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Abstract— Mechanisms for allocation of one or many goods
to a number of agents are proposed in this paper. The goal
is to propose mechanisms in a general setting where the goods
might be divisible or indivisible. A mechanism in the Groves
class that is dominant strategy incentive compatible and almost
budget balanced is obtained. In the case of one or more indivisible
goods, the proposed mechanisms fall back to the mechanisms
proposed independently by Moulin and by Guo & Conitzer. The
proposed mechanisms are characterised by a linear redistribution
or rebate function included in the payments. The proposed worst
case optimal mechanism minimises the worst case ratio of budget
surplus to efficient surplus. An optimal-in-expectation mechanism
that minimizes the ratio of expected budget surplus to expected
efficient surplus is also proposed and compared with the worst
case optimal mechanism. Numerical solutions for the coefficients
of linear rebate function, worst case efficiency loss, and expected
efficiency loss are obtained. An example motivating the extension
to the divisible case is resource allocation in the uplink of a
wireless communication system. This is briefly discussed.

I. INTRODUCTION

Efficient resource allocation over a network often requires
decision making based on knowledge of private information
held by end agents. Strategic agents may misrepresent their
privately held information in the interest of maximising their
own benefit at the expense of overall system efficiency [1]. A
socially optimal allocation should maximise efficiency (allo-
cate so as maximise sum of all agents’ utilities). In the Groves
class of mechanisms [2], a social planner knows the valuation
functions of the agents, allocates the goods (divisible or
indivisible), and collects payments from agents. The payments
affect the utilities of the agents and are constructed so that
it is in the best interest of agents to reveal truthfully their
privately held information. These mechanisms achieve alloca-
tive efficiency and are strategy-proof . The most celebrated
mechanism in this class is the Vickrey-Clarke-Groves (VCG)
mechanism (see [3]-[4]) . The VCG mechanism maximises the
total payments from the agents to the social planner. While
this is indeed of interest in situations where an auctioneer
sells his goods to agents, our interest is in scenarios where
the resources have no owner and the social planner unlike
the auctioneer desires no surplus (budget-balance). The well-
known Green-Laffont impossibility theorem [5], however, says

OThis work is supported by Department of Science and Technology,
Government of India.

978-1-4244-5871-4/09/$26.00 ©2009 IEEE

Rajesh Sundaresan
Dept. of ECE
Indian Institute of Science
Bangalore 560012, India
rajeshs @ece.iisc.ernet.in

that there is no mechanism in a quasi-linear environment
that is strategy-proof, achieves allocative efficiency, and is
budget-balanced. Moulin [6] and Guo & Conitzer [7] proposed
mechanisms within the Groves class for allocation of one or
more homogeneous indivisible goods. Their mechanisms are
almost budget-balanced. The purpose of this paper is to extend
their mechanisms to the more general situation when goods are
divisible.

Our interest in the above problem stemmed from a resource
allocation problem on the uplink multiple access channel [8].
A base station has one or more channels that it can allocate
to associated mobiles. Mobiles with larger residual packet
queue lengths value the channel more than those with smaller
queue lengths. However, queue lengths information reside
privately with mobiles and strategic behaviour could jeopardise
system efficiency. In this setting, mobiles are the agents and
base station the social planner. The channels can be time-
shared and allocations can be randomised so that we may take
the goods (channels) to be perfectly divisible. In reality, no
monetary exchange takes place in this setting. Price & Javidi
[8] consider modulating allocations on another independent
link in lieu of payments. However, one may envisage reduced
allocations on the uplink to adjust for payments. Therefore,
any residual surplus is unutilised bandwidth and is undesirable.
While this resource allocation problem motivated our study
of almost budget-balanced, allocative efficient, strategy-proof
mechanisms, our study has wider applicability.

