also arises in several settings related to optimization of
communication systems; see Tavildar and Viswanath [25], Farrokhi et al. [8], Munz,
Pfletschinger, and Speidel [16], Telatar [26], and Chen-Nee et al. [6] for some recent
applications. A related special case with upper bound constraints (βm < bm) arises
in a multiserver job scheduling context in Bonomi and Kumar [4].

Approaches to solving the above special case fall broadly in two categories. The
first is the dual method (see Patriksson [18, sect. 3.1]) that proceeds by identifying the
dual variables, thereby implicitly identifying the primal variables (see Charnes and
Cooper [5] and an extension to general convex functions by Luss and Gupta [13]).
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CONVEX OPTIMIZATION WITH ASCENDING CONSTRAINTS 1187

Zipkin [30] unified several previous approaches and identified the dual variable via
zeros of partial sums of inverses g′m. Our approach falls in this category and extends
Zipkin’s ideas to the case of ascending constraints (see (2.2) and (2.3)). The second
approach, denoted pegging algorithms [18, sect. 3.2], identifies the optimal point re-
cursively via solutions to problems where the constraint (1.2) is relaxed. The dual
variables are optimized only implicitly. See Sanathanan [19] for an early work using
this approach, Luss and Gupta [13], Bitran and Hax [3],1 and more recently Stefanov
[20], [23]. See also Stefanov [22] and [24] for quadratic and logarithmic objective
functions and his book [21] for an introduction to separable problems and iterative
techniques. The pegging method sets at least one primal variable per iteration. Our
proposed algorithm (Algorithm 1) for the case of ascending constraints (section 2)
also sets at least one primal variable per iteration. However, this is done implicitly
by identifying optimized dual variables and not via pegging as described above.

Morton, von Randow, and Ringwald [15] and Viswanath and Anantharam [28]
minimize (1.1) for specific convex objective functions. Their algorithms are specific
to the objective functions considered and do not work for other objective functions.2

Our algorithm is a generalization that is applicable to any continuously differentiable,
separable, and strictly convex objective function.

As in pegging algorithms (cf. Patriksson [18, sect. 3.2]), our algorithm sets at
least one primal variable per iteration and therefore terminates after identifying the
optimal point in at most L steps. Each step involves calculations of zeros of several
(up to L) functions (cf. (2.2) and (2.3)). In cases where these zeros can be found
explicitly, our algorithm is significantly faster than a standard convex optimization
tool. In other cases, the zeros have to be found numerically using line searches. Since
the number of such zero-calculations in each step is in the worst case linear in the
number of variables, our algorithm may be inefficient for such large problem sets.
Computational experiments where our algorithm outperforms and is outperformed
by a standard optimization tool are given in section 4.

The paper is organized as follows. Section 2 contains a description of the algo-
rithm. Under a further condition on the functions which will be stated in section 2,
we argue that our algorithm provides the solution to the above optimization prob-
lem with the additional ordering constraint y1 ≥ y2 ≥ · · · ≥ yL. Furthermore, when
the equality constraint on the sum is relaxed to a lower bound constraint, our algo-
rithm outputs the optimal point under the alternative condition that the slopes of
gm at 0 are all positive. Section 3 discusses two illustrative examples and section 4
some computational experiments. Section 5 contains the proof of optimality of the
algorithm.

2. The main results. We begin with some remarks on notation.
• For integers i, j satisfying i ≤ j, we let �i, j� denote the set {i, i + 1, . . . , j}.
• For a set s ⊆ �1, L�, with i = min s, j = max s, and l ∈ �i, j�, let s [l] denote

the subset s ∩ �i, l�.
• Recall that hm := g′m. Let Em := hm( (am, bm) ), the range of hm. Also, recall

the condition that for each m, there is a point in the domain (am, bm) where
the derivative hm = g′m equals h (0) := min1≤l≤L hl (0), the least slope at 0

1Incidentally, the algorithm of Bitran and Hax [3] need not converge; see Kiwiel [12] for an exam-
ple of nonconvergence and suggested improvements to restore convergence. Similar nonconvergence
issues for dual methods were identified and resolved by Kiwiel [11].

2Moreover, their algorithms are specific to the case when the slopes at the origin satisfy a certain
ordering property. See the fifth remark following the description of Algorithm 1 in section 2.
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1188 ARUN PADAKANDLA AND RAJESH SUNDARESAN

among all functions gm. This may be equivalently stated as h (0) ≥ hm(am+),
given that hm is continuous and strictly increasing, or equivalently

(2.1) h (0) ∈ ∩L
m=1Em.

• Denote by h−1
m : Em → (am, bm) the inverse of the continuous and strictly

increasing function hm. The inverse is also continuous and strictly increasing
in its domain.
• For convenience, define the functions Hm : Em → (am, βm] to be

(2.2) Hm := h−1
m ∧ βm.

Hm is clearly increasing.3 Assignments to the variable ym will be via eval-
uation of Hm so that the upper bound constraint in (1.2) is automatically
satisfied.
• For s ⊆ �1, L�, a nonempty subset with i = min s, j = max s, and l ∈ �i, j�,

let θ (s, l) denote the least θ ≥ h (0) that satisfies

(2.3)
∑

m∈s[l]

Hm(θ) =
l∑

m=i

αm,

provided the set of such θ is nonempty. Otherwise we say θ (s, l) does not
exist.
The left-hand side of (2.3) includes only those terms with indices m in s[l],
a subset of �i, l�. The right-hand side includes all indices in �i, l�. Such
summations with gaps (on the left-hand side) arise when variables ym for
m ∈ �i, l� \ s[l] are already set and are not currently under consideration.
The domain of

∑
m∈s[l] Hm is ∩m∈s[l]Em. The function

∑
m∈s[l] Hm is increas-

ing, and, moreover, strictly increasing, until all functions in the sum saturate.
So there is no solution to (2.3) when, for example,

∑l
m=i αm >

∑
m∈s[l] βm.