Moulin’s mechanism [6] for p homogeneous indivisible
goods (p < N, the number of agents) may be interpreted
as follows. The agents make the VCG payments. The social
planner then provides rebates to the agents. The mechanism
remains allocative efficient, individually rational, and strategy-
proof. Moreover, it minimises the worst (maximum) ratio of
budget surplus to efficient surplus (sum of valuations) subject
to the constraint that it is weakly budget balanced. Guo &
Conitzer[7] showed that the same mechanism maximises the
worst-case (minimum) rebate redistribution fraction relative
to the VCG payments. The optimal rebate for a particular
agent is linear in the valuations of all other agents. Gujar &
Narahari [9] showed optimality of linear redistributions for p
heterogeneous indivisible goods when agents’ valuations of
each of the p goods (each valuation is a p-tuple) have scaling
based correlation. That is, there is a common vector v such that
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any agent ¢’s valuation vector is ;v where 6; is a scalar private
to agent ¢. We consider a more general setting than those
considered by Moulin[6],Guo & Conitzer [7] and Gujar &
Narahari [9]. The valuation function is of the form v; = 6; f(.)
where f(.) is a homogeneous function common to all agents.
Also, the goods can be infinitely divisible.

The assumption that the valuation function is known to
the social planner is often unrealistic. Reporting the entire
valuation function is a considerable communication burden
to the system [10]. Hence, mechanisms for allocation of a
divisible good based on agents’ scalar bids alone are of
interest. If the mechanism allocates based only on the reported
scalar bids, then dominant strategy implementation is not
possible, and we ought to study Nash equilibria instead [11].
Yang and Hajek [12] proposed a VCG-Kelly mechanism by
combining the one dimensional bid idea of Kelly, Maulloo &
Tan [13] with the VCG mechanism. The Nash Equilibrium
Point (NEP) is shown to be unique and globally stable. The
VCG-Kelly mechanism is studied in [12] for the case of a
network rate allocation problem. Our proposed almost budget
balanced mechanism can be extended to this network setting
too.

The rest of the paper is organized as follows. Section
IT describes the system model and formulates the problem.
Section III discusses the worst-case optimal mechanism. It also
describes an approach to solve the optimisation problem under
the linear redistribution setting. Section IV studies the optimal-
in-expectation mechanism. Section V describes simulation
settings, assumptions, and presents simulation results. Section
VI is a concluding summary of the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

There is a set S = {1,2,..., N} of N agents. There is
one object which may be divisible or indivisible and it is
to be allocated to these agents. The type of agent i, which
is the private information of that agent, is §; € RT. Two
examples of type are: (1) the queue length of each agent in
the uplink of a wireless communication system, and (2) the
amount agents are ready to pay per unit time on a link in a
communication network. The profile of types of all the agents
is an N x 1 vector § € O given by [0; 0 On]7. Let
w € O be the profile of reported values of agents. A dominant
strategy incentive compatible (DSIC) mechanism should make
the dominant strategy of agents to reveal their type truthfully,
i.e., w = 6. Since we are considering mechanisms in the class
of Groves mechanisms, which are DSIC, we may assume that
all agents report their true types.

Let a be an N x 1 allocation vector taking values in A. The
valuation of agent ¢ is taken to be a function of the allocation
and the type of agent ¢ and is denoted by v;(a;, 6;). Let a* be
the socially optimal allocation, i.e.,

a*(0) = arg max > vilai, 6:).
i€es
Let a_; € A_; denote N x 1 allocation vector when the i*"
agent is out of contention, i.e., not considered for allocation.

So, a—;; = 0. Let a*, be the optimal allocation when ith

agent is out of contention, i.e.,

a*,(0-;) = arg max Zvj (a—ij,05).
JF#i
Consider the class of Groves mechanisms with rebate func-
tions [2]. The payment p;(6) for the i** agent under this
mechanism is as follows:

pi(0) = D vilat;(6-0).6;)
J#i
=D ui(a;(0).0) =m0, (D)
J#i

where the first two terms correspond to the VCG mechanism
payment, and 7;(f_;) is the rebate for agent i. The rebate
function essentially redistributes some of the VCG payment
back to the agents. Note that the rebate is only a function of
the types of other agents. The VCG payment for the i*" agent
is the difference in the sum of valuations of the other agents
caused by the addition of the i*" agent to the system.

The payments are restricted to a class that satisfy following

constraints.

1) Feasibility (F) or Weak Budget Balanced: This property
ensures that the mechanism need not be subsidized
by external supply of money. There is a net payment
(budget surplus) from the agents to the mechanism.

> pi6) > 0. )
=
Substitution of equation (1) in equation (2) yields

Z ri(0—;) < Z Z vi(aZ; ;(0-:),0;)

i€S i€S j#i
—(N - 1)2%‘(@?(9)791')- (3)
€S
Let the right hand side in equation (3) be denoted as

pvea(0).

2) Individual Rationality (or) Voluntary Participation (VP):
This property ensures that the utility of all agents should
be greater than or equal to the utility they would get by
dropping out of the mechanism. The utility agents would
get by not participating is usually taken to be zero. Thus

Ui(af(b‘), 6‘1) — pi(é) >0, Vi e N. )
Substitution of equation (1) yields
> wi(al(6),6;) > wilat; ;(0-4),6;)
jes j#i
+ 7’1'(971') >0, Vi € N,

or, equivalently

ri(6-) > > wilar; ;(0-:),6;)
i
= vi(a;(0),0;), Vie N.  (5)

JES
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Let the right hand side in equation (5) be denoted as
Adding all the N constraints in equation (5) and using
equation (3), we get

pvea(®) =D vila}(0),0:) <> ri(0-) < proa(0).
€S i€es
3) Anonymity: The mechanism treats all the agents the
same, i.e., if agents’ valuations are permuted, then so
are the rebates.

Now, the problem is to find a payment which satisfies the
above constraints, from within the class of Groves mecha-
nisms, such that the resulting mechanism is almost budget
balanced. We now make this precise.

III. WORST-CASE OPTIMAL MECHANISM

Moulin proposed a mechanism in [6] that minimizes the
worst case efficiency loss. Let the efficient surplus be o, () =
> icgvi(a;(0),0;). The worst case efficiency loss is the
maximum ratio of budget surplus to the efficient surplus over
all possible 6, given by

> pi(0)
L(N) = . 6
(N) = max =" (6)

The problem is to find a mechanism defined by the payments
that minimises L(N) subject to the constraints given in
equations (3) and (5), i.e.,

. Zl pi(e)
min max ———=

p(6) 6 oy(0)

or, equivalently

pvea(0) — >, ri(0-i)
o, (0)

This optimal mechanism has been derived in [6] for the
case when the goods are indivisible. The same mechanism
has also been independently found in [7] using only linear
redistribution schemes. In this paper, we propose a solution
for the case when the goods are divisible.

min max
ro9

@)

A. Linear redistribution mechanism

We restrict attention to the following form of linear re-
distribution schemes. Let T(a_;,0_;) denote the vector of
valuations of all agents except the i*" agent when allocation
is a_; and types are 6_,;. It is a column vector with N — 1
elements which are ordered in ascending order of agent index.

Define
Z E(CL,Z', 9,1)

a_;€A_;

m;(0—;) =

to be the column vector whose elements are sum of valuations
obtained from all possible allocations without the i*" agent.
The summation in the above equation becomes an integral in
the divisible case and is given by

Let m;(6_;) be made of components of 7;(6_;) ordered in
descending order of values. The rebate is a linear combination
of the m;(6_;) and is given by