In general, if we can demonstrate the existence of θ and θ, both in the set
∩m∈s[l]Em, that satisfy

(2.4)
∑

m∈s[l]

Hm(θ) ≤
l∑

m=i

αm ≤
∑

m∈s[l]

Hm

(
θ
)
,

then the existence of θ (s, l) ∈ ∩m∈s[l]Em is assured, thanks to the continuity
of
∑

m∈s[l] Hm. Indeed, we may always take θ = h (0). This is because our
assumption (2.1), h (0) ≤ hm (0), m ∈ �1, L�, and the increasing property of
Hm, m ∈ �1, L� imply∑

m∈s[l]

Hm (h (0)) ≤
∑

m∈s[l]

Hm (hm(0))

=
∑

m∈s[l]

(
h−1

m (hm(0)) ∧ βm

)

= 0 ≤
l∑

m=i

αm.

3We say f is increasing if a > b implies f(a) ≥ f(b). If there is strict inequality, we say f is
strictly increasing. Similarly we say x is positive if x ≥ 0 and strictly positive if x > 0.
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The continuity and increasing property of
∑

m∈s[l] Hm further imply that

(2.5) (θ ∧ h (0)) ≤ θ (s, l) ≤ θ.

Thus, in order to show existence of θ (s, l), it is sufficient to identify a θ that
satisfies the right-hand side inequality of (2.4). We will have occasion to
use this remark a few times in the proof of correctness of the forthcoming
algorithm.
• Similarly, for s ⊆ �1, L� with i = min s, j = max s, we let Θ (s) denote the

least θ ≥ h (0) that satisfies

(2.6)
∑
m∈s

Hm(θ) =
K∑

m=i

αm,

provided the set of such θ is nonempty. Otherwise we say Θ (s) does not exist.
Note the difference between (2.3), with l = j, and (2.6). The summation in
the right-hand side of (2.6) is up to K. To highlight this difference with (2.3),
we use the upper case Θ in Θ (s). The remarks made above on the existence
of θ (s, l) are applicable to Θ (s).
• We now provide a description of the variables used in the algorithm for ease

of reference.
– n: Iteration number.
– sn: Index set of variables that are yet to be set.
– in := min sn and jn := max sn.
– N : The last iteration number in which a variable is set.
– l, m: Temporary pointer locations that satisfy l ∈ �in, jn�, and m ∈ sn,

in iteration n.
– t: Pointer to the variable that satisfies the corresponding ascending con-

straint with equality; t ∈ �in, jn�.
– z: Pointer to the variable that is assigned the value 0; z ∈ sn.
– ξn: Choice of the best slope (marginal cost) in iteration n.
– pm: Iteration number when variable ym is set. (This is needed only in

the proof.)
– cm: A label that indicates the type of ξn that sets the variable ym.

The possible labels are {A,A∗} for Step 3(a) of the algorithm, {B} for
Step 3(b) of the algorithm, and {C, C∗} for Step 3(c) of the algorithm. If
cm is assigned an asterisked label, then the ascending constraint is met
with equality for ym. (This is needed only in the proof.)

We now provide a generalization of the algorithms of Morton, von Randow, and
Ringwald [15] and Viswanath and Anantharam [28].

Algorithm 1.

• Inputs: K, L, (α1, α2, . . . , αK), (β1, β2, . . . , βL).
• Output: y∗ = (y∗

1 , y
∗
2 , . . . , y∗

L).
• Step 1: Initialization Set n← 1, s1 ← �1, L� and go to Step 2.
• Step 2: Set in ← min sn, jn ← max sn and go to Step 3.
• Step 3: Find Θ (sn), the solution of (2.6) with s← sn;
find θ (sn, l) for l ∈ �in, jn − 1�, solutions of (2.3) for s ← sn and
l as chosen.4 Then set

ξn = max {Θ (sn) , hl(0) : l ∈ sn, θ (sn, l) : l ∈ �in, jn − 1�} .
4Theorem 1 gives a sufficient condition when these quantities can be identified in every iteration.
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• Case 3(a): If ξn = Θ (sn), then set

y∗
m ← Hm (ξn) for m ∈ sn

pm ← n for m ∈ sn

cm ← A for m ∈ sn, m �= jn

cjn ← A∗

sn+1 ← ∅
n← n + 1.

Go to Step 4.
• Case 3(b): If ξn = hz(0) for some z ∈ sn, pick the largest such

z and set

y∗
z ← 0

pz ← n

cz ← B
sn+1 ← sn \ {z}

n← n + 1.

Go to Step 4.
• Case 3(c): If ξn = θ (sn, t), for t ∈ �in, jn − 1�, pick the largest
such t and set

y∗
m ← Hm (ξn) for m ∈ sn [t]

pm ← n for m ∈ sn [t]
cm ← C for m ∈ sn [t− 1]
ct ← C∗

sn+1 ← sn \ sn [t]
n← n + 1.

Go to Step 4.
• Step 4: Termination If sn = ∅, then set N ← n − 1, output the
vector y∗ = (y∗

1 , y∗
2 , . . . , y∗

L), and stop.
Else go to Step 2.

Remarks.
• Observe that in each iteration (i.e., a call to Step 3) at least one variable is

set. So the algorithm terminates within L steps.
• The iterations are indexed by n, where n ∈ �1, N�. In each iteration, say

n, sn contains indices of variables that are yet to be set. At the end of this
iteration, either all the variables are set (Step 3(a)), or one of them is set
to 0 (Step 3(b)), or the variables with indices within a subset of sn [t] are set
(Step 3(c)). The corresponding sets of labels are {A,A∗}, {B}, and {C, C∗},
respectively.
• Suppose y is the vector of production levels of L production units. Let gm

represent the cost of operation for production unit m ∈ �1, L�, and let G be
the overall cost. The production levels ym set in a particular iteration are set
to have the same marginal cost ξn, or they are set to operate at capacity. In
symbols, y∗

m = Hm (ξpm) = h−1
m (ξpm) ∧ βm.
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• Let s = �1, L�. The quantity Θ(s) can be interpreted as the price per unit that
will make production from all units meet the sum production constraint (1.4)
when each production unit operates independently to maximize its profit.
Similarly, the quantities θ (s, l) represent the price per unit that will ensure
sufficient production that meets the lth ascending constraint, assuming the
units operate to maximize profit at the price offered. The final price (for this
iteration) should then be the maximum of all these quantities. This justifies
the maximum operation in the evaluation of ξn. This price is offered to only
a subset of the units, their production levels set, and the process continues
in a similar iterative fashion for the remaining units.
• If the slopes of the functions at 0 satisfy h1 (0) ≤ h2 (0) ≤ · · · ≤ hL (0), it is

sufficient to just consider hjn (0) in determining ξn. (The problem instances
considered by Morton, von Randow, and Ringwald [15] and Viswanath and
Anantharam [28] satisfy this slope-ordering condition and therefore admit the
simplification in the algorithm.)
• Each iteration requires the evaluation of Θ (sn) and θ (sn, l), l ∈ �in, jn − 1�.

These are zeros of continuous increasing functions. In Theorem 1, we provide
sufficient conditions for these zeros to exist in each iteration step.
• The question of evaluation of these zeros naturally arises. In the specific

examples in section 3, we give closed form expressions for Θ (sn) and θ (sn, l).
We also show results of computational experiments for two such cases in
section 4. Our specialized algorithm is more efficient than a standard tool in
such cases (see section 4 for details). In general, such closed form expressions
may not be available and one has to resort to numerical evaluation of the
zeros. On one such example in section 4, our algorithm fares favorably for
small-sized problems, but it fares poorly for larger problems because of the
worst case O(L) number of zeros that need to be calculated in each iteration
step. However, the following observations can enable some efficiency in the
calculation of the zeros using line search procedures. (1) The functions are
continuous and increasing. (2) Closed form expressions for the derivatives
can be obtained for implementation of the Newton–Raphson method. (3) In
the proof of correctness of the algorithm, we identify θ and θ on either side
of the zeros (see (2.4) and (2.5)) to narrow the search window.

We now state the main result of the paper.
Theorem 1. If θ (�1, L�, l), l ∈ �1, L−1�, and Θ (�1, L�) exist, then the following

hold:
• For every iteration n such that sn �= ∅, the quantities Θ (sn) and θ (sn, l),

l ∈ �in, jn − 1�, exist.
• Algorithm 1 terminates in N ≤ L iterations.
• The output of Algorithm 1 minimizes (1.1) under the stated constraints.

We next state a simple corollary to this result which solves a related problem with
additional constraints.

Corollary 2.1. If the functions Hm satisfy H1 ≥ H2 ≥ · · · ≥ HL, then under
the conditions of Theorem 1, the optimum y∗ satisfies y∗

1 ≥ y∗
2 ≥ · · · ≥ y∗

L.
Remark. We may use Algorithm 1 to solve the minimization problem with the

additional constraints y1 ≥ y2 ≥ · · · ≥ yL if Hm is pointwise monotone decreasing in
the index m.

Before we state some properties of the optimum value function, we make some
more definitions for convenience.

• Observe that if K > L, the optimum value defined below depends on the
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K-tuple α ∈ R
K
+ only through the L-tuple (α1, . . . , αL−1,

∑K
m=L αm) ∈ R

L
+.

For studying the optimum value, we may therefore restrict our attention to
K = L. Let α ∈ R

L
+ and define G : R

L
+ → R ∪ {+∞} as follows:

α
G�→ G(α) := inf

{
G(y) : y ∈ R

L satisfies constraints (1.2)–(1.4)
}

.

We do not place the restrictions (1.5) and (1.6) on α; if the optimization is
over an empty set, the infimum is taken to be +∞. Clearly G > −∞ because
it is the infimum of a strictly convex function over a bounded convex set, the
set being defined by the constraints (1.2)–(1.4).
• Define a partial order on R

K
+ as follows. We say α � α̃ if

l∑
m=1

αm ≥
l∑

m=1

α̃m, l ∈ �1, L�,

with equality when l = L.
This partial order is different from that of majorization (see, for example,
Marshall and Olkin [14]). Loosely speaking, α � α̃ indicates that the com-
ponents for α are lopsided relative to those of α̃. The proposition below says
that lopsidedness increases cost.

Proposition 2.2. The function G satisfies the following properties:
• If α � α̃, then G(α) ≥ G (α̃).
• G is a convex function.

The above results are generalizations of those of Viswanath and Anantharam [28].
Proposition 2.2 extends the one-parameter analysis of Zipkin [30, sect. 4] to the case
of ascending constraints.

Finally, consider minimizing the separable objective function in (1.1) subject to
(1.2), (1.3), and a lower bound constraint

(2.7)
L∑

m=1

ym ≥
K∑

m=1

αm

instead of (1.4). We then have the following result.
Corollary 2.3. If the slopes of the functions gm at 0 are positive, then under

the conditions of Theorem 1, the output of Algorithm 1 minimizes (1.1) subject to the
constraints (1.2), (1.3), and (2.7).

The proofs of the above statements are presented in section 5.

3. Examples. Our first example is from Viswanath and Anantharam [28]. It
evaluates the sum throughput in a multiterminal communication setting. The follow-
ing is a brief description.

Example 1 (vector Gaussian multiple access channel). K power-constrained
transmitters communicate with a common receiver. Transmitter k can transmit at
power at most αk joules per sample. The set of transmitted signals is confined to a
vector space of dimension L. An allocation of power ym along the orthogonal direction
m results in a net throughput of 1

2 log
(
1 + ym/σ2

m

)
in this dimension, where σ2

m is
the corresponding noise variance. Maximize the throughput

L∑
m=1

1
2

log
(

1 +
ym

σ2
m

)
,
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subject to constraints ym ≥ 0, m ∈ �1, L�, (1.3), and (1.4).
The quantities ym, m ∈ �1, L�, are interpreted as the net signal energy per sample

along dimension m. The ascending constraints arise because the transmitters are
confined to signal along a single direction. We refer the interested reader to [28] for
more details.

In the above problem, (am, bm) =
(−σ2

m, +∞) is the domain of gm, where

gm(ym) = −1
2

log
(

1 +
ym

σ2
m

)
,

and we look at the corresponding minimization problem. Setting βm = +∞, it is easy
to verify that gm, m ∈ �1, L�, satisfy all the conditions laid out in section 1:

(3.1) hm =
−1

x + σ2
m

and Hm(θ) = −θ−1 − σ2
m

with domain Em = (−∞, 0). Consequently, θl
1, the solution to (2.3), is given by

(3.2) θl
1 =

−l∑l
m=1 σ2

m +
∑l

m=1 αm

, l ∈ �1, L− 1�,

and

(3.3) ΘL
1 =

−L∑L
m=1 σ2

m +
∑K

m=1 αm

.