T‘i(e_i) = ct.mi(H_i), (9)

where ¢ = [c1,¢ca,...,en_1]t is coefficient vector of N — 1
elements.
We may thus state the optimisation problem for the linear
redistribution scheme using equations (3), (5), (7) and (9) as:
Problem (P):

pvea(d) =32, ct.mi(0-;)

min max 70 (0) = mcin D(e)
subject to

1) Y, chmi(0-;) < pvea(0), V6,

2) ct.mi(G,i) > nl(t?), Vie N, Y 6.
The objective function ® is a convex function since it is a
maximum over a family of affine functions with coefficients
parametrized by 6 € ©. In constraint 1, let C1(0) be a set
of feasible coefficients for a given value of . This defines
a half plane which is a convex set. Let Cy = [, C1(f). The
intersection of half planes is again convex. Thus C} is a convex
set. In constraint 2, let C>(#) be a set of feasible coefficients
for given value of 0. Let Co = ﬂe C3(0). Similarly, Cy is
also a convex set. Let C' = C4 (") C be the set of coefficients
which satisfies both constraints. Then, C is also a convex set.
Thus Problem P is a convex optimisation problem.

The problem P can be rewritten as a new minimisation
problem by introducing one additional constraint as,

(10)

min

S L(N),

subject to
1) >, cmi(0-;) < pvea(0), V0,
2) ct.mi(G,i) > nl(t?), Vie N, V0,
3) An additional constraint:
pvea(®) =32, cfomi(0_;)
oy (0)

< L(N), ¥ 0,

or, equivalently

> e mi(0-i) + L(N)ow(0) > pvea(6), ¥ 0. (11)
We next restrict attention to valuation of the " agent
of the form v; = 6;f(a;), where f(-) is a differentiable
nondecreasing concave function over ®1 with f(0) = 0.

The case of allocation of p homogeneous indivisible goods
to N agents as considered by Moulin [6] and Guo & Conitzer
[7] is a special case of the above valuation function and the
allocation set. Indeed, let f(z) =2 V 2 € ®T and A is such
that . a; = 1 . In this case, the above optimisation problem
can be reduced to the linear program solved by them. Another
interesting case is when f(-) is linear in T and A is such

— — that Y. a; = p. Then all the p goods will be allocated to the
(0_;) = _i,0_;)da_;. 8 v . . . .
mi(0-:) /aieAi v(a )da ®) agent having the highest value of 6. This case will essentially
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reduce to the allocation of one indivisible good to N agents
as solved in [6] and [7].

Consider now the allocation of a single divisible good to NV
agents. The optimal allocation solves

a”(f) = arg ?eafz 0: f(ai)-
From equation (8), the 5 term of 71 (6_1) will be

/ 0;f(a;) da—q o< Hj/ f(a;).da; < 0;.
A_q Aj

Due to symmetry, we have

mi(0-;) = (61 02 0ic1 Oiy1 - ON).
We now assume without loss of generality that
0, > 0 > > 0Oy, and therefore m;(0_;) =
(S 0;—1 0;41 ---0n)T. The rebate function may
now be written as
61
02
TZ(Q,Z') = Ct * 91',1 (12)
Oit1
On
Using equation (12), problem P becomes:
i L(N 13
Join () (13)
subject to,
N-1

D > (i + (N —i)8;) < pvea(®), ¥ 0,

=1

2) ri(0_;) >ni(0), VO, Vie N,
N-1

3) > ci(i0i1+(N—=i)0;)+L(N)ow(0) > pvoa(6),V 6.
i=1

Let e, = (1,...1,0,...,0) with k consecutive 1’s. Putting

0 = e1, we get pyog(f) = 0 and n;(0) = 0 Vi > 2.
Therefore, using constraint 1, we get (N — 1)c; < 0. Using
constraint 2, we get ro(0_2) = ¢ > 0. Thus ¢; = 0. The
following lemma is useful in simplifying constraint 2.

Lemma 1: The following system of inequalities are equiva-
lent.