Theorem 1 therefore indicates that Algorithm 1 is applicable. It can be easily checked
that Algorithm 1 is equivalent to [28, Algorithm A] for this example. (For those
readers interested in the connection between [28, Algorithm A] and Algorithm 1, the
following holds: if the output of [28, Algorithm A] is μ = (μ1, . . . , μL), then the
output of our algorithm is y = (μ1 − σ2

1 , . . . , μL − σ2
L).)

Remark. The following generalization is claimed in [28, Appendix A.5]. Suppose
fm, m ∈ �1, L, �, are of the form fm(y) = f

(
1 + y/σ2

m

)
, where f : R+ → R is

any continuous, increasing, strictly concave function, and consider maximization of∑L
m=1 fm(ym) subject to (1.2), (1.3), and (1.4). Then ȳ =

(
μ1 − σ2

1 , . . . , μL − σ2
L

)
,

where μ = (μ1, . . . , μL) is the output of [28, Algorithm A], maximizes
∑L

m=1 fm(ym).
This is incorrect as demonstrated by the following counterexample.

Let K = L = 2, α1 = 6, α2 = 12, σ2
1 = 2, σ2

2 = 4, and fm (y) =
(
1+ y/σ2

m

)1/2 for
m = 1, 2. (f(y) = y1/2 is continuous, increasing, strictly concave.) One can further
verify that the output of [28, Algorithm A] is μ = (12, 12), which yields ȳ = (10, 8), a
feasible vector under the constraints y1 ≥ 0, y2 ≥ 0, y1 ≥ 6, y1 + y2 = 18. However,
the output of Algorithm 1 yields the optimum feasible vector y∗ = (14, 4). It is easy
to verify that

3
√

2 = f1(y∗
1) + f2(y∗

2) > f1(ȳ1) + f2(ȳ2) =
√

3(
√

2 + 1),

and therefore ȳ is not the optimum point.
For f(y) = log y, however, [28, Algorithm A] and Algorithm 1 are equivalent,

and therefore their main result that [28, eq. (8)] is maximized by the output of [28,
Algorithm A] is indeed correct.

Our next and final example illustrates the handling of the upper bound constraint.
This is just a special case of Bertsekas [2, Ex. 5.1.2], but it illustrates the use of
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the functions Hm. The example arises in a power optimization problem for sensor
networks (see Zacharias and Sundaresan [29]).

Example 2. Let gm(x) = 1
2x2, m ∈ �1, L�, K = L, αm = 0, m ∈ �1, L − 1�,

αL = α > 0, and βm ∈ (0,∞) for m ∈ �1, L�. Further, order the indices so that
β1 ≤ β2 ≤ · · · ≤ βL. Minimize (1.1) under this setting.

Once again, all conditions outlined in section 1 hold. It is easy to verify that
Hm(θ) = θ ∧ βm. The function

∑l
m=1 Hm is a piecewise linear continuous function

passing through the origin with slope l in (−∞, β1), slope (l − 1) in (β1, β2), and so
on, and zero-slope in (βl, +∞). Clearly θl

1 = 0, l ∈ �1, L − 1�. We assume that ΘL
1

exists, which is equivalent to α ≤ ∑L
m=1 βm. Yet again, Theorem 1 assures us that

Algorithm 1 is applicable.
An application of Algorithm 1 results in the following. Identify the unique k such

that α ∈ [ak, ak+1), where a0 = 0, and

ak := (L − k)βk +
k∑

m=1

βm, k = 1, . . . , L.

The quantity ak denotes the ordinate of the piecewise linear continuous function at
abscissa βk, a location where the slope changes. It is easy to see that ak ≤ ak+1.
Interpolating to find the abscissa when the ordinate is α, we get

ΘL
1 =

α−∑k
m=1 βm

L− k
.

Moreover, y∗
m = Hm

(
ΘL

1

)
= βm for m ∈ �1, k�. For m ∈ �k + 1, L�, the values are

suitably lowered from their upper bounds. Note that this assignment is completed in
just one iteration of Algorithm 1.

4. Computational experiments. In this section we discuss results of some
computational experiments. We used CVX (see [9] and [10]) to solve three further ex-
amples and compared CVX’s performance against that of Algorithm 1.5 CVX used the
core solver SDPT3 to solve the dual problem using a default precision of 1.5 × 10−8.
The number of variables L for each problem is indicated in Table 4.1. Each problem
is parameterized by weights vm ∈ R+ (see descriptions of objective functions below)
and αm, m ∈ �1, L�, that determine the ascending constraints (1.3) and (1.4). All
these parameters were chosen independently and with the uniform probability density
on [0, 1]. The obtained vm, m ∈ �1, L�, were then sorted so that the resulting param-
eters satisfied v1 ≤ v2 ≤ · · · ≤ vm (see fifth remark immediately after description of
Algorithm 1). For each objective function, 30 such random instances of the problem
were chosen and provided to both the SDPT3 solver and Algorithm 1. The mean time
taken (averaged over the 30 instances), the mean number of iterations taken by the
SDPT3 solver, and the mean number of calls to the solver are indicated in Table 4.1
and compared with the mean time and iterations for Algorithm 1.

The first problem is

min
L∑

m=1

vm

1− ym
subject to (1.2), (1.3), and (1.4),

5We used CVX version 1.2 (build 706) and MATLAB version 7.5.0.338 (R2007b). The programs
were run on an Intel Xeon CPU 3.20GHz machine running on SLES 9.0 OS.
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Table 4.1

Performance comparisons.

Objective L SDPT3 Algorithm 1
Time Iter. Calls Time Iter.

∑
m vm/(1 − ym) 500 22.3400 s 27.9 1 0.0013 s 7.1

− ∑
m log(vm + ym) 500 267.3403 s - 5.3 0.0010 s 4.1

∑
m

(
1
4
x4

m + vmxm
)

50 1.6767 s 24.7 1 0.3537 s 13.4

∑
m

(
1
4
x4

m + vmxm
)

150 5.2433 s 29.1 1 7.7187 s 38.6

where in (1.2) we take βm = 1 for all m. It is straightforward to see that (2.3) can be
explicitly solved:

θ =

( ∑
m∈s[l]

√
vm

|s[l]| −∑l
m=i αm

)2

,

where l and i are as defined prior to (2.3). A similar solution holds for (2.6).
The second problem is

min −
L∑

m=1

log(vm + ym) subject to (1.2), (1.3), and (1.4),

where in (1.2) we take βm = +∞ for all m. This problem is equivalent to that
considered in Example 1. The zeros of (2.3) are explicitly solved (cf. (3.2)):

θ =
−|s[l]|∑

m∈s[l] vm +
∑l

m=i αm

,

where l and i are once again as defined prior to (2.3). A similar solution holds once
again for (2.6). Since the log function has to be numerically evaluated, CVX uses
a successive approximation method that requires multiple calls to the solver. This
increases the time taken for CVX to solve the problem. The mean number of calls is
indicated in Table 4.1. Since CVX does not yet report the number of iterations in each
call, this column is left blank in Table 4.1.

The third problem is

min
L∑

m=1

(
1
4
y4

m + vmym

)
subject to (1.2), (1.3), and (1.4),

where in (1.2) we take βm = +∞ for all m. Then we seek a θ that solves (2.3)
rewritten as

∑
m∈s[l]

(θ − vm)
1
3 =

l∑
m=i

αm

with (2.6) rewritten in a similar fashion. We do not know an explicit expression for
the root of this equation unlike for the previous two problems. However, the derivative
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of the function on the left-hand side is easy to find and evaluate explicitly. This was
used in our implementation of a modification of the Newton–Raphson method6 to find
the zeros to within precision 1.5 × 10−8. Cases with 50 variables and 150 variables
are reported in the third and fourth rows of the table.

Table 4.1 clearly shows several orders of magnitude improvement for Algorithm 1
over SDPT3 for our specific convex optimization problem, when the zeros can be explic-
itly found. See the first two rows corresponding to the first and the second problems.
The third problem is a small-sized problem where Algorithm 1 still outperforms SDPT3.
However, in the fourth problem, the worst case number of zeros to be calculated is
large and our implementation performs worse than SDPT3.7

5. Proofs.

5.1. Preliminaries. We first prove some facts on the individual cases.
Lemma 5.1. Suppose that in iteration n, the quantities θ (sn, l), l ∈ �in, jn − 1�,

and Θ (sn) exist. Suppose further that ξn = hz(0) for some z ∈ sn, and Step 3(b) is
executed. Then the following hold:

• The quantities θ (sn+1, l), l ∈ �in+1, jn+1 − 1�, and Θ (sn+1) exist.
• ξn ≥ ξn+1.

Proof. Given that ξn = hz(0) for some z ∈ sn, and Step 3(b) is executed,
we see that sn+1 = sn \ {z}. We may assume sn+1 is nonempty, or equivalently
in+1 ≤ jn+1; otherwise there is nothing to prove. We first prove the existence of
θ (sn+1, l), l ∈ �in+1, jn+1 − 1�.

If z = jn, then sn+1 = sn \ {jn}. Since in+1 = in, jn+1 < jn, or equivalently
jn+1 − 1 < jn − 1, we have sn+1 [l] = sn [l] for l ∈ �in+1, jn+1 − 1�. Therefore, it is
clear that θ (sn+1, l) = θ (sn, l) for l ∈ �in+1, jn+1− 1� because θ (sn+1, l) and θ (sn, l)
are zeros of identical functions for the indicated values of l.

We next consider z = in and z > in.
If z = in, then sn+1 = sn \ {in}. Since in+1 > in, jn+1 = jn, we have in+1 − 1 ∈

�in, jn − 1�. Since Step 3(b) is executed with z = in, we must have ξn = hin(0) ≥
θ (sn, in+1 − 1), and therefore

0 = h−1
in

(hin(0)) = h−1
in

(ξn) ≥ Hin (ξn)
(a)

≥ Hin (θ (sn, in+1 − 1)) =
in+1−1∑
m=in

αm ≥ 0,

where (a) follows because Hin is increasing. Consequently, we have

(5.1)
in+1−1∑
m=in

αm = 0.

When z > in, in+1 = in and (5.1) holds trivially on account of being a sum over an
empty index set. We may therefore write

(5.2)
l∑

m=in+1

αm =
l∑

m=in

αm −
in+1−1∑
m=in

αm =
l∑

m=in

αm, l ∈ �in+1, K�.

6The modification is the following: if the iterations exhibited two consecutive sign changes for
the function, the iterations would continue from the zero of the linear approximation through the
last two points.

7The gains suggested in Table 4.1 are suggestive only of what one might expect since no special
effort was made to optimize the performances of SDPT3 or Algorithm 1.
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If in+1 ≤ l < z, we have sn+1[l] = sn[l]. On account of (5.2), θ(sn+1, l) and
θ(sn, l) are zeros of identical functions and thus

(5.3) θ(sn+1, l) = θ(sn, l), in+1 ≤ l < z,

thereby resolving the existence question for such θ(sn+1, l).
For l ∈ �z, jn+1 − 1�, we observe that ξn = hz(0) ≥ θ(sn, l) and the increasing

nature of Hz yield

(5.4) Hz(θ(sn, l)) ≤ Hz(hz(0)) ≤ h−1
z (hz(0)) = 0.

Using this and (5.2), we get

l∑
m=in+1

αm =
l∑

m=in

αm

=
∑

m∈sn[l]

Hm (θ (sn, l)) (from definition of θ (sn, l))

=
∑

m∈sn+1[l]

Hm (θ (sn, l)) + Hz (θ (sn, l))

≤
∑

m∈sn+1[l]

Hm (θ (sn, l)) (from (5.4)).(5.5)

So we may take θ = θ (sn, l) in (2.4). On the lower side, we may simply use θ = h (0).
θ (sn, l) therefore exists and

(5.6) h (0) ≤ θ (sn+1, l) ≤ θ (sn, l) .

We have thus verified the existence of θ(sn+1, l) for all l ∈ �in+1, jn+1 − 1�.
Following the same argument leading to (5.5) with

∑K
m=in+1

αm and sn instead

of
∑l

m=in+1
αm and sn[l], respectively, establishes the existence of Θ(sn+1) and that

(5.7) h (0) ≤ Θ (sn+1) ≤ Θ (sn) .