(a) 7’1'(9,
k
Y i >0, VEk=2,3,.,N-1

i)>mni(0), Vo VieN

1=2

Proof: (a) = (b): The definition of n;(#) in the right-hand
side of equation (5) and the form of the valuation function
(o (ai, 91) = Hzf(az) y1elds

The last inequality is because a* ; is inefficient allocation
when compared with a*(6) when all the N agents are active.
Next the rebates are given by,
-+ en_10nN.

ri(0_i) = cabla + -+ ci10i 1 + cifip1 + -

Consider 8 = e, for k =2,3,..., N — 1. We then have

k
Tkt1(0—(k11)) Zcz
1=2
and
N
n41(0 Z 0; F(a (rn);(0— (i) — Y 05 f(a}(6))
J#k+1 Jj=1

k
=D S0 () (O—r1)

Jj=1

k
=Y fla;
j=1
=0

because a*_(kﬂ)(G_(kH)) = a*(0) as a consequence of the
fact that 9—(k+1) =0 = eg.

Putting these together, Zf ¢ >0Vk=2,3,. -1

b) = (a) From Lemma 1 proved by Guo & Comtzer in
7] 1fz ,ci > 0forall k=2,3,...,N —1 then, caf2 +

-+ Ci— 16‘1 1+ ¢ibig1+ - +envo10n > 0 for all 67 >

92 >03--- > 0y. Consequently r;(0_;) > 0V i € N and the
reverse implication follows from equation 14. This proves the
lemma.

Problem P therefore becomes

Cayens 521,11,1:(1\7) L(N) (15
subject to
N—-1
D Y el + (N —i)bi) < pvoa(6), ¥ 6,
z;?
2) > >0, Vk=23,..,N-1,
2
3) > (i1 +(N=i)0;)+L(N)ow(6) > pvoc(6),V 6.
1=2

The above convex optimisation problem is numerically
solved to obtain the optimal coefficients of the linear rebate
function. The simulation results are studied in section 5.

IV. OPTIMAL-IN-EXPECTATION MECHANISM

In some scenarios, the worst case # profiles may not occur
very often. One may wish to minimize the efficiency loss in
an expected sense. Thus, we design another mechanism in the

N
Z 6, fla*, ; Z )<0. (14) class of Groves mechanisms which is optimal in expectation.
i j=1 The prior distribution over the agents’ types are assumed to be
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known and the objective is to minimise the expected efficiency
loss given by

E pvcc(9)—zri(9—i)1
i=1 ’ (16)
E Zvi(a;(e),ei)]
€S

subject to the same constraints (F and VP) as in the worst case
problem. By using the same form of linear rebate function
as proposed above, the objective function becomes (for all

0y >0, >--->0N_1> 0y and variables c3, - ,cn_1)
N-1
E [pvcg(@)] —F Z Ci(iei.,_l + (N - 2)6‘1)‘|
=2 (17)

Eloy(6)]

Given prior distributions, the quantities F[6;], E[o,(0)] and
Elpvee(0)] are constants. Thus the problem becomes,

N—-1
Lmax Y (iEfin] + (N =DEW]),  (18)
=2
subject to,
N—-1
D Y eilifiir + (N —i)0;) < pyoa(0), ¥ 0,
1?2
2) > >0, Vk=23..,N-1
1=2

The above convex optimisation problem is also numerically
solved to obtain the optimal coefficients of the linear rebate
function.

V. SIMULATION SETUP AND RESULTS

1

09 b

0.8k —#— Worst-case optimal mechanism i
—~ —+— Optimal-in—expectation mechanism
07t —<— VCG mechanism ]
3
2 06f b
>
o
c
2 o5f
£
[}
3 0.4r
[
o
k7
5 03f
=

0.2F

0.1 7

0 . . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
Number of agents (N)
Fig. 1. Worst efficiency loss of worst case optimal and VCG mechanisms

In the two convex optimisation problems above, some
constraints are a function of # € © = [0,1]". We thus have

a continuum of half-space constraints whose intersection is
C. Guo & Conitzer [7] proved that the constraints obtained
with 6 profiles as e, = (1,1,...1,0,..0) with k£ 1’s for
k = 0,1,...,N are enough to specify the feasible region
in the case of indivisible goods. We also start with these 6
profiles. However, it was observed from simulations that these
0 profiles are not enough to characterise the feasible region
for the divisible goods case. Therefore, additional constraints
were obtained by sampling 50 random values of # uniformly
on O. This yielded an approximation C of C that contained
C. The coefficients of the rebate function are now obtained by
numerically solving the minimisation over C. It was observed
that C approximated the actual feasible region well because
the coefficients generated using this feasible region did not
violate the constraints for 10000 §’s sampled uniformly on ©.