This establishes the existence part of the lemma.
To establish ξn ≥ ξn+1, we simply observe that ξn is at least as large as all the

candidates that determine ξn+1. Indeed, ξn = hz(0) ≥ hl(0) for l ∈ sn \ {z} = sn+1.
Next ξn ≥ θ (sn, l) ≥ θ (sn+1, l), l ∈ �in+1, jn+1 − 1�, follows from the right-hand
side inequality of (5.6). Finally, using the right-hand side inequality of (5.7), ξn >
Θ (sn) ≥ Θ (sn+1). This completes the proof of the lemma.

Lemma 5.2. Suppose that in iteration n, the quantities θ (sn, l), l ∈ �in, jn − 1�,
and Θ (sn) exist. Suppose further that ξn = θ (sn, t) for some t ∈ �in, jn − 1�, and
Step 3(c) is executed. Then the following hold:

• y∗
m ∈ [0, βm], m ∈ sn [t].

• ∑l
m=in

y∗
m ≥

∑l
m=in

αm, l ∈ �in, t�, with equality when l = t.
• The quantities θ (sn+1, l), l ∈ �in+1, jn+1 − 1�, and Θ (sn+1) exist.
• ξn ≥ ξn+1.

Proof. Note that in this case t is chosen to be the largest one in �in, jn − 1� that
satisfies ξn = θ (sn, t). Step 3(c) is executed; therefore θ (sn, t) ≥ hm(0) for m ∈ sn [t].
The assignment for y∗

m in the algorithm satisfies

y∗
m = Hm (θ (sn, t)) ≥ Hm (hm(0)) = h−1

m (hm(0)) ∧ βm = 0 ∧ βm = 0.
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That y∗
m ≤ βm is obvious from the definition of Hm. This proves the upper and lower

bound constraints on y∗
m.

We now prove that the ascending constraints (with the sum starting from in) hold
for l ∈ �in, t�. For m ∈ �in, l� \ sn [l], we have cm = B, and from the assignment in
Step 3(b), y∗

m = 0. Thus, it is sufficient to prove

∑
m∈sn[l]

y∗
m ≥

l∑
m=in

αm

for l ∈ �in, t�. Indeed, θ (sn, t) ≥ θ (sn, l) and the increasing property of Hm imply

∑
m∈sn[l]

y∗
m =

∑
m∈sn[l]

Hm (θ (sn, t)) ≥
∑

m∈sn[l]

Hm (θ (sn, l)) =
l∑

m=in

αm,

with equality when l = t, and the second statement is proved.
We next consider the existence of θ (sn+1, l). We claim that in+1 = t + 1. As-

suming the contrary, i.e., in+1 > t + 1, implies sn [t + 1] = sn [t]. From the positivity
of the components of α, we have

∑
m∈sn[t]

Hm (θ (sn, t)) =
t∑

m=in

αm ≤
t+1∑

m=in

αm =
∑

m∈sn[t+1]

Hm (θ (sn, t + 1))

=
∑

m∈sn[t]

Hm (θ (sn, t + 1)) .

From the increasing nature of Hm, we have θ (sn, t+1) ≥ θ (sn, t), thus contradicting
the maximality of θ (sn, t) and the choice of t. This proves the claim.

We now identify θ and θ to prove the existence of θ (sn+1, l). Fix l ∈ �in+1,
jn+1 − 1�. We simply set θ = h (0) in (2.4). Moreover,

l∑
m=in+1

αm =
l∑

m=in

αm −
t∑

m=in

αm (t = in+1 − 1)

=
∑

m∈sn[l]

Hm (θ (sn, l))−
∑

m∈sn[t]

Hm (θ (sn, t)) (by definition)

≤
∑

m∈sn[l]

Hm (θ (sn, l))−
∑

m∈sn[t]

Hm (θ (sn, l)) (because Hm is increasing)

=
∑

m∈sn+1[l]

Hm (θ (sn, l)) ,

and therefore we may set θ = θ (sn, l) in (2.4). θ (sn+1, l) therefore exists and

(5.8) h (0) ≤ θ (sn+1, l) ≤ θ (sn, l) .

The same argument (mutatis mutandis to account for the sum of αm up to K) estab-
lishes the existence of Θ (sn+1) and that

(5.9) h (0) ≤ Θ (sn+1) ≤ Θ (sn) .
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Finally, to show ξn ≥ ξn+1, observe that ξn ≥ hl(0), l ∈ sn+1, ξn ≥ Θ (sn) ≥ Θ (sn+1),
and ξn ≥ θ (sn, l) ≥ θ (sn+1, l), l ∈ �in+1, jn+1 − 1�. The last two facts follow from
(5.9) and (5.8). So ξn is at least as large as all the candidates that determine ξn+1,
i.e., ξn ≥ ξn+1, and the proof is complete.

Lemma 5.3. Suppose that in iteration n, the quantities θ (sn, l), l ∈ �in, jn − 1�,
and Θ (sn) exist. Suppose further that ξn = Θ (sn). Then the following hold:

• y∗
m ∈ [0, βm], m ∈ sn.

• ∑l
m=in

y∗
m ≥

∑l
m=in

αm, l ∈ �in, jn�, with equality when l = jn.
Proof. Under the hypotheses, Step 3(a) is executed. The proofs of the statements

are identical to the proofs of the first two parts of Lemma 5.2 and are omitted.
Proposition 5.4. If θ (�1, L�, l), l ∈ �1, L − 1�, and Θ (�1, L�) exist, then the

following statements hold:
• For every iteration step n, with sn nonempty, the quantities Θ (sn) and

θ (sn, l), l ∈ �in, jn − 1�, exist.
• Algorithm 1 terminates in N ≤ L steps.
• The output y∗ of Algorithm 1 is feasible.
• ξ1 ≥ ξ2 ≥ · · · ≥ ξN .
• In iteration N , Step 3(a) is executed.

Proof. The key issue is the existence of θ (sn, l) and Θ (sn) in Step 3 of each
iteration. The hypothesis of this proposition resolves the issue for n = 1. Lemmas
5.1, 5.2, and 5.3 resolve the issue for subsequent iterations via induction. The first
statement follows.

At least one variable is set in every iteration. The algorithm thus runs to com-
pletion in N ≤ L iterations, and the second statement holds.

The third and fourth statements also follow from Lemmas 5.1, 5.2, and 5.3 and
induction.

We now argue that Step 3(a) is executed in the last iteration. If this is not the
case, the last iteration must be Step 3(b). This implies sN = {jN} (= {iN}) and
hjN (0) > Θ (sN ). The latter inequality and the definition of Θ (sN ) yield

K∑
m=jN

αm = HjN (Θ (sN )) ≤ h−1
jN

(Θ (sN )) ≤ h−1
jN

(hjN (0)) = 0,

contradicting our assumption (1.6) that
∑K

m=L αm > 0.

5.2. Proof of Theorem 1. Proposition 5.4 implies the first two statements of
Theorem 1. We now proceed to show the optimality of y∗ to complete the proof of
Theorem 1.

We use the Karush–Kuhn–Tucker (KKT) conditions (see, for example, [2, sect. 3.3])
to show that the vector put out by the algorithm is a stationary point of a Lagrangian
function with appropriately chosen Lagrange multipliers. The Lagrangian function for
the problem is

L∑
m=1

gm(ym) +
L∑

m=1

λ(1)
m (−ym) +

L∑
m=1

λ(2)
m (ym − βm)

+
L−1∑
l=1

λ
(3)
l

(
−

l∑
m=1

ym +
l∑

m=1

αm

)
+ μ

(
−

L∑
m=1

ym +
K∑

m=1

αm

)
,(5.10)
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where λ
(1)
m is the Lagrange multiplier that relaxes the positivity constraint −ym ≤ 0,

λ
(2)
m relaxes the upper bound constraint ym − βm ≤ 0, λ

(3)
m relaxes the ascending

constraint (1.3), and μ relaxes the equality constraint (1.4). The KKT necessary and
sufficient conditions for optimality of this convex optimization problem are given by

λ(1)
m ym = 0, m ∈ �1, L�,(5.11)

λ(2)
m (ym − βm) = 0, m ∈ �1, L�,(5.12)

λ
(3)
l

(
l∑

m=1

ym −
l∑

m=1

αm

)
= 0, l ∈ �1, L− 1�,(5.13)

λ(1)
m ≥ 0, λ(2)

m ≥ 0, m ∈ �1, L�, and λ
(3)
l ≥ 0, l ∈ �1, L− 1�,(5.14)

hm(ym)− λ(1)
m + λ(2)

m −
L−1∑
l=m

λ
(3)
l − μ = 0, m ∈ �1, L�.(5.15)

Conditions (5.11), (5.12), and (5.13) are the complementary slackness conditions,
(5.14) are the positivity conditions, and (5.15) identifies a stationary point for the
Lagrangian function. We now choose appropriate values for the Lagrange multipliers
and verify the KKT conditions.

First, let

(5.16) λ(1)
m =

⎧⎨
⎩

ξpm − ξN if cm = B and m > jN ,
ξpm − ξtm if cm = B and m < jN ,
0 otherwise,

where

(5.17) tm := min {pl : l ∈ �m, L�, pl > pm, cl ∈ {C∗,A∗}} .
The last iteration is always via Step 3(a) (Proposition 5.4). Thus, when cm = B

and m < jN , there is a later iteration that executes Step 3(a) which implies that the
set in (5.17) is nonempty and that the assignment (5.16) is well-defined. Recall that
pm is the iteration number in which variable ym was set, and that cm = B whenever
Step 3(b) is executed, i.e., y∗

m = 0. From the assignment in (5.16), λ
(1)
m �= 0 implies

that cm = B and therefore y∗
m = 0. Thus the complementary slackness condition

(5.11) is satisfied for m ∈ �1, L�.
Second, let

(5.18) λ(2)
m =

{
0 if cm = B,
ξpm − hm (Hm (ξpm)) otherwise.

If λ
(2)
m �= 0, then from (5.18) we have ξpm �= hm (Hm (ξpm)). From the strictly increas-

ing property of hm and the definition of Hm, we have
(5.19)
hm (Hm (ξpm)) = hm

(
h−1

m (ξpm)∧βm

)
= hm

(
h−1

m (ξpm)
)∧hm (βm) = ξpm ∧hm (βm) ,

so that hm (Hm (ξpm)) �= ξpm implies that Hm (ξpm) must have saturated to βm, i.e.,
y∗

m = Hm (ξpm) = βm. The complementary slackness condition (5.12) is therefore
fulfilled.

Third, for m ∈ �1, L− 1� let

(5.20) λ(3)
m =

{
ξpm − ξtm if cm = C∗,
0 otherwise,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVEX OPTIMIZATION WITH ASCENDING CONSTRAINTS 1201

where tm is defined via (5.17). λ
(3)
m is well-defined because cm = C∗ implies that there

is a later iteration that executes Step 3(a) and that the set in (5.17) is nonempty.
Suppose λ

(3)
m �= 0. Then cm = C∗, an asterisked assignment. The second statement of

Lemma 5.2 therefore ensures that the ascending constraint is satisfied with equality
for this m. The complementary slackness condition (5.13) is thus fulfilled for m ∈
�1, L− 1�.

The assignment of λ
(3)
m in (5.20) can be equivalently expressed as

(5.21) λ(3)
m =

{ ∑tm−1
n=pm

ξn − ξn+1 if cm = C∗,
0 otherwise,

where tm is given by (5.17). This will be useful in verifying (5.15).
Finally, we set μ = ξN .
The Lagrange multiplier assignments in (5.16), (5.18), and (5.20) are positive.

Indeed, the positivity in (5.16) and (5.20) follows from the monotonicity property
ξn ≥ ξn+1, n ∈ �1, N − 1� (Proposition 5.4). The positivity of λ

(2)
m follows from

hm (Hm (ξpm)) ≤ hm

(
h−1

m (ξpm)
)

= ξpm .

All that remains is to verify (5.15). To do this, first consider m > jN . Then the
assignments y∗

m = 0 and y∗
l = 0, l ∈ �m + 1, L − 1�, are via Step 3(b); therefore

ξpl
= hl(0) and cl = B. The latter implies λ

(1)
m = ξpm − ξN , λ

(2)
m = 0, and λ

(3)
l = 0 for

l ∈ �m, L− 1�. Substitution of these assignments in (5.15) yields

hm(0)− λ(1)
m + λ(2)

m −
L−1∑
l=m

λ
(3)
l − μ = ξpm − (ξpm − ξN ) + 0− 0− ξN = 0.