Worst case efficiency loss of our proposed mechanism
is obtained by simulation for the valuation function v; =
0;log(1+a;). The set A is defined by the set of all allocation
vectors that satisfy ) . a; = 1. 6 is uniform on ©. The optimal
allocation satisfies,

— 1.

The worst case efficiency loss (L(N)) and coefficients
ca,C3,++ ,cN—1 are obtained by solving the optimisation
problem numerically. For the optimal-in-expectation mech-
anism, the feasibility region is obtained in an analogous
fashion with the modified objective function. Since 6 is
uniformly distributed on © and then subsequently ordered, the
ordered quantities satisfy F[0;] = Nj\ﬁ:{l, i=1,2,---,N.
The coefficients cg,c3,--- ,cy—1 are obtained by solving
the optimisation problem on the approximate feasible region.
Efficiency losses for 20000 6 profiles are calculated under
these coefficients. The expected efficiency loss is obtained
by taking the sample mean. The worst efficiency loss for
optimal-in-expectation mechanism is obtained by calculating
the efficiency losses for the e profiles and 20000 uniformly
sampled 6 profiles followed by an identification of the worst
case among them.

The worst case optimal mechanism is compared with VCG
mechanism and optimal-in-expectation mechanism in Figure
1 for worst case efficiency loss. It is observed that as number
of agents increases the worst case efficiency loss reduces
for the worst case optimal mechanism. On the other hand,
the worst case efficiency loss converges to 1 for the VCG
mechanism. As expected, the optimal-in-expectation performs
poorly in the worst case sense compared to worst case optimal
mechanism, especially for large number of agents. In Figure
2, the expected efficiency loss of the optimal-in-expectation
mechanism is compared with the worst case optimal and
VCG mechanisms. It can be seen from Figure 2 that the
optimal in expectation mechanism outperforms the other two
mechanisms in the expectation sense. The expected efficiency
loss of the optimal-in-expectation and worst case mechanisms
reduce as the number of agents increases. On the other hand,
the expected efficiency loss of the VCG mechanism increases
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—*— Worst case optimal mechanism
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Fig. 2. Expected efficiency loss of optimal-in-expectation, worst case optimal
and VCG mechanisms

as the number of agents increase.

VI. CONCLUSIONS

We proposed a mechanism in the class of Groves mech-
anisms that is almost budget-balanced as it minimizes the
worst case efficiency loss. The proposed mechanism is feasible
and has voluntary participation and anonymity properties. The
mechanism is applicable to allocation of divisible or indivisible
goods and simplifies to the mechanism proposed by Moulin
[6] and Guo & Conitzer [7] for the indivisible goods case.
A mechanism that is optimal-in-expectation is also proposed.
This is an extension of the Guo & Conitzer mechanism in
[14] for one (or) more indivisible goods to the divisible goods
case. The proposed mechanisms are compared with each other
and with the VCG mechanism to show the improvement in
efficiency.

The mechanisms we proposed can be extended to a case
where the valuation functions are private information to agents
and unknown to the central planner but can be parametrised
by a scalar value. Yang & Hajek [12] had proposed a VCG-
Kelly mechanism in a network resource allocation setting that
achieves an efficient Nash equilibrium implementation. Our
proposed mechanisms can be extended to this setting as well.
The mechanisms with better redistribution by allowing the
allocation to be inefficient can be also looked in divisible
setting. A linear rebate function is used in the proposed
mechanisms. The optimality or otherwise of the proposed
linear rebate mechanism is under study.
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