Now consider m ∈ �1, jN � and cm = B. Substitution of (5.16), (5.18), and (5.20)
in (5.15) yields

hm (y∗
m)− λ(1)

m + λ(2)
m −

L−1∑
l=m

λ
(3)
l − μ

= ξpm − (ξpm − ξtm) + 0−
L−1∑
l=m

λ
(3)
l − ξN

= ξtm − ξN −
L−1∑
l=m

λ
(3)
l(5.22)

= ξtm − ξN −
N−1∑
n=tm

(ξn − ξn+1)(5.23)

= ξtm − ξN − (ξtm − ξN )
= 0.

In the above sequence of inequalities, (5.23) holds because of the following. In (5.22),
the summation over l has only one nonzero entry per iteration, i.e., whenever cl = C∗.
We may therefore sum over the iteration index n instead of the variable index l. Iter-
ations tm to N−1 involve the execution of either Step 3(b) or Step 3(c). Substitution
of (5.21) in (5.22) then results in (5.23).
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Suppose m ∈ �1, jN � and cm ∈ {C, C∗}. Substitution of (5.16), (5.18), and (5.20)
in (5.15) yields

hm (y∗
m)− λ(1)

m + λ(2)
m −

L−1∑
l=m

λ
(3)
l − μ

= hm (Hm (ξpm))− 0 + ξpm − hm (Hm (ξpm))−
L−1∑
l=m

λ
(3)
l − ξN

= ξpm − ξN −
L−1∑
l=m

λ
(3)
l

= ξpm − ξN −
N−1∑
n=pm

(ξn − ξn+1) (follows from substitution of (5.21))

= 0.

Last, consider m ∈ �1, jN � and pm = N ; i.e., ym is assigned in the last iteration.
From Proposition 5.4, Step 3(a) is executed in this iteration, and therefore cm ∈
{A,A∗}. Then

hm (ym)− λ(1)
m + λ(2)

m −
L−1∑
l=m

λ
(3)
l − μ

= hm (Hm (ξpm))− 0 + (ξN − hm (Hm (ξpm)))− 0− ξN = 0.

The output y∗ of Algorithm 1 and the Lagrange multiplier assignments satisfy
the KKT conditions; y∗ therefore minimizes (1.1), and the proof of Theorem 1 is
complete.

5.3. Proof of Corollary 2.1. We begin by arguing that if H1 ≥ H2 ≥ · · · ≥ HL,
then slopes at the origin are ordered as

(5.24) h1(0) ≤ h2(0) ≤ · · · ≤ hL(0).

To see this, Let h (0) = hl(0) for some l. By the ordering of Hm we have

β1 > 0 = H1(h1(0)) ≥ H1(hl(0)) ≥ Hl(hl(0)) = 0,

implying that H1(hl(0)) = H1(h (0)) = 0. This and the strictly increasing nature of
H1 prior to saturation imply that h1(0) = h (0).

Next we show hm+1(0) ≥ hm(0). Assuming the contrary, we get hm+1(0) ∈
[h1(0), hm(0)) and therefore hm+1(0) ∈ Em. Proceeding as before,

βm > 0 = Hm(hm(0)) ≥ Hm(hm+1(0)) ≥ Hm+1(hm+1(0)) = 0,

implying that Hm(hm(0)) = Hm(hm+1(0)) = 0. Again, the strictly increasing nature
of Hm prior to saturation implies that hm+1(0) = hm(0), a contradiction. We therefore
conclude that hm(0) ≤ hm+1(0), m ∈ �1, L− 1�, and (5.24) holds.

The assignments in Algorithm 1 are

y∗
m =

{
Hm (ξpm) , m ∈ �1, jN �,
0, m ∈ �jN + 1, L�.
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Moreover, when the slopes are ordered as in (5.24), cm �= B for i ∈ �1, jN �; i.e., only
Steps 3(a) and 3(c) can set variables y1, · · · , yjN . Since these steps set the lower valued
indices first, we have pm ≤ pm+1, m ∈ �1, jN −1�, and therefore ξpm ≥ ξpm+1 ≥ h1(0).
Thus

y∗
m = Hm(ξpm) ≥ Hm(ξpm+1) ≥ Hm+1(ξpm+1) = y∗

m+1, m ∈ �1, jN − 1�.

For m ≥ jN + 1, the optimum values are 0. This completes the proof.

5.4. Proof of Proposition 2.2. Recall that here K = L. Define

L(α) :=
{
y ∈ R

L : y satisfies (1.2)–(1.4)
}

.

L(α) is convex, but it may not be closed because the domains (am, bm) may not be
closed. From the ascending constraints (1.3) and (1.4), it is clear that if α � α̃, then
L(α) ⊆ L (α̃), and therefore G(α) ≥ G (α̃). The first statement is therefore proved.

To show convexity, consider α, α̃ ∈ R
L
+. Fix λ ∈ (0, 1). If either of L(α) or L (α̃)

is empty, there is nothing to prove. We may therefore assume both are nonempty
and therefore G(α) and G (α̃) are finite. For every ε > 0, there exist y ∈ L(α) and
ỹ ∈ L (α̃) satisfying G(y) < G(α) + ε and G (ỹ) < G (α̃) + ε. The linearity of the
constraints implies λy + (1− λ)ỹ ∈ L (λα + (1 − λ)α̃). The convexity of G implies

G (λα + (1 − λ)α̃) ≤ G (λy + (1− λ)ỹ)
≤ λG(y) + (1− λ)G (ỹ)
≤ λG(α) + (1− λ)G (α̃) + ε.

Since ε is arbitrary, the convexity of G is established.

5.5. Proof of Corollary 2.3. Since the output y∗ of Algorithm 1 satisfies (1.2),
(1.3), and (2.7) with equality, it is feasible. To prove the optimality of y∗, apart from
the conditions (5.11)–(5.15), which hold for the assignments under Theorem 1, we
need only verify that μ = ξN ≥ 0. But this is easily verified because in iteration N ,
ξN ≥ hjN (0) ≥ h (0) ≥ 0, by hypothesis.
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